首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of a switched, time-varying 1.7 T magnetic field on Rb(+)(K+) uptake by HeLa S3 cells incubated in an isosmotic high K(+) medium were examined. The magnetic flux density was varied intermittently from 0.07-1.7 T at an interval of 3 s. K(+) uptake was activated by replacement of normal medium by high K(+) medium. A membrane-permeable Ca(2+) chelating agent (BAPTA-AM) and Ca(2+)-dependent K(+) channel inhibitors (quinine, charibdotoxin, and iberiotoxin) were found to reduce the Rb(+)(K+) uptake by about 30-40%. Uptake of K(+) that is sensitive to these drugs is possibly mediated by Ca(2+)-dependent K(+) channels. The intermittent magnetic field partly suppress ed the drug-sensitive K(+) uptake by about 30-40% (P < 0.05). To test the mechanism of inhibition by the magnetic fields, intracellular Ca(2+) concentration ([Ca(2+)]c) was measured using Fura 2-AM. When cells were placed in the high K(+) medium, [Ca(2+)]c increased to about 1.4 times the original level, but exposure to the magnetic fields completely suppressed the increase (P < 0.01). Addition of a Ca(2+) ionophore (ionomycin) to the high K(+) medium increased [Ca(2+)]c to the level of control cells, regardless of exposure to the magnetic field. But the inhibition of K(+) uptake by the magnetic fields was not restored by addition of ionomycin. Based on our previous results on magnetic field-induced changes in properties of the cell membrane, these results indicate that exposure to the magnetic fields partly suppresses K(+) influx, which may be mediated by Ca(2+)-dependent K(+) channels. The suppress ion of K(+) fluxes could relate to a change in electric properties of cell surface and an inhibition of Ca(2+) influx mediated by Ca(2+) channels of either the cell plasma membrane or the inner vesicular membrane of intracellular Ca(2+) stores.  相似文献   

2.
The effects of 50 Hz sinusoidal electric currents and magnetic fields on the Gram-positive skin bacterium Propionibacterium acnes were investigated. Intracellular free calcium ([Ca(2+)](i)), intracellular pH (pH(i)), and cell viability were examined, based on their relevance to ELF field studies and on previous studies conducted on P. acnes (UVA irradiation, photosensitization using porphyrin-based sensitizers, and broad-band red light). The [Ca(2+)](i) and the pH(i) were measured spectrofluorimetrically using the fluorescent probes fura-2 and BCECF, respectively. Sham-exposed controls were used to assess the field exposed samples. Cell suspensions were exposed to 50 Hz, 0.2 mT sinusoidal magnetic fields generated by using Helmholtz coils for up to 30 min. The estimated maximum induced electric field was 0.2 mV/m. Changes in [Ca(2+)](i) and cell viability were not detected. Ag/AgCl electrodes were used to expose cell suspensions to 50 Hz sinusoidal electric currents. The current densities were in the range 0.015-1500 A/m(2) (corresponding electric fields congruent with0.01-1000 V/m). Changes in [Ca(2+)](i) were not observed after current exposure. Current densities of 800 A/m(2) (electric field E congruent with550 V/m) were required for a 50% reduction in cell viability. Current densities greater than 800 A/m(2) were required for a reduction in pH(i). However, a pH gradient across the cell membrane (inside alkaline) was maintained even when exposure resulted in less than 0. 2% survival (1400 A/m(2), E congruent with950 V/m). Thus, dissipation of the pH gradient across the cell membrane and changes in [Ca(2+)](i) were not a consequence of cell inactivation by 50 Hz electric currents. This is in contrast to inactivation of P. acnes by UVA irradiation or photosensitization, where such changes have been obtained.  相似文献   

3.
J Walleczek 《FASEB journal》1992,6(13):3177-3185
During the past decade considerable evidence has accumulated demonstrating that nonthermal exposures of cells of the immune system to extremely low-frequency (ELF) electromagnetic fields (< 300 Hz) can elicit cellular changes that might be relevant to in vivo immune activity. A similar responsiveness to nonionizing electromagnetic energy in this frequency range has also been documented for tissues of the neuroendocrine and musculoskeletal system. However, knowledge about the underlying biological mechanisms by which such fields can induce cellular changes is still very limited. It is generally believed that the cell membrane and Ca(2+)-regulated activity is involved in bioactive ELF field coupling to living systems. This article begins with a short review of the current state of knowledge concerning the effects of nonthermal levels of ELF electromagnetic fields on the biochemistry and activity of immune cells and then closely examines new results that suggest a role for Ca2+ in the induction of these cellular field effects. Based on these findings it is proposed that membrane-mediated Ca2+ signaling processes are involved in the mediation of field effects on the immune system.  相似文献   

4.
Transmembrane calcium influx induced by ac electric fields.   总被引:2,自引:0,他引:2  
Exogenous electric fields induce cellular responses including redistribution of integral membrane proteins, reorganization of microfilament structures, and changes in intracellular calcium ion concentration ([Ca2+]i). Although increases in [Ca2+]i caused by application of direct current electric fields have been documented, quantitative measurements of the effects of alternating current (ac) electric fields on [Ca2+]i are lacking and the Ca2+ pathways that mediate such effects remain to be identified. Using epifluorescence microscopy, we have examined in a model cell type the [Ca2+]i response to ac electric fields. Application of a 1 or 10 Hz electric field to human hepatoma (Hep3B) cells induces a fourfold increase in [Ca2+]i (from 50 nM to 200 nM) within 30 min of continuous field exposure. Depletion of Ca2+ in the extracellular medium prevents the electric field-induced increase in [Ca2+]i, suggesting that Ca2+ influx across the plasma membrane is responsible for the [Ca2+]i increase. Incubation of cells with the phospholipase C inhibitor U73122 does not inhibit ac electric field-induced increases in [Ca2+]i, suggesting that receptor-regulated release of intracellular Ca2+ is not important for this effect. Treatment of cells with either the stretch-activated cation channel inhibitor GdCl3 or the nonspecific calcium channel blocker CoCl2 partially inhibits the [Ca2+]i increase induced by ac electric fields, and concomitant treatment with both GdCl3 and CoCl2 completely inhibits the field-induced [Ca2+]i increase. Since neither Gd3+ nor Co2+ is efficiently transported across the plasma membrane, these data suggest that the increase in [Ca2+]i induced by ac electric fields depends entirely on Ca2+ influx from the extracellular medium.  相似文献   

5.
The effects of extremely low frequency (ELF) magnetic field on gap junctional intercellular communication (GJIC), protein levels, and phosphorylation of connexin43 (Cx43) were studied in NIH3T3 cells. The suppression of GJIC by 24 h, 50 Hz, 0.8 mT ELF magnetic field, 2 h, 3 ng/ml 12-O-tetradecanoylphorbol-13-acetate (TPA), or ELF combined with TPA treatment was confirmed by the fluorescence recovery after photobleaching (FRAP) analysis with a confocal microscope. The results showed that ELF or TPA exposure induced 50-60% inhibition of GJIC (P < 0.01). ELF combined with TPA enhanced the inhibition of GJIC. Western blot analysis using Cx43 specific antibodies showed obviously decreasing non phosphorylated Cx43 (P(0)) induced by ELF and/or TPA exposure. On the other hand, cells treated with ELF and/or TPA displayed a hyperphosphorylated Cx43 band (P(3)). However, there was no obvious changes in the level of Cx43 protein. The results implied that the P(3) band appeared to result from phosphorylation of P(0). But it remains possible that upon the ELF exposure P(0) is converted to P(1), P(2) or both and that P(3) is formed from P(1) or P(2) resulting in the observed hyperphosphorylation pattern. From the present study, we conclude that ELF magnetic field inhibits GJIC and the main mechanism is the hyperphosphorylation of Cx43.  相似文献   

6.
Endothelial cells are exposed to a ubiquitous, yet unexamined electrical force caused by blood flow: the electrokinetic vascular streaming potential (EVSP). In this study, the hypothesis that extremely low frequency (ELF) electric fields parameterized by the EVSP have significant biological effects on endothelial cell properties was studied by measuring membrane potential and nitric oxide production under ELF stimulation between 0 and 2 Hz and 0–6.67 V/m. Using membrane potential and nitric oxide sensitive fluorescent dyes, bovine aortic endothelial cells (BAECs) in culture were studied in the presence and absence of EVSP‐modeled electric fields. The transmembrane potential of BAECs was shown to depolarize between 1 and 7 mV with a strong dependency on both the magnitude and frequency of the isolated ELF field. The findings also support a field interaction with a frequency‐dependent tuning curve. The ELF field complexly modulates the nitric oxide response to adenosine triphosphate stimulation with potentiation seen with up to a sevenfold increase. This potentiation was also frequency and magnitude dependent. An early logarithmic phase of NO production is enhanced in a field strength‐dependent manner, but the ELF field does not modify a later exponential phase. This study shows that using electric fields on the order of those generated by blood flow influences the essential biology of endothelial cells. The inclusion of ELF electric fields in the paradigm of vascular biology may create novel opportunities for advancing both the understanding and therapies for treatment of vascular diseases. Bioelectromagnetics 34:22–30, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
In rat skeletal muscle, electrical stimulation increases Ca(2+) influx leading to progressive accumulation of calcium. Excitation-induced Ca(2+) influx in extensor digitorum longus (EDL; fast-twitch fibers) and soleus muscle (slow-twitch fibers) is compared. In EDL and soleus, stimulation at 40 Hz increased (45)Ca uptake 34- and 21-fold and (22)Na uptake 17- and 7-fold, respectively. These differences may be related to the measured 70% higher concentration of Na(+) channels in EDL. Repeated stimulation at 40 Hz elicited a delayed release of lactic acid dehydrogenase (LDH) from EDL (11-fold increase) and soleus (5-fold increase). Continuous stimulation at 1 Hz increased LDH release only from EDL (18-fold). This was associated with increased Ca(2+) content and was augmented at high extracellular Ca(2+) concentration ([Ca(2+)](o)) and suppressed at low [Ca(2+)](o). The data support the hypothesis that excitation-induced Ca(2+) influx is mediated in part by Na(+) channels and that the ensuing increase in intracellular Ca(2+) induces cellular damage. This is most pronounced in EDL, which may account for the repeated observation that prolonged exercise leads to preferential damage to fast-twitch fibers.  相似文献   

8.
A chicken tendon explant model system has been developed to investigate the effects of extremely-low-frequency (ELF), low-amplitude, unipolar, square wave pulsed electric fields on fibroplasia in vitro. An electric field parameter set consisting of 1-Hz, 1-ms duration pulses, with a time-averaged current density of 7 mA/m2 (peak current density 7 A/m2) induced maximal (32%) increase in fibroblast proliferation in tendon explants exposed for 4 days. Exposure to the same field at an average current density of 1.8 mA/m2 had no effect on fibroblast proliferation, whereas exposure to current densities on greater than 10 mA/m2 inhibited proliferation and relative collagen synthesis, without affecting noncollagen protein synthesis. Fibroplasia was significantly increased in explants oriented parallel to applied electric fields having current densities of 3.5 or 7 mA/m2, but there was no detectable effect on explants oriented perpendicular to the same electric field. Fibroblast proliferation and relative collagen synthesis were inversely proportional to donor age for chickens in the 3- to 16-week age group used in this study. For these dependent variables (proliferation and relative collagen synthesis), there was no interaction between donor age and ELF electric field exposure.  相似文献   

9.
Ca(2+) influx triggered by depletion of sarcoplasmic reticulum (SR) Ca(2+) stores [mediated via store-operated Ca(2+) channels (SOCC)] was characterized in enzymatically dissociated porcine airway smooth muscle (ASM) cells. When SR Ca(2+) was depleted by either 5 microM cyclopiazonic acid or 5 mM caffeine in the absence of extracellular Ca(2+), subsequent introduction of extracellular Ca(2+) further elevated [Ca(2+)](i). SOCC was insensitive to 1 microM nifedipine- or KCl-induced changes in membrane potential. However, preexposure of cells to 100 nM-1 mM La(3+) or Ni(2+) inhibited SOCC. Exposure to ACh increased Ca(2+) influx both in the presence and absence of a depleted SR. Inhibition of inositol 1,4,5-trisphosphate (IP)-induced SR Ca(2+) release by 20 microM xestospongin D inhibited SOCC, whereas ACh-induced IP(3) production by 5 microM U-73122 had no effect. Inhibition of Ca(2+) release through ryanodine receptors (RyR) by 100 microM ryanodine also prevented Ca(2+) influx via SOCC. Qualitatively similar characteristics of SOCC-mediated Ca(2+) influx were observed with cyclopiazonic acid- vs. caffeine-induced SR Ca(2+) depletion. These data demonstrate that a Ni(2+)/La(3+)-sensitive Ca(2+) influx via SOCC in porcine ASM cells involves SR Ca(2+) release through both IP(3) and RyR channels. Additional regulation of Ca(2+) influx by agonist may be related to a receptor-operated, noncapacitative mechanism.  相似文献   

10.
The effect of a 60 Hz electric field (EF) on alteration of cytosolic free Ca2+ level ([Ca2+]c) was examined in mouse splenocytes stimulated by lectins, namely concanavalin A (ConA) or phytohemagglutinin. In order to understand the role of EF on alterations in [Ca2+]c and to determine whether EF exposure increased cell mortality the splenocytes were cultured under the 60 Hz EFs producing current densities of 6 or 60 microA/cm2 for 30 min or 24 h. Cell mortality was less than 2% in experimental all conditions. [Ca2+]c in the splenocyte was not changed by the 6 microA/cm2 exposure alone, while a lectin-induced [Ca2+]c elevation in the EF exposed cells was significantly higher than that of the sham exposed cells (P <.05: ANOVA, P <.05: paired t-test). Moreover, the enhanced increase of [Ca2+]c in the EF exposed, lectin stimulated cells was only observed in the presence of extracellular Ca2+. The EF dependent upregulation of [Ca2+]c persisted after EF exposure (P <.05: paired t-test). The results clearly indicate that Ca2+ influx across the plasma membrane is responsible for the enhanced increase of [Ca2+]c in the EF exposed, lectin stimulated cells and that EF has persistent effect on the cells. Although the precise mechanisms of the EF dependent upregulation of [Ca2+]c is not fully elucidated, the present results demonstrate that the 60 Hz EF (6 microA/cm2) affects [Ca2+]c during cell activation via a Ca2+ influx pathway induced by lectin stimulation.  相似文献   

11.
In nonexcitable cells, Ca(2+) entry is mediated predominantly through the store depletion-dependent Ca(2+) channels called store-operated Ca(2+) (SOC) or Ca(2+) release-activated Ca(2+) channels. YM-58483, a pyrazole derivative, inhibited an anti-CD3 mAb-induced sustained Ca(2+) influx in acute T cell leukemia, Jurkat cells. But it did not affect an anti-CD3 mAb-induced transient intracellular Ca(2+) increase in Ca(2+)-free medium, nor anti-CD3 mAb-induced phosphorylation of phospholipase Cgamma1. It was suggested that YM-58483 inhibited Ca(2+) influx through SOC channels without affecting the TCR signal transduction cascade. Furthermore, YM-58483 inhibited thapsigargin-induced sustained Ca(2+) influx with an IC(50) value of 100 nM without affecting membrane potential. YM-58483 inhibited by 30-fold the Ca(2+) influx through SOC channels compared with voltage-operated Ca(2+) channels, while econazole inhibited both SOC channels and voltage-operated Ca(2+) channels with an equivalent range of IC(50) values. YM-58483 potently inhibited IL-2 production and NF-AT-driven promoter activity, but not AP-1-driven promoter activity in Jurkat cells. Moreover, this compound inhibited delayed-type hypersensitivity in mice with an ED(50) of 1.1 mg/kg. Therefore, we concluded that YM-58483 was a novel store-operated Ca(2+) entry blocker and a potent immunomodulator, and could be useful for the treatment of autoimmune diseases and chronic inflammation. Furthermore, YM-58483 would be a candidate for the study of capacitative Ca(2+) entry mechanisms through SOC/CRAC channels and for identification of putative Ca(2+) channel genes.  相似文献   

12.
Gap junctional intercellular communication (GJIC) of cultured mouse epidermal cells is mediated by a gap junction protein, connexin 43, and is dependent on the calcium concentration in the medium, with higher GJIC in a high-calcium (1.2 mM) medium. In several mouse epidermal cell lines, we found a good correlation between the level of GJIC and that of immunohistochemical staining of E-cadherin, a calcium-dependent cell adhesion molecule, at cell-cell contact areas. The variant cell line P3/22 showed both low GJIC and E-cadherin protein expression in low- and high-Ca2+ media. P3/22 cells showed very low E-cadherin mRNA expression. To test directly whether E-cadherin is involved in the Ca(2+)-dependent regulation of GJIC, we transfected the E-cadherin expression vector into P3/22 cells and obtained several stable clones which expressed high levels of E-cadherin mRNA. All transfectants expressed E-cadherin molecules at cell-cell contact areas in a calcium-dependent manner. GJIC was also observed in these transfectants and was calcium dependent. These results suggest that Ca(2+)-dependent regulation of GJIC in mouse epidermal cells is directly controlled by a calcium-dependent cell adhesion molecule, E-cadherin. Furthermore, several lines of evidence suggest that GJIC control by E-cadherin involves posttranslational regulation (assembly and/or function) of the gap junction protein connexin 43.  相似文献   

13.
Zeng QL  Chiang H  Hu GL  Mao GG  Fu YT  Lu DQ 《Bioelectromagnetics》2003,24(2):134-138
We have previously demonstrated that exposure of Chinese hamster lung (CHL) cells to 50 Hz magnetic fields (MFs) and/or 12-O-tetradecanoylphorbol-3-acetate (TPA)-inhibited gap junctional intercellular communication (GJIC). To explore and compare the mechanisms of GJIC inhibition induced by extremely low frequency (ELF) MF and TPA, the number and localization of connexin 43 (C x 43) were studied. The localization of C x 43 was determined with indirect immunofluorescence histochemical analysis and detected by confocal microscopy after exposing CHL cells to 50 Hz sinusoidal magnetic field at 0.8 mT for 24 h without or with TPA (5 ng/ml) for the last 1 h. The C x 43 levels in nuclei and in cytoplasm were examined by Western blotting analysis. The results showed that the cells exposed to MF and/or TPA displayed individual plaques at regions of intercellular contact, which were fewer than the normal cells in number, while the number of C x 43 in cytoplasm increased and congregated near the nuclei. Western blot analysis further demonstrated the quantity of changes in location of Cx43. These results suggest that reduction of C x 43 at regions of intercellular contact may be one of the mechanisms of GJIC inhibition induced by ELF MF.  相似文献   

14.
The basal (45)Ca(2+) influx in human red blood cells (RBC) into intact RBC was measured. (45)Ca(2+) was equilibrated with cells with t(1/2)=15-20 s and the influx reached the steady state value in about 90-100 s and the steady state level was 1.5+/-0.2 micromol/l(packed cells) (n=6) at 37 degrees C. The average value of the Ca(2+) influx rate was 43.2+/-8.9 micromol/l(packed cells) hour. The rate of the basal influx was pH-dependent with a pH optimum at pH 7.0 and on the temperature with the temperature optimum at 25 degrees C. The basal Ca(2+) influx was saturable with Ca(2+) up to 5 mmol/l but at higher extracellular Ca(2+) concentrations caused further increase of basal Ca(2+) influx. The (45)Ca(2+) influx was stimulated by addition of submicromolar concentrations of phorbol esters (phorbol 12-myristate-13-acetate (PMA) and phorbol-12,13-dibutyrate (PDBu)) and forskolin. Uncoupler (3,3',4',5-tetrachloro-salicylanilide (TCS) 10(-6)-10(-5) mol/l) inhibited in part the Ca(2+) influx. The results show that the basal Ca(2+) influx is mediated by a carrier and is under control of intracellular regulatory circuits. The effect of uncoupler shows that the Ca(2+) influx is in part driven by the proton-motive force and indicates that the influx and efflux of Ca(2+) are coupled via the RBC H(+) homeostasis.  相似文献   

15.
Stimulation of Dictyostelium discoideum with cAMP evokes a change of the cytosolic free Ca(2+) concentration ([Ca(2+)](i)). We analyzed the role of the filling state of Ca(2+) stores for the [Ca(2+)] transient. Parameters tested were the height of the [Ca(2+)](i) elevation and the percentage of responding amoebae. After loading stores with Ca(2+), cAMP induced a [Ca(2+)](i) transient in many cells. Without prior loading, cAMP evoked a [Ca(2+)](i) change in a few cells only. This indicates that the [Ca(2+)](i) elevation is not mediated exclusively by Ca(2+) influx but also by Ca(2+) release from stores. Reducing the Ca(2+) content of the stores by EGTA preincubation led to a cAMP-activated [Ca(2+)](i) increase even at low extracellular [Ca(2+)]. Moreover, the addition of Ca(2+) itself elicited a capacitative [Ca(2+)](i) elevation. This effect was not observed when stores were emptied by the standard technique of inhibiting internal Ca(2+) pumps with 2,5-di-(t-butyl)-1,4-hydroquinone. Therefore, in Dictyostelium, an active internal Ca(2+)-ATPase is absolutely required to allow for Ca(2+) entry. No influence of the filling state of stores on Ca(2+) influx characteristics was found by the Mn(2+)-quenching technique, which monitors the rate of Ca(2+) entry. Both basal and cAMP-activated Mn(2+) influx rates were similar in control cells and cells with empty stores. By contrast, determination of extracellular free Ca(2+) concentration ([Ca(2+)](e)) changes, which represent the sum of Ca(2+) influx and efflux, revealed a higher rate of [Ca(2+)](e) decrease in EGTA-treated than in control amoebae. We conclude that emptying of Ca(2+) stores does not change the rate of Ca(2+) entry but results in inhibition of the plasma membrane Ca(2+)-ATPase. Furthermore, the activities of the Ca(2+) transport ATPases of the stores are of crucial importance for the regulation of [Ca(2+)](i) changes.  相似文献   

16.
Inhibition of gap junctional intercellular communication (GJIC) is an important event in the multistage process of carcinogenesis. Our previous study showed that extremely low frequency (ELF) magnetic fields (MFs) inhibit GJIC, and enhance the suppression of GJIC induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) using a microinjection technique. In the present study, the inhibition of GJIC by ELF MFs and its threshold were further studied with fluorescence recovery after photobleaching (FRAP) technique. The results indicated that the FRAP technique is more sensitive in detecting the changes of GJIC than microinjection, and the threshold level is 0.4 mT for GJIC suppression by 50 Hz MFs. In addition, 0.2 mT, or more than 0.2 mT ELF can enhance the inhibition of GJIC induced by TPA. We concluded that MFs thus might act as a cancer promoter or work in synergy with other cancer promoters. The data also provide grounds to revise the reference standard of ELF MFs exposure.  相似文献   

17.
In nonexcitable cells, receptor stimulation evokes Ca(2+) release from the endoplasmic reticulum stores followed by Ca(2+) influx through store-operated Ca(2+) channels in the plasma membrane. In mast cells, store-operated entry is mediated via Ca(2+) release-activated Ca(2+) (CRAC) channels. In this study, we find that stimulation of muscarinic receptors in cultured mast cells results in Ca(2+)-dependent activation of protein kinase Calpha and the mitogen activated protein kinases ERK1/2 and this is required for the subsequent stimulation of the enzymes Ca(2+)-dependent phospholipase A(2) and 5-lipoxygenase, generating the intracellular messenger arachidonic acid and the proinflammatory intercellular messenger leukotriene C(4). In cell population studies, ERK activation, arachidonic acid release, and leukotriene C(4) secretion were all graded with stimulus intensity. However, at a single cell level, Ca(2+) influx was related to agonist concentration in an essentially all-or-none manner. This paradox of all-or-none CRAC channel activation in single cells with graded responses in cell populations was resolved by the finding that increasing agonist concentration recruited more mast cells but each cell responded by generating all-or-none Ca(2+) influx. These findings were extended to acutely isolated rat peritoneal mast cells where muscarinic or P2Y receptor stimulation evoked all-or-none activation of Ca(2+)entry but graded responses in cell populations. Our results identify a novel way for grading responses to agonists in immune cells and highlight the importance of CRAC channels as a key pharmacological target to control mast cell activation.  相似文献   

18.
Calcium seems to be a major second messenger involved in the regulation of prostatic cell functions, but the mechanisms underlying its control are poorly understood. We investigated spatiotemporal aspects of Ca2+ signals in the LNCaP cell line, a model of androgen-dependent prostatic cells, by using non-invasive external electric field pulses that hyperpolarize the anode facing membrane and depolarize the membrane facing the cathode. Using high-speed fluo-3 confocal imaging, we found that an electric field pulse (10-15 V/cm, 1-5 mA, 5 ms) initiated rapidly, at the hyperpolarized end of the cell, a propagated [Ca2+]i wave which spread through the cell with a constant amplitude and an average velocity of about 20 microns/s. As evidenced by the total wave inhibition either by the block of Ca2+ entry or the depletion of Ca2+ stores by thapsigargin, a specific Ca(2+)-ATPase inhibitor, the [Ca2+]i wave initiation may imply a localized Ca2+ influx linked to a focal auto-regenerative process of Ca2+ release. Using different external Ca2+ and Ca2+ entry blockers concentrations, Mn2+ quenching of fluo-3 and fura-2 fluorescence and inhibitors of InsP3 production, we found evidence that the [Ca2+]i wave progression required, in the presence of basal levels of InsP3, an interplay between Ca2+ release from InsP3-sensitive Ca2+ stores and Ca2+ influx through channels possibly activated by the [Ca2+]i rise.  相似文献   

19.
Possible correlation between the effects of electromagnetic fields (EFs) on voltage-gated Ca(2+) channels, cell proliferation and apoptosis was investigated in neural and neuroendocrine cells. Exposure to 50 Hz EFs significantly enhanced proliferation in human neuroblastoma IMR32 (+40%) and rat pituitary GH3 cells (+38%). In IMR32 cells EF stimulation also inhibited puromycin- and H(2)O(2)-induced apoptosis (-22 and -33%, respectively). EF effects on proliferation and apoptosis were counteracted by Ca(2+) channel blockade. In whole-cell patch-clamp experiments 24-72 h exposure to EFs increased macroscopic Ba(2+)-current density in both GH3 (+67%) and IMR32 cells (+40%). Single-channel recordings showed that gating of L and N channels was instead unaffected, thus suggesting that the observed enhancement of current density was due to increased number of voltage-gated Ca(2+) channels. Western blot analysis of plasma membrane-enriched microsomal fractions of GH3 and IMR32 cells confirmed enhanced expression of Ca(2+) channel subunit alpha(1) following exposure to EFs. These data provide the first direct evidence that EFs enhance the expression of voltage-gated Ca(2+) channels on plasma membrane of the exposed cells. The consequent increase in Ca(2+) influx is likely responsible for the EF-induced modulation of neuronal cell proliferation and apoptosis.  相似文献   

20.
Human umbilical vein endothelial cells were exposed to sinusoidal electric fields of 0.3 or 30 kV/m, 50 Hz, for 24 h. Changes in intracellular calcium concentration ([Ca(2+)](i)) induced by ATP-stimulation in the absence of extracellular Ca(2+) were observed in individual cells. No differences were observed between the exposure and sham-exposure groups in [Ca(2+)](i) resting level before ATP-stimulation, or in the [Ca(2+)](i) peak levels induced by stimulation. However, the duration of the initial transients in [Ca(2+)](i) following an ATP stimulus was significantly prolonged by exposure to a 30 kV/m field. The inositol trisphosphate receptor inhibitor, xestospongin C, inhibited the ATP-induced elevation in [Ca(2+)](i) in both the exposure and sham-exposure groups. The ATP-receptor P2Y appeared to play an important role in the increase of [Ca(2+)](i). The present results suggest that an extremely low-frequency electric field affects the function of vascular endothelial cells by a mechanism involving activation of P2Y.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号