首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Q X Hua  S E Shoelson  M A Weiss 《Biochemistry》1992,31(47):11940-11951
Insulin's mechanism of receptor binding is not well understood despite extensive study by mutagenesis and X-ray crystallography. Of particular interest are "anomalous" analogues whose bioactivities are not readily rationalized by crystal structures. Here the structure and dynamics of one such analogue (GlyB24-insulin) are investigated by circular dichroism (CD) and isotope-aided 2D-NMR spectroscopy. The mutant insulin retains near-native receptor-binding affinity despite a nonconservative substitution (PheB24-->Gly) in the receptor-binding surface. Relative to native insulin, GlyB24-insulin exhibits reduced dimerization; the monomer (the active species) exhibits partial loss of ordered structure, as indicated by CD studies and motional narrowing of selected 1H-NMR resonance. 2D-NMR studies demonstrate that the B-chain beta-turn (residues B20-23) and beta-strand (residues B24-B28) are destabilized; essentially native alpha-helical secondary structure (residues A3-A8, A13-A18, and B9-B19) is otherwise maintained. 13C-Isotope-edited NOESY studies demonstrate that long-range contacts observed between the B-chain beta-strand and the alpha-helical core in native insulin are absent in the mutant. Implications for the mechanism of insulin's interaction with its receptor are discussed.  相似文献   

2.
Summary 1H-NMR studies of the bovine insulin S-sulfonated B-chain are reported in H2O/D2O (9/1) and in glycerol-d 5 (5 M) using two-dimensional NMR spectroscopy. The first results show that the oxidized insulin B-chain secondary structure differs from that of native insulin by a loss of the α-helix between the two disulfide bridges and that the glycerol favours the structuring of the peptide.  相似文献   

3.
Relaxin is a member of the insulin superfamily and has many biological actions including angiogenesis and collagen degradation. It is a 6 kDa peptide hormone consisting of two peptide chains (A and B) tethered by two disulphide bonds. Past structure-function relationship studies have shown the key receptor binding site of relaxin to be principally situated within the B-chain alpha-helix. Molecular dynamic simulations were performed to aid the design of conformationally constrained relaxin B-chain analogues that possess alpha-helical structure and relaxin-like activity. Restraints included disulphide bonds, both single and double, and lactam bonds. Each peptide was prepared by solid phase synthesis and, following purification, subjected to detailed conformational analysis by circular dichroism spectroscopy. Of 15 prepared relaxin B-chain mimetics, one was able to mimic the secondary structure of the native ligand as indicated by biomolecular recognition/interaction analysis using surface enhanced laser desorption ionization mass spectroscopy together with a relaxin antibody. However, none of the mimetics possess characteristic relaxin-like biological activity which strongly indicates that the pharmacophore comprises additional structural elements other than the relaxin B-chain alpha-helix. These findings will assist in the design and preparation of novel relaxin agonists and antagonists.  相似文献   

4.
Keller D  Clausen R  Josefsen K  Led JJ 《Biochemistry》2001,40(35):10732-10740
The structure and folding of a novel human insulin mutant, [Thr(B27) --> Pro, Pro(B28) --> Thr]insulin (PT insulin), in aqueous solution and in mixtures of water and 2,2,2-trifluoroethanol (TFE) have been studied by NMR spectroscopy. It was found that PT insulin has a highly flexible structure in pure water and is present in at least two different conformations, although with an overall tertiary structure similar to that of native insulin. Furthermore, the native helical structures are poorly defined. Surprisingly, the mutant has a biological activity about 50% higher than native insulin. In contrast, in TFE/water solution the mutant reveals a propensity of forming a well-defined structure at the secondary structure level, similar to monomeric native insulin. Thus, as shown by a detailed determination of the structure from 208 distance restraints and 52 torsion angle restraints by distance geometry, simulated annealing, and restrained energy minimization, the native insulin helices (A2-A7, A13-A19, and B10-B19) as well as the beta-turn (B20-B23) are formed in 35% TFE. However, the amount of tertiary structure is decreased significantly in TFE/water solution. The obtained results suggest that only an overall tertiary fold, as observed for PT insulin in pure water, is necessary for expressing the biological activity of insulin, as long as the molecule is flexible and retains the propensity to form the secondary structure required for its receptor binding. In contrast, a compact secondary structure, as found for native insulin in solution, is unnecessary for the biological activity. A model for the receptor binding of insulin is suggested that relates the increased bioactivity to the enhanced flexibility of the mutant.  相似文献   

5.
The specificity of macrophage elastase on the insulin B-chain.   总被引:2,自引:0,他引:2       下载免费PDF全文
The specificity of macrophage elastase obtained from mouse peritoneal exudative macrophages was determined in the hydrolysis of the oxidized insulin B-chain. This elastase hydrolysed two bonds, namely Ala-Leu and Tyr-Leu. The rate of hydrolysis of the latter was two to three times greater than that of the former. The hexapeptide Glu-Ala-Leu-Tyr-Leu-Val, obtained by cleavage of the insulin B-chain, was not hydrolysed by macrophage elastase. When EDTA was present, proteolysis of the B-chain was not observed. The macrophage elastase is therefore different from the neutrophil elastase in specificity and mechanism.  相似文献   

6.
H-NMR studies of the bovine insulin S-sulfonatedB-chain are reported in H2O/D2O (9/1) and inglycerol-d5 (5 M) using two-dimensional NMRspectroscopy. The first results show that the oxidizedinsulin B-chain secondary structure differs from thatof native insulin by a loss of the -helixbetween the two disulfide bridges and that theglycerol favours the structuring of the peptide.  相似文献   

7.
Hong DP  Fink AL 《Biochemistry》2005,44(50):16701-16709
Insulin is very prone to form amyloid fibrils under slightly destabilizing conditions, and the B-chain region plays a critical role in the fibrillation. We show here that the isolated B-chain peptide of bovine insulin also forms fibrils at both acidic and neutral pH. When a mixture of insulin and the B-chain peptide was incubated at either acidic or neutral pH, the formation of fibrils was clearly separated into two phases, with the faster phase corresponding to the formation of homogeneous fibrils from the B-chain and the slower phase corresponding to homogeneous fibrillation of insulin. To further investigate the interaction (or lack thereof) between the two polypeptides, we examined the effects of cross-seeding. The results indicate that seeds of B-chain fibrils accelerate the fibrillation of insulin at pH 1.6 and inhibit the fibrillation at pH 7.5, but seeds of insulin fibrils have little effect on the fibrillation of the B-chain. We conclude that at pH 7.5 simultaneous independent homologous fibrillation occurs, but at low pH, heterologous fibrillation takes place, and with B-chain seeding of insulin, a unique conformation of fibrils is formed. Our results demonstrate that in the co-aggregation of closely related peptides each peptide species may undergo concurrent homogeneous or heterologous polymerization and that fibrils of one species may or may not seed fibrillation of the other. The results demonstrate the significant "species" barrier in amyloid fibril formation between fibrillation induced by different fibrils. A model for the fibrillation of the heterogeneous system of insulin and B-chain insulin is proposed.  相似文献   

8.
Fast atom bombardment mass spectral data are presented for the polypeptides insulin, oxidized insulin A-chain, carboxymethylated insulin B-chain, and glucagon. The doubly-charged molecular ion of the intact insulin molecule produced with fast atom bombardment with xenon atoms is observed at a reduced accelerating voltage (4 kV).  相似文献   

9.
A cysteine proteinase purified from pupae of the blowfly (A. grahami) was tested for its peptide-bond specificity against the oxidized B-chain of insulin. Fifteen peptides were separated on HPLC using both gradient and isocratic elution methods. Analyses of amino acid content and N-terminal amino acids indicated that these were eleven homogeneous peptides produced by digestion and undigested insulin B-chain. Glu13-Ala14 and Tyr26-Thr27 were the major cleavage sites, and Asn3-Gln4, Cys7-Gly8, Tyr16-Leu17, Leu17-Val18 and Cys19-Gly20 were also often cleaved. These findings show the similarity between this enzyme and cathepsin L.  相似文献   

10.
Binding of insulin to the insulin receptor plays a central role in the hormonal control of metabolism. Here, we investigate possible contact sites between the receptor and the conserved non-polar surface of the B-chain. Evidence is presented that two contiguous sites in an alpha-helix, Val(B12) and Tyr(B16), contact the receptor. Chemical synthesis is exploited to obtain non-standard substitutions in an engineered monomer (DKP-insulin). Substitution of Tyr(B16) by an isosteric photo-activatable derivative (para-azido-phenylalanine) enables efficient cross-linking to the receptor. Such cross-linking is specific and maps to the L1 beta-helix of the alpha-subunit. Because substitution of Val(B12) by larger side-chains markedly impairs receptor binding, cross-linking studies at B12 were not undertaken. Structure-function relationships are instead probed by side-chains of similar or smaller volume: respective substitution of Val(B12) by alanine, threonine, and alpha-aminobutyric acid leads to activities of 1(+/-0.1)%, 13(+/-6)%, and 14(+/-5)% (relative to DKP-insulin) without disproportionate changes in negative cooperativity. NMR structures are essentially identical with native insulin. The absence of transmitted structural changes suggests that the low activities of B12 analogues reflect local perturbation of a "high-affinity" hormone-receptor contact. By contrast, because position B16 tolerates alanine substitution (relative activity 34(+/-10)%), the contribution of this neighboring interaction is smaller. Together, our results support a model in which the B-chain alpha-helix, functioning as an essential recognition element, docks against the L1 beta-helix of the insulin receptor.  相似文献   

11.
S G Melberg  W C Johnson 《Proteins》1990,8(3):280-286
Vacuum UV circular dichroism spectra measured down to 178 nm for hexameric 2-zinc human insulin, zinc-free human insulin, and the two engineered and biologically active monomeric mutants, [B/S9D] and [B/S9D,T27E] human insulin, show significant differences. The secondary structure analysis of the 2-zinc human insulin (T6) in neutral solution was determined: 57% helix, 1% beta-strand, 18% turn, and 24% random coil. This is very close to the corresponding crystal structure showing that the solution and solid structures are similar. The secondary structure of the monomer shows a 10-15% increase in antiparallel beta-structure and a corresponding reduction in random coil structure. These structural changes are consistent with an independent analysis of the corresponding difference spectra. The advantage of secondary structure analyses of difference spectra is that the contribution of odd spectral features stemming mainly from side chain chromophores is minimized and the sensitivity of the analyses improved. Analysis of the CD spectra of T6 2-zinc, zinc-free human insulin and monomeric mutant insulin by singular value decomposition indicates that the secondary structure changes following the dissociation of hexamers into dimers and monomers are two-state processes.  相似文献   

12.
It was shown that bidistilled modified water substantially enhances the hydrolysis of the peptide the bovine insulin B-chain. The exposure of the peptide to bidistilled modified water for 20 hours at room temperature leads to an almost complete hydrolysis of its molecule into fragments that differ from the initial molecule in elution time from a column in high-performance liquid chromatography.  相似文献   

13.
Despentapeptide (B26-30)-insulinamide (B25) prepared by a semisynthetic procedure was found to have about 65% of the hypoglycaemic activity of natural insulin. In contrast, the binding of the modified insulin analogue to insulin specific receptors was markedly increased. The discrepancy between the loss of biological potency and the apparent increase in binding affinity for membrane receptors reveals that not all of the biological activity of insulin is regulated by the receptor-binding system. The tetrapeptidamide of the B-chain of insulin (Arg-Gly-Phe-Phe-NH2) was clearly shown to have both insulin-like and insulin-potentiating actions in vivo although it had no effect on insulin receptor function in vitro. Evidence suggests that the small peptide fragment of insulin may be internalized and acts at the post-binding site(s) of the glucose metabolic pathway in target tissues. The present data support the general concept that insulin may exert its complex molecular actions through internalized hormonal fragment as well as the transmembrane mediators generated from receptor binding.  相似文献   

14.
Guo ZY  Shen L  Feng YM 《Biochemistry》2002,41(5):1556-1567
Although insulin and insulin-like growth factor 1 (IGF-1) share homologous sequence, similar tertiary structure, weakly overlapped biological activity, and a common ancestor, the two highly homologous sequences encode different folding behavior: insulin folds into one unique stable tertiary structure while IGF-1 folds into two disulfide isomers with similar thermodynamic stability. To further elucidate the molecular mechanism of their different folding behavior, we prepared two single-chain hybrids of insulin and IGF-1, Ins(A)/IGF-1(B) and Ins(B)/IGF-1(A), as well as a mini-IGF-1 by means of protein engineering and studied their structure as well as folding behavior. Both mini-IGF-1 and Ins(A)/IGF-1(B) fold into two thermodynamically stable disulfide isomers in vivo and in vitro just like that of IGF-1, while Ins(B)/IGF-1(A) folds into one unique thermodynamically stable tertiary structure in vivo and in vitro just like that of insulin. So we deduce that the different folding behavior of insulin and IGF-1 is mainly controlled by their B-chain/domain. By V8 endoproteinase digestion and circular dichroism analysis, as well as insulin receptor binding assay, we deduce that Ins(B)/IGF-1(A), isomer 2 of mini-IGF-1, and isomer 2 of Ins(A)/IGF-1(B) adopt native IGF-1/insulin-like three-dimensional structure with native disulfides, while isomer 1 of mini-IGF-1 and isomer 1 of Ins(A)/IGF-1(B) adopt the swap IGF-1-like three-dimensional structure with swap disulfides.  相似文献   

15.
New methodology for identifying and locating crosslinkages in peptides is described. Pepsin is used to cleave insulin and B-chain dimers of insulin into fragments under conditions which retain the original peptide crosslinkages. After partial separation by HPLC, the peptides are analyzed by fast atom bombardment mass spectrometry (FABMS) to determine their molecular weights. The molecular weights of peptide fragments expected from the pepsin digests of human insulin and related model compounds are calculated from the amino acid sequence of the intact peptide. Digestion products are identified by matching their molecular weights, as determined by FABMS, with calculated molecular weights. Locations of interchain crosslinkages are deduced after the peptide fragments have been assigned to specific segments of the parent peptide. The validity of the method has been established by correctly identifying structurally important products in the pepsin digests of model compounds such as human, bovine, and porcine insulins. Procedures developed with the model compounds were used to identify crosslinkages in peptides of unknown structure isolated from an insulin A-chain/B-chain combination reaction mixture. Evidence is presented for formation of three different types of crosslinkages, disulfide, lanthionine, and sulfoxide.  相似文献   

16.
The pure cinnamomin A-chain is unstable compared to that in the mixture of A- and B-chain or in intact cinnamomin molecule either being stored at 4 degrees C or being heated. When being heated at 45 degrees C for 20min, the A-chain generates partially unfolded intermediate and loses its tertiary structure as monitored by circular dichroism (CD) and tryptophan fluorescence, thus resulting in the inactivity of its RNA N-glycosidase albeit it retains most of its secondary structures. This partially unfolded intermediate is sensitive to protease, exhibiting property of a molten globule. The changes in conformation and activity are irreversible upon cooling. The partially unfolded intermediate can fully restore its RNA N-glycosidase activity in the presence of cinnamomin B-chain. The phenomenon, that the cinnamomin B-chain mediates the refolding of partially unfolded A-chain, probably plays an important role in the intracellular transport of the cytotoxic protein, i.e., keeping the structural stability of A-chain and refolding partially unfolded A-chain that occasionally appeared in the process of intracellular transport, to avoid the destiny of proteolysis that occurs in most denatured proteins in cell.  相似文献   

17.
Human pepsins 1 and 2 attack the B-chain of oxidized insulin at pH 1.7 at the same bonds as does human pepsin 3. At pH 3.5, pepsins 1 and 2 attack insulin B-chain at essentially the same bonds as at pH 1.7, but more slowly. For all three enzymes, the first bond to be hydrolysed is Phe(25)-Tyr(26), followed simultaneously by Glu(13)-Ala(14), Leu(15)-Tyr(16) and Tyr(16)-Leu(17). Human pepsin 5, however, attacks Phe(24)-Phe(25) first of all, followed by Leu(15)-Tyr(16) and Tyr(16)-Leu(17). The results suggest that each pepsin has only one active site. Acid hydrolysis indicates that the sites of enzymic cleavage are not bonds with an inherent instability at low pH.  相似文献   

18.
The reaction between alpha-chymotrypsin (EC 3.3.21.1) and the B-chain of bovine insulin was studied radiochemically, by using the 3 5S-labelled sulfo B-chain. After incubation at pH 8.0, interrupted by the addition of trichloroacetic acid, a radioactive product was isolated from the reaction mixture. The labelled product was eluted in parallel with the enzyme in gel chromatography, and its properties at different H+ concentrations indicated that chemically it was an ester, i.e. a covalent enzyme-substrate intermediate. No interaction between sulfo beta-chain and alpha-chymotrypsinogen or phenyl-methyl sulfonyl fluoride-inhibited alpha-chymotrypsin was obtained during identical conditions.  相似文献   

19.
The aromatic 1H NMR resonances of the insulin monomer are assigned at 500 MHz by comparative studies of chemically modified and genetically altered variants, including a mutant insulin (PheB25----Leu) associated with diabetes mellitus. The two histidines, three phenylalanines, and four tyrosines are observed to be in distinct local environments; their assignment provides sensitive markers for studies of tertiary structure, protein dynamics, and protein folding. The environments of the tyrosine residues have also been investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) and analyzed in relation to packing constraints in the crystal structures of insulin. Dimerization involving specific B-chain interactions is observed with increasing protein concentration and is shown to depend on temperature, pH, and solvent composition. In the monomer large variations are observed in the line widths of amide resonances, suggesting intermediate exchange among conformational substates; such substates may relate to conformational changes observed in different crystal states and proposed to occur in the hormone-receptor complex. Additional evidence for multiple conformations in solution is provided by comparative studies of an insulin analogue containing a peptide bond between residues B29 and A1 (mini-proinsulin). This analogue forms dimers and higher-order oligomers under conditions in which native insulin is monomeric, suggesting that the B29-A1 peptide bond stabilizes a conformational substate favorable for dimerization. Such stabilization is not observed in corresponding studies of native proinsulin, in which a 35-residue connecting peptide joins residues B30 and A1; this extended tether is presumably too flexible to constrain the conformation of the B-chain. The differences between proinsulin and mini-proinsulin suggest a structural mechanism for the observation that the fully reduced B29-A1 analogue folds more efficiently than proinsulin to form the correct pattern of disulfide bonds. These results are discussed in relation to molecular mechanics calculations of insulin based on the available crystal structures.  相似文献   

20.
The cleavage specificity of boar acrosin is, like that of trypsin, strictly limited to the arginyl and lysyl bonds, as demonstrated for the oxidized B-chain of insulin. In addition, in this polypeptide substrate as well as in reduced and carboxymethylated ribonuclease, these peptide bonds are hydrolyzed by acrosin and trypsin with nearly identical velocities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号