首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of tissue protection from ischemic damage by activation of the mitochondrial ATP-dependent K+ channel (mitoKATP) remains unexplored. In this work, we have measured, using various approaches, the ATP-dependent mitochondrial K+ transport in rats that differed in their resistance to hypoxia. The transport was found to be faster in the hypoxia-resistant rats as compared to that in the hypoxia-sensitive animals. Adaptation of animals to the intermittent normobaric hypoxia increased the rate of transport. At the same time, the intramitochondrial concentration of K+ in the hypoxia-sensitive rats was higher than that in the resistant and adapted animals. This indicates that adaptation to hypoxia stimulates not only the influx of potassium into mitochondria, but also K+/H+ exchange. When mitoKATP was blocked, the rate of the mitochondrial H2O2 production was found to be significantly higher in the hypoxia-resistant rats than that in the hypoxia-sensitive animals. The natural flavonoid-containing adaptogen Extralife, which has an evident antihypoxic effect, increased the rate of the mitochondrial ATP-dependent K+ transport in vitro and increased the in vivo tolerance of hypoxia-sensitive rats to acute hypoxia 5-fold. The involvement of the mitochondrial K+ transport in the mechanism of cell adaptation to hypoxia is discussed.  相似文献   

2.
A method for measuring the content of two groups of microsomal cytochrome P-450 isozymes--cytochromes P-450W and P-450L--with the active sites directed into the water phase and membrane lipids, respectively, has been developed. The method is based on the ability of the xanthine oxidase-menadione complex to reduce microsomal cytochromes b5 and P-450 under anaerobic conditions by transferring electrons to hemoproteins with the active sites directed into the water phase. Cytochrome b5 is completely reduced (to the dithionite level) and cytochrome P-450 is reduced partially (only a group of cytochromes P-450W). The amount of cytochromes P-450L is estimated using the difference between the total content of cytochrome P-450 reduced by sodium dithionite and the content of cytochromes P-450W. The possibility of controlling the ratio of these two isozyme groups in cytochrome P-450 in vivo in membranes of the endoplasmic reticulum by pretreatment of animals with a variety of chemicals has been demonstrated. The ratio of cytochromes P-450W and P-450L has been shown to decrease two-fold 18 days after three injections of phenobarbital into mice. Carbon tetrachloride and cyclophosphamide also decrease this ratio in vivo.  相似文献   

3.
The activity of delta-aminolaevulinate synthetase is generally regarded as rate-limiting for hepatic haem biosynthesis. It has been suggested that cytochrome synthesis may also be regulated by changes in delta-aminolaevulinate synthetase activity. This hypothesis was studied by injecting product, delta-aminolaevulinate, into adult rats over a 4-240h period. The concentrations of hepatic mitochondrial cytochromes a, b, c and c(1) were unchanged by treatment with delta-aminolaevulinate, allylisopropylacetamide or phenobarbital. In control animals, total microsomal haem content equalled the sum of cytochromes b(5) plus P-450. After delta-aminolaevulinate administration the total amount of microsomal haem, measured as the pyridine haemochromogen, exceeded these components, indicating the formation of a ;free' haem pool. Haem synthesis does not appear rate-limiting for hepatic cytochrome synthesis in the adult rat.  相似文献   

4.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

5.
The secondary structure of rabbit liver microsomal cytochrome P-450 LM2, rat liver microsomal cytochromes P-450b and P-450e (phenobarbital-inducible), and rat liver microsomal cytochromes P-450c, P-450d (3-methylcholanthrene-inducible) was predicted by a combination of methods (i) identifying the transmembrane parts of integral membrane proteins, and (ii) statistically predicting the secondary structure of globular proteins. The results are similar for all phenobarbital-inducible enzymes and make it possible to construct two structural models with seven or four transmembrane alpha-helices. The cytochromes of the second group obviously form a second structural family with four membrane-spanning alpha-helices. In both cases, a large ectodomain with several consecutive alpha-helices, which may provide the heme-binding pocket, is exposed out of the membrane.  相似文献   

6.
It is well established that the mitochondrial and the microsomal cytochromes in Saccharomyces cerevisiae are regulated differently. Mutations affecting the mitochondrial cytochromes aa3 or c had no effect on the concentration of the microsomal cytochrome P450 even during haem limitation. Moreover, a defect in the cytochrome P450 gene did not affect mitochondrial cytochromes. However, a regulatory mutation present in strain SG1 decreased both mitochondrial and microsomal cytochrome contents. This mutation also affected the intracellular haem concentration. The haem precursor 5-aminolaevulinate increased both mitochondrial and microsomal cytochrome contents. Our results indicate that carbon source and haem concentration are involved in the regulation of cytochrome P450.  相似文献   

7.
The effects of 4-weeks ethanol application (20% ethanol, w/w, 2 g X kg-1 on the alcohol oxidizing systems and gluconeogenic enzyme activities of the liver in guinea pigs kept in the cold (+4 degrees C) and at room temperature (+20 degrees C) were studied. The controls were guinea pigs reared at room temperature or in a cold environment without ethanol. The study showed a significant increase (1.5-fold) in liver microsomal cytochrome P-450 after chronic ethanol treatment at room temperature, but not in a cold environment. Microsomal NADPH oxidase activity did not significantly change in any group. Ethanol treatment in a cold environment resulted in a significant increase in liver mitochondrial cytochromes, aa3 and c+c1, and at room temperature in cyt aa3. The activities of total liver homogenate alcohol dehydrogenase or catalase did not change after chronic ethanol treatment. The activity of liver fructose-1.6-diphosphatase showed a significant ethanol induced decrease at room temperature, an effect not observed in the cold environment. Ethanol increased glucose-6-phosphatase activity in the cold, but not at room temperature. In conclusion, the stimulation of liver mitochondrial cytochromes and microsomal cyt P-450 as a consequence of chronic ethanol treatment indicated an increased oxidation capacity for ethanol. The stimulation of glucose-6-phosphatase in a cold environment might be responsible for increasing glucose for heat production after chronic ethanol treatment in cold adapted animals.  相似文献   

8.
Low-temperature EPR examination of rat liver microsomes from control, phenobarbital-treated, and methylcholanthrene-treated animals showed the presence of both high- and low-spin ferric cytochromes P-450 and P-448. Partially purified cytochromes P-450 (from control and phenobarbital-treated rats) and P-448 (from methylcholanthrene-treated rats) were also examined with EPR. In all cases, both high- and low-spin ferric forms of cytochromes P-450 and P-448 could be observed and were found to be essentially identical compared to the microsomal preparations. However, the level of high-spin species in the soluble P-448 preparation from methylcholanthrene-treated animals was less than could be observed in the liver microsomes from the same animals. The addition of substrates increased the concentration of the high-spin form in the soluble preparations obtained from drug-treated animals. Thus, cytochromes P-450 and P-448 exist as mixtures of high- and low-spin forms. It is concluded that the substrate specificity of these cytochromes is not predetermined by the spin state of the hemoprotein. In all liver microsomal and soluble preparations, the low-spin ferric form of the hemoprotein consisted of more than a single species as determined from the EPR examinations. Each of these species upon reduction and the addition of CO yielded an identical optical spectrum. In all cases, for the ferric protein, a mercaptide sulfur is believed to be a heme ligand while the other heme ligand is variable.  相似文献   

9.
Hepatic microsomal azoreductase activity in mice was induced with phenobarbital (PB) and 3-methylcholanthrene (3-MC). Antibodies against cytochrome P-450 inhibited azoreductase activity of PB-treated animals while antibodies against cytochrome P-448 inhibited liver azoreductase activity of 3-MC-treated animals, each by about 90%. These antibodies also inhibited microsomal 7-ethoxycoumarin-O-deethylase activity to the same extent. It is concluded that hepatic microsomal azoreductase activity is almost totally dependent on cytochromes P-450 and P-448 and the contribution, if any, of other microsomal components is negligible.  相似文献   

10.
A procedure for the preparation of monospecific antibody directed against rat liver microsomal cytochrome P-45-a is described. This antibody, together with monospecific antibodies to cytochromes P-450b and P-450c, has been used to show that these three forms of cytochrome P-450 are distinct and share no common antigenic determinants. These antibodies (a) give single immunoprecipitin bands with detergent-solubilized microsomes; (b) do not cross-react with the purified heterologous antigens in Ouchterlony double diffusion analyses; (c) have no effect on catalytic activity of the heterologous antigens but completely inhibit the enzymatic activity of the homologous antigens; and (d) remove only the homologous antigen from detergent-solubilized microsomes when covalently bound to a solid support. With radial immunodiffusion assay, we have quantitated these three forms of cytochrome P-450 in liver microsomes after treatment of rats with seven different inducers of cytochrome P-450. The levels of these cytochrome P-450 isozymes vary independently and are also regulated by the age and sex of the animal. The antibodies have also been used to assess the contribution of cytochromes P-450a, P-450b, and P-450c in the metabolism of xenobiotics by rat liver microsomes. A large proportion of benzo(a)pyrene metabolism and testosterone 16 alpha-hydroxylation in microsomes from untreated rats is not catalyzed by cytochromes P-450a, P-450b, and P-450c. Epoxide hydrolase, another microsomal enzyme involved in the metabolism of xenobiotics, was also quantitated by radial immunodiffusion after prior treatment of rats with microsomal enzyme inducers. The inductions of epoxide hydrolase varies independently of the induction of cytochromes P-450a, P-450b, and P-450c.  相似文献   

11.
Content of cytochromes b5 and P-450, and activities of NADPH-cytochrome c (P-450) reductase (NCR) and 7-ethoxyresorufin O-deethylase (EROD) were measured in liver microsomes prepared from two South American endemic fish, Brycon cephalus and Colossoma macropomum, from tilapia, Oreochromis niloticus, and from Swiss mice, Mus musculus, which served as a control. Strong hemoglobin binding to fish liver microsomal membranes (FLM) altered visible spectra of microsomal cytochromes. Consequently, special precautions during FLM preparation, including liver perfusion followed by repeated washing of microsomes, were required in the study of microsomal cytochromes from these fish. FLM from all fish studied here had a significantly lower content of microsomal cytochromes but a similar level of NCR and EROD activities compared to mouse liver microsomes (MLM). Strong response of the monooxygenase system in O. niloticus to water pollution was detected with both specific cytochrome P-450 content and EROD activity increasing sharply. The optical spectra of hemoglobin from B. cephalus and C. macropomum were analyzed and some differences in shape and relative extinction were observed compared to known hemoglobins.  相似文献   

12.
The reduction of cytochromes b5 and P-450 in mammalian hepatic microsomes by glucose oxidase and xanthine oxidase has been investigated. Under anaerobic conditions cytochrome b5 is reduced by glucose oxidase to the "dithionite" level, while cytochrome P-450 remains oxidized. Under the same conditions xanthine oxidase completely reduces both hemoproteins. Besides, neither glucose oxidase nor xanthine oxidase reduces isolated cytochromes. They can be reduced only after addition of microsomes to incubation media. Only in this case are the cytochromes, both isolated and included in microsomal membranes, reduced. The participation of microsomal flavoproteins in the reduction reaction is discussed. The method suggested makes it possible to substantially decrease the rates of reduction of microsomal hemoproteins, thus permitting the investigation of interactions between microsomal NADH- and NADPH-dependent electron-transport chains and electron carriers.  相似文献   

13.
A microsomal fraction from the cells of the malaria parasite of rodent Plasmodium berghei was obtained. The spectral properties of microsomal preparations suggest that P. berghei microsomes contain cytochromes b5 and P-420. Electrophoretic separation of microsomal proteins revealed the presence of proteins whose molecular mass corresponds to NADPH-cytochrome c reductase, cytochrome P-450 and epoxide hydratase. The activities of NADPH-cytochrome c reductase and benzpyrene hydroxylase were determined. The spectral parameters, electrophoretic data and enzymatic activities of microsomal proteins indicate that P. berghei cells contain a cytochrome P-450 monooxygenase system. The interrelationship between the activity of the microsomal monooxygenase system and the resistance of P. berghei cells to the antimalaria preparation chloroquine is discussed.  相似文献   

14.
Y Y Huang  T Hara  S Sligar  M J Coon  T Kimura 《Biochemistry》1986,25(6):1390-1394
An optically transparent thin-layer electrode cell with a very small volume was used for determination of the formal reduction potentials of bacterial, microsomal, and mitochondrial cytochromes P-450. At an extrapolated zero concentration of dye, the bacterial cytochrome from Pseudomonas putida catalyzing the hydroxylation of camphor and the adrenal mitochondrial cytochrome catalyzing the cholesterol side-chain cleavage reaction had formal reduction potentials of -168 and -285 mV (pH 7.5 and 25 degrees C), respectively. The oxidation-reduction potentials for the rabbit liver microsomal cytochrome P-450 induced by 3-methylcholanthrene and the mitochondrial cytochrome for steroid 11 beta-hydroxylation were found as -360 and -286 mV, respectively. Potential measurements at different temperatures allowed documentation of the standard thermodynamic parameters for cytochrome P-450 reduction for the first time. All cytochromes tested were found to have a relatively large negative entropy change upon reduction. The extent of these changes is comparable to that observed for the ferric-ferrous couple of cytochrome c. An entropy-enthalpy compensation effect was observed among the four cytochromes P-450 examined although the correlation is weaker than that observed with cytochrome c isolated from various sources.  相似文献   

15.
Exposure of rats to the cold (4-5 degrees C) caused large (2-3-fold) increases in the mass of interscapular brown adipose tissue (BAT), its mitochondrial content and the basal metabolic rate of the animals. The rate of substrate oxidation by BAT mitochondria also increased about 3-fold. When cold-acclimated animals were exposed to heat (37 degrees C), the BMR decreased by half in 3 h, the earliest time interval tested. Mitochondrial substrate oxidation, as well as substrate-dependent H2O2 generation, showed a proportionate decrease in rates. In these mitochondria, activities of cytochrome c reductases, but not dehydrogenases with NADH, alpha-glycerophosphate and succinate as substrates, also showed a significant decrease. The concentration of cytochromes aa3 and b, but not cytochrome c, also decreased in BAT mitochondria from 12-h heat-exposed animals, while the change in concentration of cytochrome b alone was found as early as 3 h of heat exposure. These results identify the change in cytochromes as a mechanism of regulation of oxidative activities in BAT mitochondria under conditions of acute heat stress.  相似文献   

16.
Rat liver mitoplasts containing less than 1% microsomal contamination contain cytochrome P-450 at 25% of the microsomal level and retain the capacity for monooxygenase activation of structurally different carcinogens such as aflatoxin B1 (AFB1), benzo(a)pyrene (BaP), and dimethylnitrosamine. Both phenobarbital (PB) and 3-methylcholanthrene (3-MC) induce the level of mitochondrial cytochrome P-450 by 2.0- to 2.5-fold above the level of control mitoplasts. The enzyme activities for AFB1 (3-fold) and BaP (16-fold) metabolism were selectively induced by PB and 3-MC, respectively. Furthermore, the metabolism of AFB1 and BaP by intact mitochondria was supported by Krebs cycle substrates but not by NADPH. Both PB and 3-MC administration cause a shift in the CO difference spectrum of mitoplasts (control, 448 nm; PB, 451 nm; and 3-MC, 446 nm) suggesting that they induce two different forms of mitochondrial cytochromes P-450. Mitoplasts solubilized with cholate and fractionated with polyethylene glycol exhibit only marginal monooxygenase activities. The activity, however, was restored to preparations from both PB-induced and 3-MC-induced mitochondrial enzymes (AFB1 activation, ethylmorphine, and benzphetamine deamination and BaP metabolism) by addition of purified rat liver cytochrome P-450 reductase, and beef adrenodoxin and adrenodoxin reductase. The latter proteins failed to reconstitute activity to purified microsomal cytochromes P-450b and P-450c that were fully active with P-450 reductase. Monospecific rabbit antibodies against cytochrome P-450b and P-450c inhibited both P-450 reductase and adrenodoxin-supported activities to similar extents. Anti-P-450b and anti-P-450c provided Ouchterlony precipitin bands against PB- and 3-MC induced mitoplasts, respectively. We conclude that liver mitoplasts contain cytochrome P-450 that is closely similar to the corresponding microsomal cytochrome P-450 but can be distinguished by a capacity to interact with adrenodoxin. These inducible cytochromes P-450 are of mitochondrial origin since their levels in purified mitoplasts are over 10 times greater than can arise from the highest possible microsomal contamination.  相似文献   

17.
The regiospecificity of arachidonic acid oxygenation, catalyzed by rat liver microsomal fractions in the presence of NADPH, can be altered by animal pretreatment with a fibric acid type of hypolipidemic drug, ciprofibrate. While microsomal fractions isolated from either control or phenobarbital-treated animals oxygenate arachidonic acid to mainly epoxyeicosatrienoic acids (EETs), animal pretreatment with ciprofibrate results in an eightfold stimulation of omega and omega-1 oxidation, concomitant with a net decrease in the formation of both HETEs and EETs. The isomeric composition of the EETs and of the omega and omega-1 oxidation products formed is also dependent on the type of animal pretreatment. Associated decreases in the amounts of HETEs and the rate of hydrogen peroxide formation suggests a modification of the "uncoupler action" of arachidonic acid during the function of different cytochromes P-450.  相似文献   

18.
The time course of induction of rat liver microsomal cytochromes P-450a, P-450b + P-450e, P-450c, and P-450d and epoxide hydrolase has been determined in immature male rats administered a single large dose [1500 mumol (500 mg)/kg body wt] of the polychlorinated biphenyl mixture Aroclor 1254. Differential regulation of these xenobiotic-metabolizing enzymes was indicated by their characteristic patterns of induction. The rate of induction of cytochrome P-450a and epoxide hydrolase was relatively slow, and steady-state levels of these enzymes were maintained from approximately Days 9 to 15 after Aroclor 1254 treatment. In contrast, cytochrome P-450c was maximally induced 2 days after Aroclor 1254 treatment and remained at a constant level through Day 15. Steady-state levels of cytochrome P-450d, beginning 1 week after Aroclor 1254 treatment, were preceded by a fairly rapid rate of induction and possibly by a small decline from maximal levels observed around Days 4 to 5. Like those of the other cytochrome P-450 isozymes and epoxide hydrolase, the levels of cytochromes P-450b + P-450e were constant from Day 9 to 15 after Aroclor 1254 treatment. However, an unexpected but reproducible decline (approximately 25%) in total cytochrome P-450 content observed between Days 4 and 9 after Aroclor 1254 treatment principally reflected a dramatic and totally unanticipated decrease (approximately 45%) in the level of cytochromes P-450b + P-450e. This transient decline in the level of cytochromes P-450b + P-450e was not due to an unusual effect of a mixture of polychlorinated biphenyls, since identical results were obtained with two individual congeners, namely 2,3,4,5,4'-penta- and 2,3,4,5,3',4'-hexachlorobiphenyl, that induced the same isozymes as Aroclor 1254. In contrast, when rats were treated with 2,4,5,2',4',5'-hexachlorobiphenyl, which induces cytochromes P-450a and P-450b + P-450e and epoxide hydrolase but not cytochromes P-450c or P-450d, maximal levels of cytochromes P-450b + P-450e were attained on Day 4 and no decrease was observed over the next 11 days. These results suggest that there may be an interaction in the regulation of induction of certain individual cytochrome P-450 isozymes.  相似文献   

19.
Monoclonal antibodies have been raised to rat liver cytochromes P-450 b and c, and rabbit liver cytochrome P-450 form 4. A total of six antibodies have been studied. Each antibody reacted strongly both with its homologous antigen and with microsomal fractions selectively enriched with that antigen by treatment of animals with inducing compounds. However, several of the antibodies showed cross-reactivity, either within or between species. A combination of enzyme-linked immunosorbent assay, immunoadsorption, Western blotting and competitive radioimmunoassay revealed that each of the antibodies reacted with a different epitope. Proteolytic digestion of antigen followed by Western blotting of the peptide fragments enabled antibodies, otherwise identical in their reactivity, to be distinguished. It is concluded that complex structural relationships exist amongst the different isoenzymes of cytochrome P-450 and that epitope mapping will help in characterizing both animal and human cytochromes P-450.  相似文献   

20.
The in vivo turnover rates of liver microsomal epoxide hydrolase and both the heme and apoprotein moieties of cytochromes P-450a, P-450b + P-450e, and P-450c have been determined by following the decay in specific radioactivity from 2 to 96 h after simultaneous injections of NaH14CO3 and 3H-labeled delta-aminolevulinic acid to Aroclor 1254-treated rats. Total liver microsomal protein was characterized by an apparent biphasic exponential decay in specific radioactivity, with half-lives of 5-9 and 82 h for the fast- and slow-phase components, respectively. Most (approximately 90%) of the rapidly turning over microsomal protein fraction was immunologically distinct from membrane-associated serum protein, and thus appeared to represent integral membrane proteins. The existence of two distinct populations of cytochrome P-450a was suggested by the apparent biphasic turnover of both the heme and apoprotein moieties of the holoenzyme. The half-lives of the apoprotein were estimated to be 12 and 52 h for the fast- and slow-phase components, respectively, and 7 and 34 h for the heme moiety. The turnover of cytochromes P-450b + P-450e was identical to that of cytochrome P-450c, with half-lives of 37 and 28 h for the apoprotein and heme moieties, respectively. In all cases, the shorter half-lives of the heme component compared to the protein component were statistically significant. In contrast to the cytochrome P-450 isozymes, epoxide hydrolase (t1/2 = 132 h) turned over slower than the "average" microsomal protein (t1/2 = 82 h). The differential rates of degradation of these major integral membrane proteins during both the rapid and slow phases of total microsomal protein turnover argue against the concepts of unit membrane degradation and unidirectional membrane flow of liver endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号