首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
《Organogenesis》2013,9(4):101-102
Biomimicry (literally defined as the imitation of life or nature) has sparked a variety of human innovations and inspired countless cutting-edge designs. From spider silk-made artificial skin to lotus leaf-inspired self-cleaning materials, biomimicry endeavors to solve human problems. Biomimetic approaches have contributed significantly to advances biomedical research during recent years. Using polyacrylamide gels to mimic the elastic modulus of different biological tissues, Disher’s lab has directed meschymal stem cell differentiation into specific lineages.1 They have shown that soft substrates mimicking the elastic modulus of brain tissues (0.1~1 kPa) were neurogenic, substrates of intermediate elastic modulus mimicking muscle (8 ~17 kPa) were myogenic, and substrates with bone-like elastic modulus (25~40 kPa) were osteogenic. This work represents a novel way to regulate the fate of stem cells and exerts profound influence on stem cell research. Biomimcry also drives improvements in tissue engineering. Novel scaffolds have been designed to capture extracellular matrix-like structures, binding of ligands, sustained release of cytokines, and mechanical properties intrinsic to specific tissues for tissue engineering applications.2,3 For example, tissue engineering skin grafts have been designed to mimic the cell composition and layered structure of native skin.4 Similarly, in the field of regenerative medicine, researchers aim to create biomimetic scaffolds to mimic the properties of a native stem cell environment (niche) to dynamically interact with the entrapped stem cells and direct their response.5  相似文献   

9.
10.
The translation of biomedical research knowledge to effective clinical treatment is essential to the public good and is a main focus of current health policy. However, recent health policy initiatives intended to foster the translation of basic science into clinical and public health advances must also consider the unique bioethical issues raised by the increased focus on translational research. Safety of study participants and balancing of risk due to treatment with the potential benefits of the research is tantamount. This article synthesizes theory from clinical ethics, operational design, and philosophy to provide a bioethical framework for the health policy of translational research.  相似文献   

11.
12.
Currently, there is the potential to generate over 200,000 mutant mouse strains between existing mouse strains (over 24,000) and genetically modified mouse embryonic stem cells (over 209,000) that have been entered into the International Mouse Strain Resource Center (IMSR) from laboratories and repositories all over the world. The number of rat strains is also increasing exponentially. These mouse and rat mutants are a tremendous genetic resource; however, the awareness of their genetic integrity such as genetic background and genotyping of these models is not always carefully monitored. In this review, we make a case for the International Council for Laboratory Animal Science (ICLAS), which is interested in promoting and helping academic institutions develop a genetic monitoring program to bring a level of genetic quality assurance into the scientific interchange and use of mouse and rat genetically mutant models.  相似文献   

13.
14.
Through the difficulties encountered during the previous centuries in order for an animal to be recognized as a sensitive being, we saw the evolution of society's attitudes change from antiquity to our present day. Over the past twenty years animal testing has first evolved within a progressive regulatory framework reinforced by an ethical thinking which has, since 1990, led to the establishment of the ethics committees. The dialogue between these committees and researchers has led to the recovery of principles previously ignored such as the 3Rs (Replace, Reduce, Refine). This in turn has led to the application of improving experimental conditions, the progressive decrease in the number of animals used through a wise use and the replacement of animals by in vitro techniques in the very preliminary stages of research. Progress remains to be done, but the evolution of European regulations being amended, the formalization in France of ethics committees and the establishment of the National Ethics Committee should further contribute to the improvement of animal welfare in experimental research.  相似文献   

15.
The rat in biomedical research   总被引:1,自引:0,他引:1  
  相似文献   

16.
Muskrats are aquatic rodents of moderate size which are plentiful throughout North America, but are not used commonly in the laboratory. Recently, we tested the feasibility of muskrats as experimental models and have found them to be acquired and cared for easily in conventional laboratory animal facilities. Some of their natural characteristics and diseases are described. The husbandry techniques that we used are presented and form a base for the preparation of future guidelines for the maintenance and use of feral animals in research. The results of some initial experiments testing the muskrat's utility for investigations of cardiorespiratory control mechanisms also are presented. Our data show that even anesthetized muskrats possess brisk and dramatic cardiovascular and respiratory reflexes. Our findings that their brains possess the cytoarchitectural and myeloarchitectural features comparable to other mammals, combined with their relative uniformity in size, has allowed us to locate specific neuronal loci stereotaxically. We suggest that the muskrat be considered as an experimental animal model for studies of the neural control of cardiorespiratory systems.  相似文献   

17.
Human-animal chimeras in biomedical research   总被引:1,自引:0,他引:1  
Chimeras are individuals with tissues derived from more than one zygote. Interspecific chimeras have tissues derived from different species. The biological consequences of human-animal chimeras have become an issue of ethical debate. Ironically, human-animal chimeras with human blood, neurons, germ cells, and other tissues have been generated for decades. This has facilitated human biological studies and therapeutic strategies for disease.  相似文献   

18.
19.
^19FNMR在生物医学研究中的应用   总被引:2,自引:0,他引:2  
Tian JG  Du ZH 《生理科学进展》1998,29(4):319-324
核磁共振(NMR)是一种无创伤的物理测试方法,它可以直接用于体内和体外的生物样品测定,提供分子水平的信息。正常体内含氟成分很少,测定进无本底信号干扰,因此在体内研究中引进氟代指示剂进行^19FNMR研究是目前普遍采用的方法。^19FNMR可可以用来测定药物在体内代谢过程、胸内游离的离子如Ca^2+和Mg^2+、胞内pH、氧浓度或氧压力(pO2)、膜电位、组织温度、血液容积和细胞容积等多项生理生化指  相似文献   

20.
Obstacles and opportunities in translational research   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号