首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The intracellular domain of the prolactin (PRL) receptor (PRLr) is required for PRL-induced signaling and proliferation. To identify and test the functional stoichiometry of those PRLr motifs required for transduction and growth, chimeras consisting of the extracellular domain of either the α or β subunit of human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GM-CSFr) and the intracellular domain of the rat PRLr were synthesized. Because the high-affinity binding of GM-CSF results from the specific pairing of one α- and one β-GM-CSFr, use of GM-CSFr/PRLr chimera enabled targeted dimerization of the PRLr intracellular domain. To that end, the extracellular domains of the α- and β-GM-CSFr were conjugated to one of the following mutations: (i) PRLr C-terminal truncations, termed α278, α294, α300, α322, or β322; (ii) PRLr tyrosine replacements, termed Y309F, Y382F, or Y309+382F; or, (iii) PRLr wild-type short, intermediate, or long isoforms. These chimeras were cotransfected into the cytokine-responsive Ba/F3 line, and their expression was confirmed by ligand binding and Northern and Western blot analyses. Data from these studies revealed that heterodimeric complexes of the wild type with C-terminal truncation mutants of the PRLr intracellular domain were incapable of ligand-induced signaling or proliferation. Replacement of any single tyrosine residue (Y309F or Y382F) in the dimerized PRLr complex resulted in a moderate reduction of receptor-associated Jak2 activation and proliferation. In contrast, trans replacement of these residues (i.e., αY309F and βY382F) markedly reduced ligand-driven Jak2 activation and proliferation, while cis replacement of both tyrosine residues in a single intracellular domain (i.e., αY309+382F) produced an inactive signaling complex. Analysis of these GM-CSFr–PRLr complexes revealed equivalent levels of Jak2 in association with the mutant receptor chains, suggesting that the tyrosine residues at 309 and 382 do not contribute to Jak association, but instead to its activation. Heterodimeric pairings of the intracellular domains from the known PRLr receptor isoforms (short-intermediate, short-long, and intermediate-long) also yielded inactive receptor complexes. These data demonstrate that the tyrosine residues at 309 and 382, as well as additional residues within the C terminus of the dimerized PRLr complex, contribute to PRL-driven signaling and proliferation. Furthermore, these findings indicate a functional requirement for the pairing of Y309 and Y382 in trans within the dimerized receptor complex.  相似文献   

3.
Prolactin (PRL)-dependent signaling occurs as the result of ligand-induced homodimerization of the PRL receptor (PRLr). To date, short, intermediate, and long human PRLr isoforms have been characterized. To investigate the expression of other possible human PRLr isoforms, RT-PCR was performed on mRNA isolated from the breast carcinoma cell line T47D. A 1.5-kb PCR fragment was isolated, subcloned, and sequenced. The PCR product exhibited a nucleotide sequence 100% homologous to the human long isoform except bp 71-373 were deleted, which code for the S1 motif of the extracellular domain. Therefore, this isoform was designated the deltaS1 PRLr. Northern analysis revealed variable deltaS1 PRLr mRNA expression in a variety of tissues. Transfection of Chinese hamster ovary cells with deltaS1 cDNA showed the isoform is expressed at the protein level on the cell surface with a molecular mass of approximately 70 kDa. Kinetic studies indicated the deltaS1 isoform bound ligand at a lower affinity than wild-type receptor. The deltaS1 PRLr was also shown to activate the proximal signaling molecule Jak2 upon addition of ligand to transfected cells, and, unlike the long PRLr, high concentrations of ligand did not function as a self-antagonist to signaling during intervals of PRL serum elevation, i.e. stress and pregnancy. Given its apparent widespread expression, this PRLr isoform may contribute to PRL action. Furthermore, the functionality of this receptor raises interesting questions regarding the minimal extracellular domain necessary for ligand-induced receptor signaling.  相似文献   

4.
Mitogenic and prosurvival effects underlie the tumorigenic roles of prolactin (PRL) in the pathogenesis of breast cancer. PRL signaling is mediated through its receptor (PRLr). A proteomics screen identified the pyruvate kinase M2 (PKM2), a glycolytic enzyme known to play an important role in tumorigenesis, as a protein that constitutively interacts with PRLr. Treatment of cells with PRL inhibited pyruvate kinase activity and increased the lactate content in human cells in a manner that was dependent on the abundance of PRLr, activation of Janus kinase 2, and tyrosine phosphorylation of the intracellular domain of PRLr. Knockdown of PKM2 attenuated PRL-stimulated cell proliferation. The extent of this proliferation was rescued by the knock-in of the wild-type PKM2 but not of its mutant insensitive to PRL-mediated inhibition. We discuss a hypothesis that the inhibition of PKM2 by PRL contributes to the PRL-stimulated cell proliferation.  相似文献   

5.
6.
Hematopoietic cytokine receptors, such as the erythropoietin receptor (EpoR), are single membrane-spanning proteins. Signal transduction through EpoR is crucial for the formation of mature erythrocytes. Structural evidence shows that in the unliganded form EpoR exists as a preformed homodimer in an open scissor-like conformation precluding the activation of signaling. In contrast to the extracellular domain of the growth hormone receptor (GHR), the structure of the agonist-bound EpoR extracellular region shows only minimal contacts between the membrane-proximal regions. This evidence suggests that the domains facilitating receptor dimerization may differ between cytokine receptors. We show that the EpoR transmembrane domain (TM) has a strong potential to self interact in a bacterial reporter system. Abolishing self assembly of the EpoR TM by a double point mutation (Leu 240-Leu 241 mutated to Gly-Pro) impairs signal transduction by EpoR in hematopoietic cells and the formation of erythroid colonies upon reconstitution in erythroid progenitor cells from EpoR(-/-) mice. Interestingly, inhibiting TM self assembly in the constitutively active mutant EpoR R129C abrogates formation of disulfide-linked receptor homodimers and consequently results in the loss of ligand-independent signal transduction. Thus, efficient signal transduction through EpoR and possibly other preformed receptor oligomers may be determined by the dynamics of TM self assembly.  相似文献   

7.
Members of the epidermal growth factor receptor, or ErbB, family of receptor tyrosine kinases have a single transmembrane (TM) alpha-helix that is usually assumed to play a passive role in ligand-induced dimerization and activation of the receptor. However, recent studies with the epidermal growth factor receptor (ErbB1) and the erythropoietin receptor have indicated that interactions between TM alpha-helices do contribute to stabilization of ligand-independent and/or ligand-induced receptor dimers. In addition, not all of the expected ErbB receptor ligand-induced dimerization events can be recapitulated using isolated extracellular domains, suggesting that other regions of the receptor, such as the TM domain, may contribute to dimerization in vivo. Using an approach for analyzing TM domain interactions in Escherichia coli cell membranes, named TOXCAT, we find that the TM domains of ErbB receptors self-associate strongly in the absence of their extracellular domains, with the rank order ErbB4-TM > ErbB1-TM equivalent to ErbB2-TM > ErbB3-TM. A limited mutational analysis suggests that dimerization of these TM domains involves one or more GXXXG motifs, which occur frequently in the TM domains of receptor tyrosine kinases and are critical for stabilizing the glycophorin A TM domain dimer. We also analyzed the effect of the valine to glutamic acid mutation in ErbB2 that constitutively activates this receptor. Contrary to our expectations, this mutation reduced rather than increased ErbB2-TM dimerization. Our findings suggest a role for TM domain interactions in ErbB receptor function, possibly in stabilizing inactive ligand-independent receptor dimers that have been observed by several groups.  相似文献   

8.
The ubiquitination of the receptor that mediates signaling induced by the polypeptide pituitary hormone prolactin (PRL) has been shown to lead to the degradation of this receptor and to the ensuing negative regulation of cellular responses to PRL. However, the mechanisms of PRL receptor (PRLr) proteolysis remain largely to be determined. Here we provide evidence that PRLr is internalized and primarily degraded via the lysosomal pathway. Ubiquitination of PRLr is essential for the rapid internalization of PRLr, which proceeds through a pathway dependent on clathrin and the assembly polypeptide 2 (AP2) adaptor complexes. Recruitment of AP2 to PRLr is stimulated by PRLr ubiquitination, which also is required for the targeting of already internalized PRLr to the lysosomal compartment. While mass spectrometry analysis revealed that both monoubiquitination and polyubiquitination (via both K48- and K63-linked chains) occur on PRLr, the results of experiments using forced expression of ubiquitin mutants indicate that PRLr polyubiquitination via K63-linked chains is important for efficient interaction of PRLr with AP2 as well as for efficient internalization, postinternalization sorting, and proteolytic turnover of PRLr. We discuss how specific ubiquitination may regulate early and late stages of endocytosis of PRLr and of related receptors to contribute to the negative regulation of the magnitude and duration of downstream signaling.  相似文献   

9.
The human follitropin receptor (hFSHR) is a G protein-coupled receptor (GPCR) central to reproductive physiology that is composed of an extracellular domain (ECD) fused to a serpentine region. Using bioluminescence resonance energy transfer (BRET) in living cells, we show that hFSHR dimers form constitutively during their biosynthesis. Mutations in TM1 and TM4 had no effect on hFSHR dimerization, alone or when combined with mutation of Tyr110 in the ECD, a residue predicted to mediate dimerization of the soluble hormone-binding portion of the ECD complexed with FSH (Q. Fan and W. Hendrickson, Nature 433:269–277, 2005). Expressed individually, the serpentine region and a membrane-anchored form of the hFSHR ECD each exhibited homodimerization, suggesting that both domains contribute to dimerization of the full-length receptor. However, even in the context of only the membrane-anchored ECD, mutation of Tyr110 to alanine did not inhibit dimerization. The full-length hFSHR and the membrane-anchored ECD were then each engineered to introduce a consensus site for N-linked glycosylation at residue 110. Despite experimental validation of the presence of carbohydrate on residue 110, we failed to observe disruption of dimerization of either the full-length hFSHR or membrane-anchored ECD containing the inserted glycan wedge. Taken altogether, our data suggest that both the serpentine region and the ECD contribute to hFSHR dimerization and that the dimerization interface of the unoccupied hFSHR does not involve Tyr110 of the ECD.  相似文献   

10.
A functional calcitonin gene-related peptide (CGRP) receptor requires dimerization of calcitonin receptor-like receptor (CRLR) with receptor activity-modifying protein 1 (RAMP 1). To determine the function of the three domains (extracellular, ECD; transmembrane, TM; and tail domains) of human RAMP 1, three mutants were constructed: RAMP 1 without the cytoplasmic tail, a chimera consisting of the ECD of RAMP 1 and the TM and tail of the platelet-derived growth factor receptor, and the ECD of RAMP 1 alone. These RAMP 1 mutants were examined for their ability to associate with CRLR to effect CGRP-stimulated cAMP accumulation, CGRP binding, CRLR trafficking, and cell surface expression. All RAMP 1 mutants were able to associate with CRLR with full efficacy for CGRP-stimulated cAMP accumulation. However, the RAMP 1/platelet-derived growth factor receptor chimera demonstrated a 10-fold decrease in potency for CGRP signaling and binding, and the RAMP 1-ECD mutant had a 4000-fold decrease in potency. In conclusion, the ECD of RAMP 1 is sufficient for normal CRLR association and efficacy. The presence of a TM domain and the specific sequence of the RAMP 1 TM domain contribute to CGRP affinity and potency. The C-terminal tail of RAMP 1 is unnecessary for CRLR function.  相似文献   

11.

Background  

Elevations of serum prolactin (PRL) are associated with an increased risk for breast cancer. PRL signaling through its prolactin receptor (PRLr) involves the Jak2/Stat5 pathway. Luciferase-based reporter assays have been widely used to evaluate the activity of this pathway. However, the existing reporters are often not sensitive enough to monitor the effect of PRL in this pathway.  相似文献   

12.
Receptor tyrosine kinases have a single transmembrane (TM) segment that is usually assumed to play a passive role in ligand-induced dimerization and activation of the receptor. However, mutations within some of these receptors, and recent studies with the epidermal growth factor (EGF) and ErbB2 receptors have indicated that interactions between TM domains do contribute to stabilization of ligand-independent and/or ligand-induced receptor dimerization and activation. One consequence of the importance of these interactions is that short hydrophobic peptides corresponding to these domains should act as specific inhibitors. To test this hypothesis, we constructed expression vectors encoding short fusion peptides encompassing native or mutated TM domains of the EGF, ErbB2, and insulin receptors. In human cell lines overexpressing the wild-type EGF receptor or ErbB2, we observed that the peptides are expressed at the cell surface and that they inhibit specifically the autophosphorylation and signaling pathway of their cognate receptor. Identical results were obtained with peptides chemically synthesized. Mechanism of action involves inhibition of dimerization of the receptors as shown by the lack of effects of mutant nondimerizing sequences, completed by density centrifugation and covalent cross-linking experiments. Our findings stress the role of TM domain interactions in ErbB receptor function, and possibly for other single-spanning membrane proteins.  相似文献   

13.
Erythropoietin receptor (EpoR) homodimerization is an initial regulatory step in erythrocyte formation. Receptor dimers form before ligand binding, suggesting that association between receptor proteins is dependent on the receptor itself. EpoR dimerization is an essential step in erythropoiesis, and misregulation of this dimerization has been implicated in several disease states, including multi-lineage leukemias; nevertheless, how EpoR regulates its own dimerization is unclear. In vivo experiments suggest the single-pass transmembrane helix is the strongest candidate for driving ligand-independent association. To address the self-association potential of this transmembrane segment, we studied its interaction energetics in micelles by utilizing a previously successful Staphylococcal nuclease (SN-EpoR TM) fusion protein. This fusion protein strategy allows expression of the EpoR transmembrane domain in Escherichia coli independent of the other EpoR domains. Sedimentation equilibrium analytical ultracentrifugation of the detergent-solubilized SN-EpoR TM demonstrated that the murine EpoR transmembrane domain self-associates to form dimers. Although this interaction is not as stable as the dimerization of the well-studied glycophorin A transmembrane dimer, the murine EpoR transmembrane domain dimer is more stable than the interactions of the colon carcinoma kinase 4 transmembrane domain. The same experiments with the human EpoR transmembrane domain, which differs from the mouse sequence by only three residues, revealed a less favorable interaction than that of the murine sequence and is only slightly more favorable than that expected for non-preferential binding. These results suggest that the mouse and human receptor proteins may differ in the roles they play in signaling.  相似文献   

14.
G protein-coupled receptors (GPCRs) can form dimeric or oligomeric complexes in vivo. However, the functions and mechanisms of oligomerization remain poorly understood for most GPCRs, including the alpha-factor receptor (STE2 gene product) of the yeast Saccharomyces cerevisiae. Here we provide evidence indicating that alpha-factor receptor oligomerization involves a GXXXG motif in the first transmembrane domain (TM1), similar to the transmembrane dimerization domain of glycophorin A. Results of fluorescence resonance energy transfer, fluorescence microscopy, endocytosis assays of receptor oligomerization in living cells, and agonist binding assays indicated that amino acid substitutions affecting the glycine residues of the GXXXG motif impaired alpha-factor receptor oligomerization and biogenesis in vivo but did not significantly impair agonist binding affinity. Mutant receptors exhibited signaling defects that were not due to impaired cell surface expression, indicating that oligomerization promotes alpha-factor receptor signal transduction. Structure-function studies suggested that the GXXXG motif in TM1 of the alpha-factor receptor promotes oligomerization by a mechanism similar to that used by the GXXXG dimerization motif of glycophorin A. In many mammalian GPCRs, motifs related to the GXXXG sequence are present in TM1 or other TM domains, suggesting that similar mechanisms are used by many GPCRs to form dimers or oligomeric arrays.  相似文献   

15.
TIR (Toll/IL-1 receptor) domains mediate interactions between TLR (Toll-like) or IL-1 family receptors and signaling adapters. While homotypic TIR domain interactions mediate receptor activation they are also usurped by microbial TIR domain containing proteins for immunosuppression. Here we show the role of a dimerized TIR domain platform for the suppression as well as for the activation of MyD88 signaling pathway. Coiled-coil dimerization domain, present in many bacterial TCPs, potently augments suppression of TLR/IL-1R signaling. The addition of a strong coiled-coil dimerization domain conferred the superior inhibition against the wide spectrum of TLRs and prevented the constitutive activation by a dimeric TIR platform. We propose a molecular model of MyD88-mediated signaling based on the dimerization of TIR domains as the limiting step.  相似文献   

16.
Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization.  相似文献   

17.
Dimerization is a critical requirement for the activation of the intracellular kinase domains of receptor tyrosine kinases (RTKs). The single transmembrane (TM) helices of RTKs contribute to dimerization, but the details are not well understood. Work with TM helices in various model systems has revealed a small number of specific dimerization sequence motifs, and it has been suggested that RTK dimerization is modulated by such motifs. Yet questions remain about the universality of these sequence motifs for RTK dimerization and about how TM domain dimerization in model systems relates to RTK activation in mammalian membranes. To investigate these questions, we designed a 3888-member combinatorial peptide library based on the TM domain of Neu (ErbB2) as a model RTK. The library contains many closely related, Neu-like sequences, including thousands of sequences with known dimerization motifs. We used an SDS-PAGE-based screen to select peptides that dimerize better than the native Neu sequence, and we assayed the activation of chimeric Neu receptors in mammalian cells with TM sequences selected in the screen. Despite the very high abundance of known dimerization motifs in the library, only a very few dimerizing sequences were identified by SDS-PAGE. About half of those sequences activated the Neu kinase significantly more than did the wild-type TM sequence. This work furthers our knowledge about the requirements for membrane protein interactions and the requirements for RTK activation in cells.  相似文献   

18.
Progress in prolactin receptor research   总被引:1,自引:0,他引:1  
  相似文献   

19.
GH receptor (GHR) is a single membrane-spanning glycoprotein dimer that binds GH in its extracellular domain (ECD). GH activates the GHR intracellular domain (ICD)-associated tyrosine kinase, JAK2, which causes intracellular signaling. We previously found that plasma membrane (PM)-associated GHR was dramatically enriched in the lipid raft (LR) component of the membrane and that localization of GHR within PM regions may regulate GH signaling by influencing the profile of pathway activation. In this study, we examined determinants of LR localization of the GHR using a reconstitution system which lacks endogenous JAK2 and GHR. By non-detergent extraction and multistep fractionation, we found that GHR was highly enriched in the LR fraction independent of JAK2 expression. Various GHR mutants were examined in transfectants harboring JAK2. LR concentration was observed for a GHR in which the native transmembrane domain (TMD) is replaced by that of the unrelated LDL receptor and for a GHR that lacks its ICD. Thus, LR association requires neither the TMD nor the ICD. Similarly, a GHR that lacks the ECD, except for the membrane-proximal ECD stem region, was only minimally LR-concentrated. Mutants with internal stem deletions in the context of the full-length receptor were LR-concentrated similar to the wild-type. A GHR lacking ECD subdomain 1 reached the PM and was LR-concentrated, while one lacking ECD subdomain 2, also reached the PM, but was not LR-concentrated. These data suggest LR targeting resides in ECD subdomain 2, a region relatively uninvolved in GH binding.  相似文献   

20.
ErbB receptors associate in a ligand-dependent or -independent manner, and overexpression of epidermal growth factor receptor (ErbB1) or ErbB2 results in ligand-independent activation. Ligand-independent activation is poorly understood, and dimerization alone is not sufficient for activation. ErbB receptors also form higher order oligomers, but the mechanism of oligomer formation and their contribution to signaling are not known. The kinase-deficient ErbB3 as well as its extracellular domains are particularly prone to ligand-independent oligomerization, and oligomers are destabilized by binding of the ligand heregulin. In contrast, ligand binding facilitates heterodimerization with ErbB2 and is expected to stabilize an extended conformation of the ErbB3 extracellular domain (ECD) in which the dimerization interface is exposed. In the absence of ligand, ErbB3 can adopt a closed conformation that is held together by an intramolecular tether. We used a constitutively extended form of the ErbB3-ECD to analyze the conformation of the ECD in oligomers and the mechanism of oligomer disruption by heregulin. The extended conformation of the ECD forms oligomers more readily, suggesting the crystallographically defined dimer interface is one of the interfaces involved in oligomerization. Heregulin destabilizes oligomeric complexes but not dimers, which are neither stabilized nor disrupted by ligand binding, indicating a distinct second interface in oligomers of ErbB3. Cross-linking and activation studies on membrane-embedded ErbB3/ErbB2 chimeras confirm this dual effect of heregulin. Most of the ErbB3-ECD on the cell surface is apparently kept in an open conformation through oligomerization, and the resulting oligomers adopt a conformation representing a state of reduced activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号