首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Divergent mRNA transcription in the chloroplast psbB operon   总被引:3,自引:1,他引:3       下载免费PDF全文
  相似文献   

2.
3.
4.
5.
6.
7.
The nucleotide sequence of an 8 kbp region of pea ( Pisum sativum L.) chloroplast DNA containing the rRNA operon and putative promoter sites has been determined and compared to the corresponding sequences from maize, tobacco and the liverwort Marchantia polymorpha . The chloroplast DNA species of all vascular plants investigated, with the exception of a few legumes including pea, and of Marchantia contain an inverted repeat with an rRNA operon. The pea rRNA operon is the first sequenced rRNA operon from a plant with only one copy of the rRNA genes per molecule of chloroplast DNA. The organization of the operon is the same as for maize, tobacco and Marchantia . i.e. tRNA-Val gene/16S rRNA gene/spacer with intron-containing genes for tRNA-Ile and tRNA-Ala/23S rRNA gene/4.5S rRNA gene/5S rRNA gene. Current evidence suggests that the tRNA-Val gene may not be contranscribed with the other genes. For pea 16S, 23S, 4.5S and 5S rRNA have 1488, 2813, 105 and 121 nucleotides, respectively. The homologies of the entire operon (the tRNA-Val gene - 5S rRNA region) to those from tobacco, maize and Marchantia are 88, 82 and 79%, respectively. The corresponding homologies for tobacco/maize, tobacco/ Marchantia and maize/ Marchantia have similar values. The 16S and 23S rRNA genes from pea are more than 90% homologous to those from the 3 other species. We conclude that the fact that pea only has one set of rRNA genes per molecule of chloroplast DNA is apparently not correlated with any significant difference between the pea operon and the rRNA operons from tobacco, maize and Marchantia .  相似文献   

8.
9.
Methods are described which provide good recoveries of non-degraded chloroplast and non-chloroplast RNAs from Euglena gracilis var. bacillaris. These have been characterized by comparing the RNA from W3BUL (an aplastidic mutant of Euglena), with that of wild-type cells which have been resolved into chloroplast and non-chloroplast fractions. Using E. coli RNA as a standard, the RNAs from W3BUL and from the non-chloroplast fraction of green cells exhibit optical density peaks, upon sucrose gradient centrifugation, at 4S, 10S, and 19S. The chloroplast fraction exhibits optical density peaks at 19S and 14S with the 19S component predominating. Application of various techniques for the separation of RNAs to the problem of separating the chloroplast and non-chloroplast RNAs, without prior separation of the organelle, have not proven successful.

32Pi is readily incorporated into RNA by cells undergoing light-induced chloroplast development, and fractionation at the end of development reveals that although chloroplast RNAs have a higher specific activity, the other RNAs of the cells are significantly labeled as well. The succession of labeling patterns of total cellular RNA as light-induced chloroplast development proceeds are displayed and reveal that all RNA species mentioned above eventually become labeled. In contrast, cells kept in darkness during this period incorporate little 32Pi into any RNA fraction. In addition, a heavy RNA component, designated as 28S, while representing a negligible fraction of the total RNA, becomes significantly labeled during the first 24 hours of illumination. While there is light stimulated uptake of 32Pi into the cells, this uptake is never limiting in the light or dark, for RNA labeling.

On the basis of these findings, we suggest that extensive activation of non-chloroplast RNA labeling during chloroplast development is the result of the activation of the cellular synthetic machinery external to the chloroplast necessary to provide metabolic precursors for plastid development. Thus the plastid is viewed as an auxotrophic resident within the cell during development. Other possibilities for interaction at this and other levels are also discussed.

  相似文献   

10.
11.
12.
Plant cells possess two more genomes besides the central nuclear genome: the mitochondrial genome and the chloroplast genome (or plastome). Compared to the gigantic nuclear genome, these organelle genomes are tiny and are present in high copy number. These genomes are less prone to recombination and, therefore, retain signatures of their age to a much better extent than their nuclear counterparts. Thus, they are valuable phylogenetic tools, giving useful information about the relative age and relatedness of the organisms possessing them. Unlike animal cells, mitochondrial genomes of plant cells are characterized by large size, extensive intramolecular recombination and low nucleotide substitution rates and are of limited phylogenetic utility. Chloroplast genomes, on the other hand, show resemblance to animal mitochondrial genomes in terms of phylogenetic utility and are more relevant and useful in case of plants. Conservation in gene order, content and lack of recombination make the plastome an attractive tool for plant phylogenetic studies. Their importance is reflected in the rapid increase in the availability of complete chloroplast genomes in the public databases. This review aims to summarize the progress in chloroplast genome research since its inception and tries to encompass all related aspects. Starting with a brief historical account, it gives a detailed account of the current status of chloroplast genome sequencing and touches upon RNA editing, ycfs, molecular phylogeny, DNA barcoding as well as gene transfer to the nucleus.  相似文献   

13.
Recent studies link changes in energy metabolism with the fate of pluripotent stem cells (PSCs). Safe use of PSC derivatives in regenerative medicine requires an enhanced understanding and control of factors that optimize in vitro reprogramming and differentiation protocols. Relative shifts in metabolism from naïve through “primed” pluripotent states to lineage‐directed differentiation place variable demands on mitochondrial biogenesis and function for cell types with distinct energetic and biosynthetic requirements. In this context, mitochondrial respiration, network dynamics, TCA cycle function, and turnover all have the potential to influence reprogramming and differentiation outcomes. Shifts in cellular metabolism affect enzymes that control epigenetic configuration, which impacts chromatin reorganization and gene expression changes during reprogramming and differentiation. Induced PSCs (iPSCs) may have utility for modeling metabolic diseases caused by mutations in mitochondrial DNA, for which few disease models exist. Here, we explore key features of PSC energy metabolism research in mice and man and the impact this work is starting to have on our understanding of early development, disease modeling, and potential therapeutic applications.  相似文献   

14.
RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya.  相似文献   

15.
16.
The lysine catabolism pathway differs in adult mammalian brain from that in extracerebral tissues. The saccharopine pathway is the predominant lysine degradative pathway in extracerebral tissues, whereas the pipecolate pathway predominates in adult brain. The two pathways converge at the level of ?1-piperideine-6-carboxylate (P6C), which is in equilibrium with its open-chain aldehyde form, namely, α-aminoadipate δ-semialdehyde (AAS). A unique feature of the pipecolate pathway is the formation of the cyclic ketimine intermediate ?1-piperideine-2-carboxylate (P2C) and its reduced metabolite l-pipecolate. A cerebral ketimine reductase (KR) has recently been identified that catalyzes the reduction of P2C to l-pipecolate. The discovery that this KR, which is capable of reducing not only P2C but also other cyclic imines, is identical to a previously well-described thyroid hormone-binding protein [μ-crystallin (CRYM)], may hold the key to understanding the biological relevance of the pipecolate pathway and its importance in the brain. The finding that the KR activity of CRYM is strongly inhibited by the thyroid hormone 3,5,3′-triiodothyronine (T3) has far-reaching biomedical and clinical implications. The inter-relationship between tryptophan and lysine catabolic pathways is discussed in the context of shared degradative enzymes and also potential regulation by thyroid hormones. This review traces the discoveries of enzymes involved in lysine metabolism in mammalian brain. However, there still remain unanswered questions as regards the importance of the pipecolate pathway in normal or diseased brain, including the nature of the first step in the pathway and the relationship of the pipecolate pathway to the tryptophan degradation pathway.  相似文献   

17.
18.
T Hirose  M Sugiura 《The EMBO journal》1997,16(22):6804-6811
Tobacco chloroplast genes encoding a photosystem I component (psaC) and a NADH dehydrogenase subunit (ndhD) are transcribed as a dicistronic pre-mRNA which is then cleaved into short mRNAs. An RNA protection assay revealed that the cleavage occurs at multiple sites in the intercistronic region. There are two possible initiation codons in the tobacco ndhD mRNA: the upstream AUG and the AUG created by RNA editing from the in-frame ACG located 25 nt downstream. Using the chloroplast in vitro translation system, we found that translation begins only from the edited AUG. The extent of ACG to AUG editing is partial and depends on developmental and environmental conditions. In addition, the in vitro assay showed that the psaC/ndhD dicistronic mRNA is not functional and that the intercistronic cleavage is a prerequisite for both ndhD and psaC translation. Using a series of mutant mRNAs, we showed that an intramolecular interaction between an 8 nt sequence in the psaC coding region and its complementary 8 nt sequence in the 5' ndhD UTR is the negative element for translation of the dicistronic mRNA. A possible mechanism in which the differential expression of the chloroplast operon consists of functionally unrelated genes is discussed.  相似文献   

19.
20.
The repressor-mediated repression process in bacteria is modelled using a gene-enzyme-endproduct control unit. A combined analytical-numerical study shows that the system, though stable normally, becomes unstable for super-repressing strains even at low values of the cooperativity of repression, provided demand for the endproduct saturates at large endproduct concentrations. In addition the system also shows bistability, i.e., the co-existence of a stable steady-state and a stable limit cycle. The tryptophan operon is used as a model system and the results are discussed in the light of differential regulation of gene expression in lower organisms, especially in mutant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号