首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystems of rice paddies are good sources of new strains of heterocyst-forming cyanobacteria that can be used in biotechnological systems for production of photohydrogen. The morphological and physiological properties of two novel epiphytic strains of cyanobacteria, Anabaena sp. 182 and Anabaena sp. 281, were studied. DNA typing of these strains based on PCR amplification of hydrogenase-encoding genes and DNA analysis using RAPD and Rep primers was carried out. The properties of the genome of strain Anabaena sp. 281 differed considerably from those of two reference strains (Anabaena variabilis ATCC 29413 and Nostoc sp. PCC 7120) with sequenced genomes, whereas strain Anabaena sp. 182 was found to be a close relative of A. variabilis ATCC 29413. Due to a number of physiological and biochemical advantages, Anabaena sp. 182 may be considered a new promising model for molecular and genetic engineering studies aimed at the development of H2 producers.  相似文献   

2.
16S rRNA-targeted identification of cyanobacterial genera, Anabaena,Microcystis, Nostoc, Oscillatoria, Synechococcus wasdeveloped using bacterial magnetic particles (BMPs). 16S rRNA-targetedcapture probes designed from the genus specific region of the 16S rRNAsequence were immobilized on BMPs. Identification of cyanobacteria wasperformed by a sandwich hybridization using the capture probes – BMPconjugates and a digoxigenin (DIG)-labeled detector probe complementaryto the highly conserved 16S rRNA sequence for cyanobacteria. Theluminescence intensity of the probe/target-BMP hybrids was measured afterreaction with alkaline phosphatase conjugated anti-DIG antibody. Fivespecies of cyanobacteria from five different genera were successfullydiscriminated using this magnetic capture system.  相似文献   

3.
The wheat grain mycobiome is only scarcely investigated and focus has been on seed-transmitted wheat pathogens of agricultural importance. In this study, we used next generation sequencing to study the mycobiome of Danish wheat grain samples at harvest. In total 228,421 sequences were obtained from 90 samples that were taken from locations across Denmark during three years. These sequences could be grouped into 173 non-singleton operational taxonomic units (OTUs) of which 21 OTUs, identified as belonging to genera such as Fusarium, Alternaria, Cladosporium. Phaeosphaeria and Microdochium, were identified as ‘core’ OTUs as they were found in all or almost all samples and accounted for almost 99 % of all sequences. The remaining OTUs were only sporadically found and only in small amounts. Cluster and factor analyses showed patterns of co-existence among the core species. Cluster analysis grouped the 21 core OTUs into three clusters: cluster 1 consisting of saprotrophs, cluster 2 consisting mainly of yeasts and saprotrophs and cluster 3 consisting of wheat pathogens. Principal component extraction showed that the Fusarium graminearum group was inversely related to OTUs of clusters 1 and 2.  相似文献   

4.
Occurrences of rare cyanobacteria Anabaena reniformis Lemmerm. and Aphanizomenon aphanizomenoides (Forti) Horecká et Komárek were recently detected at several localities in the Czech Republic. Two monoclonal strains of An. reniformis and one strain of Aph. aphanizomenoides were isolated from distant localities and different sampling years. They were characterized by a combination of morphological, genetic, and biochemical approaches. For the first time, partial 16S rRNA gene sequences were obtained for these morphospecies. Based on this gene, all of these strains clustered separately from other planktonic Anabaena and Aphanizomenon strains. They appeared in a cluster with Cylindrospermopsis Seenaya et Subba Raju and Raphidiopsis F. E. Fritsch et M. F. Rich, clustered closely together with two An. kisseleviana Elenkin strains available from GenBank. A new generic entity was defined (Sphaerospermum gen. nov., with the type species S. reniforme, based on the traditional species An. reniformis). These results contribute significantly to the knowledge base about genetic heterogeneity among planktonic Anabaena–like and Aphanizomenon–like morphospecies. Accordingly, the subgenus Dolichospermum, previously proposed for the group of planktonic Anabaena, should be revaluated. Secondary metabolite profiles of the An. reniformis and Aph. aphanizomenoides strains differed considerably from 17 other planktonic Anabaena strains of eight morphospecies isolated from Czech water bodies. Production of puwainaphycin A was found in both of the An. reniformis strains. Despite the relatively short phylogenetic distance from Cylidrospermopsis, the production of cylindrospermopsin was not detected in any of our strains.  相似文献   

5.
6.
Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters   总被引:5,自引:5,他引:0  
A survey of the occurrence of toxic blooms of cyanobacteria in Finnish fresh and coastal waters was made during 1985 and 1986. Toxicity of the freeze-dried water bloom samples was tested by mouse-bioassay (i.p.). Forty-four per cent (83/188) of the bloom samples were found to be lethally toxic. Hepatotoxic blooms (54) were almost twice as common as neurotoxic ones (29). Anabaena was the most frequently found genus in toxic and non-toxic blooms and it was present in all neurotoxic samples. Statistical associations were found between hepatotoxicity and incidence of Microcystis aeruginosa, M. viridis, M. wesenbergii, Anabaena flos-aquae and Anabaena spiroides. Neurotoxicity was statistically associated with Anabaena lemmermannii, Anabaena flos-aquae and Gomphosphaeria naegeliana. Isolation of strains of cyanobacteria confirmed the occurrence of hepatotoxic and neurotoxic strains of Anabaena, as well as hepatotoxic strains of Microcystis and Oscillatoria species.Toxic blooms caused cattle poisonings at three different lakes during the study period. Toxic blooms also occurred in drinking water sources. Our study shows that toxic cyanobacteria are more common in Finnish lakes than would be expected on the basis of animal poisonings. The results of this study show the existence of toxic cyanobacteria in Finnish water supplies and the need for their continued study as agents of water based disease.  相似文献   

7.

Background

Salinity is known to affect almost half of the world's irrigated lands, especially rice fields. Furthermore, cyanobacteria, one of the critical inhabitants of rice fields have been characterized at molecular level from many different geographical locations. This study, for the first time, has examined the molecular diversity of cyanobacteria inhabiting Indian rice fields which experience various levels of salinity.

Results

Ten physicochemical parameters were analyzed for samples collected from twenty experimental sites. Electrical conductivity data were used to classify the soils and to investigate relationship between soil salinity and cyanobacterial diversity. The cyanobacterial communities were analyzed using semi-nested 16S rRNA gene PCR and denaturing gradient gel electrophoresis. Out of 51 DGGE bands selected for sequencing only 31 which showed difference in sequences were subjected to further analysis. BLAST analysis revealed highest similarity for twenty nine of the sequences with cyanobacteria, and the other two to plant plastids. Clusters obtained based on morphological and molecular attributes of cyanobacteria were correlated to soil salinity. Among six different clades, clades 1, 2, 4 and 6 contained cyanobacteria inhabiting normal or low saline (having EC < 4.0 ds m-1) to (high) saline soils (having EC > 4.0 ds m-1), however, clade 5 represented the cyanobacteria inhabiting only saline soils. Whilst, clade 3 contained cyanobacteria from normal soils. The presence of DGGE band corresponding to Aulosira strains were present in large number of soil indicating its wide distribution over a range of salinities, as were Nostoc, Anabaena, and Hapalosiphon although to a lesser extent in the sites studied.

Conclusion

Low salinity favored the presence of heterocystous cyanobacteria, while very high salinity mainly supported the growth of non-heterocystous genera. High nitrogen content in the low salt soils is proposed to be a result of reduced ammonia volatilization compared to the high salt soils. Although many environmental factors could potentially determine the microbial community present in these multidimensional ecosystems, changes in the diversity of cyanobacteria in rice fields was correlated to salinity.  相似文献   

8.
    
Frantiek Hindák 《Hydrobiologia》2000,438(1-3):107-116
Morphological variation of trichomes, heterocytes and akinetes in four species classified into the nostocalean genera Aphanizomenon Morren ex Bornet et Flahault or Anabaena Bory (Cyanophyta/Cyanobacteria) was studied from natural samples by LM and illustrated by drawings and micrographs. All investigated species, Aphanizomenon gracile (Lemmerm.) Lemmerm., A. aphanizomenoides (Forti) Komárek et Horecká, Anabaena bergii Ostenfeld, A. minderi Huber-Pestalozzi, occur in the plankton as solitary trichomes, similar to many representatives of the genus Anabaena. Main generic diagnostic characters of Aphanizomenon and Anabaena are discussed.  相似文献   

9.
The cyanobacterial community from Brazilian mangrove ecosystems was examined using a culture-dependent method. Fifty cyanobacterial strains were isolated from soil, water and periphytic samples collected from Cardoso Island and Bertioga mangroves using specific cyanobacterial culture media. Unicellular, homocytous and heterocytous morphotypes were recovered, representing five orders, seven families and eight genera (Synechococcus, Cyanobium, Cyanobacterium, Chlorogloea, Leptolyngbya, Phormidium, Nostoc and Microchaete). All of these novel mangrove strains had their 16S rRNA gene sequenced and BLAST analysis revealed sequence identities ranging from 92.5 to 99.7% when they were compared with other strains available in GenBank. The results showed a high variability of the 16S rRNA gene sequences among the genotypes that was not associated with the morphologies observed. Phylogenetic analyses showed several branches formed exclusively by some of these novel 16S rRNA gene sequences. BLAST and phylogeny analyses allowed for the identification of Nodosilinea and Oxynema strains, genera already known to exhibit poor morphological diacritic traits. In addition, several Nostoc and Leptolyngbya morphotypes of the mangrove strains may represent new generic entities, as they were distantly affiliated with true genera clades. The presence of non-ribosomal peptide synthetase, polyketide synthase, microcystin and saxitoxin genes were detected in 20.5%, 100%, 37.5% and 33.3%, respectively, of the 44 tested isolates. A total of 134 organic extracts obtained from 44 strains were tested against microorganisms, and 26% of the extracts showed some antimicrobial activity. This is the first polyphasic study of cultured cyanobacteria from Brazilian mangrove ecosystems using morphological, genetic and biological approaches.  相似文献   

10.
Two filamentous, nitrogen fixing cyanobacteria were examined for their salt tolerance and sodium (Na+) transport.Anabaena torulosa, a saline form, grew efficiently and fixed nitrogen even at 150 mM salt (NaCl) concentration while,Anabaena L-31, a fresh water cyanobacterium, failed to grow beyond 35 mM NaCl.Anabaena torulosa showed a rapidly saturating kinetics of Na+ transport with a high affinity for Na+ (K m, 0.3 mM).Anabaena L-31 had a much lower affinity for Na+ (Km, 2.8 mM) thanAnabaena torulosa and the pattern of uptake was somewhat different. BothAnabaena spp. exhibited an active Na+ extrusion which seems to be mediated by a Na+-K+ ATPase and aided by oxidative phosphorylation.Anabaena L-31 was found to retain much more intracellular Na+ thanAnabaena torulosa. The results suggest that the saline form tolerates high Na+ concentrations by curtailing its influx and also by an efficient Na+ extrusion, although these alone may not entirely account for its success in saline environment.  相似文献   

11.
Highly iterated palindromes (HIP) have been used as high resolution molecular markers for assessing the genetic variability and phylogenetic relatedness of heterocystous cyanobacteria (subsections IV and V) representing 12 genera of heterocystous cyanobacteria, collected from different geographical areas of India. DNA fingerprints generated using four HIP markers viz. HIP-AT, HIP-CA, HIP-GC, and HIP-TG showed 100 % polymorphism in all the heterocystous cyanobacteria studied and each marker produced unique and strain-specific banding pattern. Furthermore, phylogenetic affinities based on the dendrogram constructed using HIP DNA profiles of heterocystous cyanobacteria suggest the monophyletic origin of this entire heterocystous clade along with a clear illustration of the polyphyletic origin of the branched Stigonematalean order (Subsection V). In addition, phylogenetic affinities were validated by principal component analysis of the HIP fingerprints. The overall data obtained by both the phylogeny and principal component assessments proved that the entire heterocystous clade was intermixed, and there are immediate needs for classificatory reforms that satisfy morphological plasticity and environmental concerns.  相似文献   

12.
For the first time in Belgium and Luxembourg, the diversity and taxonomy of 95 cyanobacterial strains isolated from freshwater blooms were assessed by the comparison of phenotypes and partial 16S rRNA gene sequences. The results showed the high diversity of nanoplanktonic, picoplanktonic, and benthic–periphytic cyanobacteria accompanying the main bloom‐forming taxa. Indeed, besides 15 morphotypes of bloom‐forming taxa, seven non‐bloom‐forming planktonic morphotypes and 11 morphotypes from benthic–periphytic taxa were isolated in culture from the plankton samples of 35 water bodies. The bloom‐forming strains belonged to the genera Microcystis, Woronichinia, Planktothrix, Anabaena, and Aphanizomenon, whereas the other strains isolated from the same samples were assigned to the nanoplanktonic Aphanocapsa, Aphanothece, Snowella, and Pseudanabaena; to the picoplanktonic Cyanobium; and to the benthic–periphytic Geitlerinema, Komvophoron, Leptolyngbya, Lyngbya, Phormidium, Calothrix, Nostoc, and Trichormus. The results supported both the polyphyletism of genera such as Aphanocapsa, Aphanothece, Leptolyngbya, Geitlerinema, Anabaena, and Aphanizomenon as well as the validity of genera such as Microcystis, Planktothrix, and Pseudanabaena with gas vesicles and cells constricted at the cross wall. The results obtained showed the close relationship between Snowella and Woronichinia for which very few sequences exist. The first sequence of Komvophoron appeared poorly related to other available cyanobacterial sequences. Although in a few cases a good agreement existed between phenotypic and genotypic features, there was generally a discrepancy. Strains with identical morphotypes show small differences in the 16S rRNA sequences, which might be related to the different chemical properties of their habitats. The results showed the importance of the polyphasic approach in order to improve the taxonomy of cyanobacteria.  相似文献   

13.
The emergence and persistence of complex blooms comprising multiple toxigenic cyanobacteria genera pose significant challenges for water quality management worldwide. The co-occurrence of morphologically indistinguishable toxic and non-toxic strains makes monitoring and control of these noxious organisms particularly challenging. Conventional monitoring approaches are not only incapable of discriminating toxic from non-toxic strains but also have proven to be less sensitive and specific. In this study, a multiplex quantitative real-time polymerase chain reaction (qPCR) approach was developed and tested for its sensitivity and specificity at detecting, differentiating and estimating potentially toxic Anabaena, Microcystis and Planktothrix genotype compositions in environmental samples. The oligonucleotide primers and probes utilized were designed to target portions of the microcystin synthetase (mcy) E gene that encode synthesis of the unique 3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (ADDA) moiety of microcystins in the three target genera. Laboratory evaluation showed the developed assay to be highly sensitive and specific at detecting and quantifying targeted genera. Indeed, the assay standards for the Anabaena, Microcystis and Planktothrix reactions attained efficiencies above 90 %, with coefficients of determination consistently above 0.99. Analysis of water samples from Missisquoi Bay, Quebec, Canada, resulted in successful detection and quantification of target toxigenic cyanobacteria even when cell numbers were below the detection limit for the conventional microscopy methods. Furthermore, toxigenic Microcystis spp. were found to be the main putative microcystin-producing cyanobacteria in the study lake. The qPCR technique developed in this study therefore offers simultaneous detection, differentiation and quantification of multiple toxigenic cyanobacteria that otherwise cannot be accomplished by current monitoring approaches.  相似文献   

14.
The species from the order Neisseriales are currently distinguished from other bacteria on the basis of branching in 16S rRNA gene trees. For this order containing a single family, Neisseriaceae, no distinctive molecular, biochemical, or phenotypic characters are presently known. We report here detailed phylogenetic and comparative analyses on the 27 genome sequenced species of the order Neisseriales. Our comparative genomic analyses have identified 54 conserved signature indels (CSIs) in widely distributed proteins that are specific for either all of the sequenced Neisseriales species or a number of clades within this order that are also supported by phylogenetic analyses. Of these CSIs, 11 are specifically present in all of the sequenced species from this order, but are not found in homologous proteins from any other bacteria. These CSIs provide novel molecular markers specific for, and delimiting, this order. Twenty-one CSIs in diverse proteins are specific for a group comprised of the genera Neisseria, Eikenella, Kingella, and Simonsiella (Clade I), which are obligate host-associated organisms, lacking flagella and exhibiting varied morphology. The species from these genera also formed a strongly supported clade in phylogenetic trees based upon concatenated protein sequences; a monophyletic grouping of these genera and other genera displaying similar morphological characteristics was also observed in the 16S rRNA gene tree. A second clade (Clade II), supported by seven of the identified CSIs and phylogenetic trees based upon concatenated protein sequences, grouped together species from the genera Chromobacterium, Laribacter, and Pseudogulbenkiania that are rod-shaped bacteria, which display flagella-based motility and are capable of free living. The remainder of the CSIs were uniquely shared by smaller groups within these two main clades. Our analyses also provide novel insights into the evolutionary history of the Neisseriales and suggest that the CSIs that are specific for the Clade I species may play an important role in the evolution of obligate host-association within this order. On the basis of phylogenetic analysis, the identified CSIs, and conserved phenotypic characteristics of different Neisseriales genera, we propose a division of this order into two families: an emended family Neisseriaceae (corresponding to Clade I) containing the genera Alysiella, Bergeriella, Conchiformibius, Eikenella, Kingella, Neisseria, Simonsiella, Stenoxybacter, Uruburuella and Vitreoscilla and a new family, Chromobacteriaceae fam. nov., harboring the remainder of the genera from this order (viz. Andreprevotia, Aquaspirillum, Aquitalea, Chitinibacter, Chitinilyticum, Chitiniphilus, Chromobacterium, Deefgea, Formivibrio, Gulbenkiania, Iodobacter, Jeongeupia, Laribacter, Leeia, Microvirgula, Paludibacterium, Pseudogulbenkiania, Silvimonas, and Vogesella).  相似文献   

15.
The cyanobacteria are photosynthetic prokaryotes of significant ecological and biotechnological interest, since they strongly contribute to primary production and are a rich source of bioactive compounds. In eutrophic fresh and brackish waters, their mass occurrences (water blooms) are often toxic and constitute a high potential risk for human health. Therefore, rapid and reliable identification of cyanobacterial species in complex environmental samples is important. Here we describe the development and validation of a microarray for the identification of cyanobacteria in aquatic environments. Our approach is based on the use of a ligation detection reaction coupled to a universal array. Probes were designed for detecting 19 cyanobacterial groups including Anabaena/Aphanizomenon, Calothrix, Cylindrospermopsis, Cylindrospermum, Gloeothece, halotolerants, Leptolyngbya, Palau Lyngbya, Microcystis, Nodularia, Nostoc, Planktothrix, Antarctic Phormidium, Prochlorococcus, Spirulina, Synechococcus, Synechocystis, Trichodesmium, and Woronichinia. These groups were identified based on an alignment of over 300 cyanobacterial 16S rRNA sequences. For validation of the microarrays, 95 samples (24 axenic strains from culture collections, 27 isolated strains, and 44 cloned fragments recovered from environmental samples) were tested. The results demonstrated a high discriminative power and sensitivity to 1 fmol of the PCR-amplified 16S rRNA gene. Accurate identification of target strains was also achieved with unbalanced mixes of PCR amplicons from different cyanobacteria and an environmental sample. Our universal array method shows great potential for rapid and reliable identification of cyanobacteria. It can be easily adapted to future development and could thus be applied both in research and environmental monitoring.  相似文献   

16.
The aim of this work was to clarify taxonomy and examine evolutionary relationships within European Ceriporiopsis species using a combined analysis of the large subunit (nLSU) nuclear rRNA and small subunit (mtSSU) mitochondrial rRNA gene sequences. Data from the ITS region were applied to enhance the view of the phylogenetic relationships among different species. The studied samples grouped into four complex clades, suggesting that the genus Ceriporiopsis is polyphyletic. The generic type Ceriporiopsis gilvescens formed a separate group together with Ceriporiopsis guidella and Phlebia spp. in the phlebioid clade. In this clade, the closely related species Ceriporiopsis resinascens and Ceriporiopsis pseudogilvescens grouped together with Ceriporiopsis aneirina. C. resinascens and C. pseudogilvescens have identical LSU and SSU sequences but differ in ITS. Ceriporiopsis pannocincta also fell in the phlebioid clade, but showed closer proximity to Gloeoporus dichrous than to C. gilvescens or C. aneirinaC. pseudogilvescensC. resinascens group. Another clade was composed of a Ceriporiopsis balaenaeCeriporiopsis consobrina group and was found to be closely related to Antrodiella and Frantisekia, with the overall clade highly reminiscent of the residual polyporoid clade. The monotypic genus Pouzaroporia, erected in the past for Ceriporiopsis subrufa due to its remarkable morphological differences, also fell within the residual polyporoid clade. Ceriporiopsis subvermispora held an isolated position from the other species of the genus. Therefore, the previously proposed name Gelatoporia subvermispora has been adopted for this species. Physisporinus rivulosus appeared unrelated to two other European Physisporinus species. Moreover, Ceriporiopsis (=Skeletocutis) jelicii grouped in a separate clade, distinct from Ceriporiopsis species. Finally, the ITS data demonstrated the proximity of some Ceriporiopsis species (Ceriporiopsis portcrosensis and Ceriporiopsis subsphaerospora) to Skeletocutis amorpha.  相似文献   

17.
The genera Agrobacterium, Allorhizobium, and Rhizobium belong to the family Rhizobiaceae. However, the placement of a phytopathogenic group of bacteria, the genus Agrobacterium, among the nitrogen-fixing bacteria and the unclear position of Rhizobium galegae have caused controversy in previous taxonomic studies. To resolve uncertainties in the taxonomy and nomenclature within this family, the phylogenetic relationships of generic members of Rhizobiaceae were studied, but with particular emphasis on the taxa included in Agrobacterium and the “R. galegae complex” (R. galegae and related taxa), using multilocus sequence analysis (MLSA) of six protein-coding housekeeping genes among 114 rhizobial and agrobacterial taxa. The results showed that R. galegae, R. vignae, R. huautlense, and R. alkalisoli formed a separate clade that clearly represented a new genus, for which the name Neorhizobium is proposed. Agrobacterium was shown to represent a separate cluster of mainly pathogenic taxa of the family Rhizobiaceae. A. vitis grouped with Allorhizobium, distinct from Agrobacterium, and should be reclassified as Allorhizobium vitis, whereas Rhizobium rhizogenes was considered to be the proper name for former Agrobacterium rhizogenes. This phylogenetic study further indicated that the taxonomic status of several taxa could be resolved by the creation of more novel genera.  相似文献   

18.
Molossidae is a large (roughly 100 species) pantropically distributed clade of swift aerially insectivorous bats for which the phylogeny remains relatively unknown and little studied compared with other speciose groups of bats. We investigated phylogenetic relationships among 62 species, representing all extant molossid genera and most of the subgenera, using 102 morphological characters from the skull, dentition, postcrania, external morphology, tongue, and penis, based on direct observation and literature reports. Both parsimony and Bayesian analyses were used in phylogenetic reconstruction. Our analysis supports two main clades of molossids, both of which mingle Old World and New World taxa. One clade is comprised of Mormopterus,Platymops, Sauromys, Neoplatymops, Molossops, Cynomops, Cheiromeles, Molossus, and Promops. The other clade includes Tadarida, Otomops, Nyctinomops, Eumops, Chaerephon, and Mops. The position of Myopterus with respect to these two groups is unclear. As in other recent analyses, we find that several genera do not appear to be monophyletic (e.g. Tadarida, Chaerephon, and Molossops sensu lato). We recommend that the subgenera of Molossops sensu lato and Austronomus be recognized at the generic level. We conclude that much more data are needed to investigate lower level problems (generic monophyly and relationships within genera) and to resolve the higher‐level branching pattern of the family.  相似文献   

19.
Here we describe a phylogenetic analysis of sciaenids of the East China Sea based on nuclear exon-primed intron-crossing genes (EPIC markers) and a mitochondrial gene (CO1). Separate analyses of the two data partitions resulted in mostly congruent trees. Although there were some differences in the classification of these species, the main difference between trees obtained by the mitochondrial gene (CO1) and nuclear DNA sequences was the position of Miichthys miiuy and Johnius belangerii. In the mitochondrial phylogeny, Johnius belangerii was placed at the most basal position forming an individual clade, while other species formed another large cluster. Miichthys miiuy formed an independent basal sub-clade grouped with Larimichthys and Collichthys. Collichthys lucidus was grouped with Larimichthys crocea and Larimichthys polyactis. Trees based on the nuclear genes differed somewhat from those based on the CO1 mitochondrial gene. In this analysis, two groups resulted, the Larimichthys and Collichthys clade, and another clade including a total of five species: Johnius belangerii, Nibea albiflora, Pennahia argentata, Sciaenops ocellatus, and Argyrosomus japonicus; Johnius belangerii clustered with Nibea albiflora. Miichthys miiuy was placed at the basal position of the other cluster because it was an independent basal sub-clade grouped with Johnius belangerii, Nibea albiflora, Pennahia argentata, Sciaenops ocellatus, and Argyrosomus japonicus. Many aspects of the phylogeny of the Sciaenidae remain unresolved, and further analysis based on more molecular information and extensive taxon sampling is necessary to elucidate the phylogenetic relationships among the major lineages within Sciaenidae.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号