首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small RNAs (sRNAs) regulate bacterial genes involved in environmental adaptation. This RNA regulation requires Hfq, a bacterial Sm-like protein that stabilizes sRNAs and enhances RNA-RNA interactions. To understand the mechanism of target recognition by sRNAs, we investigated the interactions between Hfq, the sRNA DsrA, and its regulatory target rpoS mRNA, which encodes the stress response sigma factor. Nuclease footprinting revealed that Hfq recognized multiple sites in rpoS mRNA without significantly perturbing secondary structure in the 5' leader that inhibits translation initiation. Base-pairing with DsrA, however, made the rpoS ribosome binding site fully accessible, as predicted by genetic data. Hfq bound DsrA four times more tightly than the DsrA.rpoS RNA complex in gel mobility-shift assays. Consequently, Hfq is displaced rapidly from its high-affinity binding site on DsrA by conformational changes in DsrA, when DsrA base-pairs with rpoS mRNA. Hfq accelerated DsrA.rpoS RNA association and stabilized the RNA complex up to twofold. Hybridization of DsrA and rpoS mRNA was optimal when Hfq occupied its primary binding site on free DsrA, but was inhibited when Hfq associated with the DsrA.rpoS RNA complex. We conclude that recognition of rpoS mRNA is stimulated by binding of Hfq to free DsrA sRNA, followed by release of Hfq from the sRNA.mRNA complex.  相似文献   

2.
The Sm-like protein Hfq promotes the association of small antisense RNAs (sRNAs) with their mRNA targets, but the mechanism of Hfq''s RNA chaperone activity is unknown. To investigate RNA annealing and strand displacement by Hfq, we used oligonucleotides that mimic functional sequences within DsrA sRNA and the complementary rpoS mRNA. Hfq accelerated at least 100-fold the annealing of a fluorescently labeled molecular beacon to a 16-nt RNA. The rate of strand exchange between the oligonucleotides increased 80-fold. Therefore, Hfq is very active in both helix formation and exchange. However, high concentrations of Hfq destabilize the duplex by preferentially binding the single-stranded RNA. RNA binding and annealing were completely inhibited by 0.5 M salt. The target site in DsrA sRNA was 1000-fold less accessible to the molecular beacon than an unstructured oligonucleotide, and Hfq accelerated annealing with DsrA only 2-fold. These and other results are consistent with recycling of Hfq during the annealing reaction, and suggest that the net reaction depends on the relative interaction of Hfq with the products and substrates.  相似文献   

3.
4.
Bacterial small RNAs (sRNAs) modulate gene expression by base-pairing with target mRNAs. Many sRNAs require the Sm-like RNA binding protein Hfq as a cofactor. Well-characterized interactions between DsrA sRNA and the rpoS mRNA leader were used to understand how Hfq stimulates sRNA pairing with target mRNAs. DsrA annealing stimulates expression of rpoS by disrupting a secondary structure in the rpoS leader, which otherwise prevents translation. Both RNAs bind Hfq with similar affinity but interact with opposite faces of the Hfq hexamer. Using mutations that block interactions between two of the three components, we demonstrate that Hfq binding to a functionally critical (AAN)(4) motif in rpoS mRNA rescues DsrA binding to a hyperstable rpoS mutant. We also show that Hfq cannot stably bridge the RNAs. Persistent ternary complexes only form when the two RNAs are complementary. Thus, Hfq mainly acts by binding and restructuring the rpoS mRNA. However, Hfq binding to DsrA is needed for maximum annealing in vitro, indicating that transient interactions with both RNAs contribute to the regulatory mechanism.  相似文献   

5.
6.
7.
8.
9.
The Escherichia coli RNA chaperone Hfq was discovered originally as an accessory factor of the phage Qbeta replicase. More recent work suggested a role of Hfq in cellular physiology through its interaction with ompA mRNA and small RNAs (sRNAs), some of which are involved in translational regulation. Despite their stability under certain conditions, E. coli sRNAs contain putative RNase E recognition sites, that is, A/U-rich sequences and adjacent stem-loop structures. We show herein that an RNase E cleavage site coincides with the Hfq-binding site in the 5'-untranslated region of E. coli ompA mRNA as well as with that in the sRNA, DsrA. Likewise, Hfq protects RyhB RNA from in vitro cleavage by RNase E. These in vitro data are supported by the increased abundance of DsrA and RyhB sRNAs in an RNase E mutant strain as well as by their decreased stability in a hfq(-) strain. It is commonly believed that the RNA chaperone Hfq facilitates or promotes the interaction between sRNAs and their mRNA targets. This study reveals another role for Hfq, that is, protection of sRNAs from endonucleolytic attack.  相似文献   

10.
11.
Small noncoding RNAs (sRNAs) regulate the response of bacteria to environmental stress in conjunction with the Sm-like RNA binding protein Hfq. DsrA sRNA stimulates translation of the RpoS stress response factor in Escherichia coli by base-pairing with the 5′ leader of the rpoS mRNA and opening a stem–loop that represses translation initiation. We report that rpoS leader sequences upstream of this stem–loop greatly increase the sensitivity of rpoS mRNA to Hfq and DsrA. Native gel mobility shift assays show that Hfq increases the rate of DsrA binding to the full 576 nt rpoS leader as much as 50-fold. By contrast, base-pairing with a 138-nt RNA containing just the repressor stem–loop is accelerated only twofold. Deletion and mutagenesis experiments showed that sensitivity to Hfq requires an upstream AAYAA sequence. Leaders long enough to contain this sequence bind Hfq tightly and form stable ternary complexes with Hfq and DsrA. A model is proposed in which Hfq recruits DsrA to the rpoS mRNA by binding both RNAs, releasing the self-repressing structure in the mRNA. Once base-pairing between DsrA and rpoS mRNA is established, interactions between Hfq and the mRNA may stabilize the RNA complex by removing Hfq from the sRNA.  相似文献   

12.
The intricate regulation of the Escherichia coli rpoS gene, which encodes the stationary phase sigma-factor sigmaS, includes translational activation by the noncoding RNA DsrA. We observed that the stability of rpoS mRNA, and concomitantly the concentration of sigmaS, were significantly higher in an RNase III-deficient mutant. As no decay intermediates corresponding to the in vitro mapped RNase III cleavage site in the rpoS leader could be detected in vivo, the initial RNase III cleavage appears to be decisive for the observed rapid inactivation of rpoS mRNA. In contrast, we show that base-pairing of DsrA with the rpoS leader creates an alternative RNase III cleavage site within the rpoS/DsrA duplex. This study provides new insights into regulation by small regulatory RNAs in that the molecular function of DsrA not only facilitates ribosome loading on rpoS mRNA, but additionally involves an alternative processing of the target.  相似文献   

13.
14.
Hfq proximity and orientation controls RNA annealing   总被引:1,自引:0,他引:1  
Regulation of bacterial gene networks by small non-coding RNAs (sRNAs) requires base pairing with messenger RNA (mRNA) targets, which is facilitated by Hfq protein. Hfq is recruited to sRNAs and mRNAs through U-rich- and A-rich-binding sites, respectively, but their distance from the sRNA–mRNA complementary region varies widely among different genes. To determine whether distance and binding orientation affect Hfq’s chaperone function, we engineered ‘toy’ RNAs containing strong Hfq-binding sites at defined distances from the complementary target site. We show that RNA annealing is fastest when the distal face of Hfq binds an A-rich sequence immediately 3′ of the target. This recruitment advantage is lost when Hfq binds >20 nt away from the target, but is partially restored by secondary structure that shortens this distance. Although recruitment through Hfq’s distal face accelerates RNA annealing, tight binding of six Us to Hfq’s proximal face inhibits annealing. Finally, we show that ectopic A-rich motifs dramatically accelerate base pairing between DsrA sRNA and a minimal rpoS mRNA in the presence of Hfq, demonstrating that proximity and orientation predict the activity of Hfq on long RNAs.  相似文献   

15.
16.
The Sm protein Hfq binds small non-coding RNA (sRNAs) in bacteria and facilitates their base pairing with mRNA targets. Molecular beacons and a 16 nt RNA derived from the Hfq binding site in DsrA sRNA were used to investigate how Hfq accelerates base pairing between complementary strands of RNA. Stopped-flow fluorescence experiments showed that annealing became faster with Hfq concentration but was impaired by mutations in RNA binding sites on either face of the Hfq ring or by competition with excess RNA substrate. A fast bimolecular Hfq binding step (∼108 M−1s−1) observed with Cy3-Hfq was followed by a slow transition (0.5 s−1) to a stable Hfq–RNA complex that exchanges RNA ligands more slowly. Release of Hfq upon addition of complementary RNA was faster than duplex formation, suggesting that the nucleic acid strands dissociate from Hfq before base pairing is complete. A working model is presented in which rapid co-binding and release of two RNA strands from the Hfq ternary complex accelerates helix initiation 10 000 times above the Hfq-independent rate. Thus, Hfq acts to overcome barriers to helix initiation, but the net reaction flux depends on how tightly Hfq binds the reactants and products and the potential for unproductive binding interactions.  相似文献   

17.
DsrA RNA regulates the translation of two global regulatory proteins in Escherichia coli. DsrA activates the translation of RpoS while repressing the translation of H-NS. The RNA-binding protein Hfq is necessary for DsrA to function in vivo. Although Hfq binds to DsrA in vitro, the role of Hfq in DsrA-mediated regulation is not known. One hypothesis was that Hfq acts as an RNA chaperone by unfolding DsrA, thereby facilitating interactions with target RNAs. To test this hypothesis, we have examined the structure of DsrA bound to Hfq in vitro. Comparison of free DsrA to DsrA bound to Hfq by RNase footprinting, circular dichroism, and thermal melt profiles shows that Hfq does not alter DsrA secondary structures, but might affect its tertiary conformation. We identify the site on DsrA where Hfq binds, which is a structural element in the middle of DsrA. In addition, we show that although long poly(U) RNAs compete with DsrA for binding to Hfq, a short poly(U) stretch present in DsrA is not necessary for Hfq binding. Finally, unlike other RNAs, DsrA binding to Hfq is not competed with by poly(A) RNA. In fact, DsrA:poly(A):Hfq may form a stable ternary complex, raising the possibility that Hfq has multiple RNA-binding sites.  相似文献   

18.
Translation of the sigma factor RpoS is activated by DsrA, RprA and ArcA, three small non-coding sRNAs (sRNA) that expose the ribosome-binding site (RBS) by opening up an inhibitory loop. In the RpoS network, no sRNAs have been found to pair with the RBS, a most common sRNA target site in bacteria. Here, we generate Ribo-0, an artificial sRNA, which represses rpoS translation by pairing with the RBS. Ribo-0 bypasses the RNA chaperon Hfq but requires the RBS to be loosely blocked. Ribo-0 interacts with DsrA and reshapes the RpoS network. Specifically, in the intact RpoS network, DsrA activates rpoS translation by freeing up the RBS. In the modified RpoS network where Ribo-0 is introduced, the DsrA-caused RBS exposure facilitates Ribo-0 binding, thereby strengthening Ribo-0 inhibition. In other words, Ribo-0 changes DsrA from an activator to an accomplice for repressing rpoS translation. This work presents an artificial mechanism of rpoS regulation, reveals mutual effects of native and synthetic players and demonstrates genetic context-dependency of their functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号