首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of cell-surface molecules involved in human T cell interaction reveal that differential expression of each of three adhesion molecules (LFA-3, CD2, and LFA-1) subdivides human peripheral blood T cells into major subpopulations. Systematic analysis of the relationship between expression of these and other markers of T cell subsets demonstrates a single major subset of human peripheral blood T lymphocytes distinguished by enhanced expression of LFA-3, CD2, LFA-1, and three other markers (CDw29 [4B4], UCHL1, and Pgp-1). Large differences in relative expression are observed for UCHL1 (29-fold) and LFA-3 (greater than 8-fold), and smaller differences (2- to 4-fold) are seen for CDw29, CD2, LFA-1, and Pgp-1. Bimodal distribution of LFA-3 is found on both CD4+ cells and on CD8+ cells as well as on B lymphocytes (CD19+). Neonatal T cells (CD3+) are comprised almost exclusively of the subset expressing low LFA-3, CD2, LFA-1, CDw29, and UCHL1. Activation of cord peripheral blood mononuclear leukocytes with PHA leads to uniform enhanced expression of each of these molecules on CD3+ cells. Functional analyses of these T cell subsets were performed after sorting of adult T cells based on differential LFA-3 expression. Only the LFA-3+ subset proliferated in response to the Ag tetanus toxoid, even though the LFA-3- subset proliferated more strongly to PHA. Furthermore, the LFA-3+ subset made greater than fivefold more IFN-gamma than the LFA-3- subset in response to PHA, despite the fact that both subsets made equivalent amounts of IL-2. This phenotypic and functional analysis of resting and activated newborn and adult T cells indicates that human memory T cells express enhanced levels of LFA-3, CD2, LFA-1, UCHL1, CDw29, and Pgp-1; we speculate that the increase in expression of T cell adhesion molecules LFA-3, CD2, and LFA-1 on memory cells is functionally important in their enhanced responsiveness.  相似文献   

2.
The activity of integrins on leukocytes is tightly controlled, and their adhesion capacity shifts rapidly when cells emigrate from the blood to the tissues. The leukocyte-specific beta2 integrin LFA-1 (alphaLbeta2) is the most important integrin expressed by leukocytes that regulate lymphocyte migration and the initiation of an immune response through binding to ICAM-1,-2 or-3. The binding activity of LFA-1 is rapidly altered by intracellular stimuli that activate LFA-1. Although alterations in the affinity of LFA-1, which leads to enhanced ICAM-1 binding, have been proposed, evidence is emerging that dynamic reorganisation of LFA-1 into microclusters is the major mechanism that regulates its binding capacity.  相似文献   

3.
The functional activity of lymphocyte function-associated antigen 1 (LFA-1) on leukocytes can be regulated by T-cell receptor (TCR) stimulation and pharmacologic agents. It was of interest to determine if functionally active LFA-1 could be reconstituted on a nonhematopoietic, LFA-1-negative cell line. We report the expression of LFA-1 and diethylaminoethyl (DEAE) Mac-1 alpha beta heterodimers on the cell surface of a fibroblastoid cell line, COS, by DEAE dextran cotransfection of the alpha and beta subunit cDNAs. Immunoprecipitation studies demonstrated that the alpha and beta subunit was expressed in heterodimers. The alpha or beta subunit was expressed at lower levels after transfection with the alpha or beta subunit cDNA alone. Cotransfection of the alpha and beta subunit cDNAs, but not transfection of alpha or beta alone, was sufficient to reconstitute intercellular adhesion molecule-1 (ICAM-1) binding activity. Consistent with this observation, LFA-1 on the fibroblastoid cells possesses the activation epitope defined by the L16 monoclonal antibody (mAb). This epitope marks the conversion of LFA-1 from the low to high avidity state on peripheral blood T lymphocytes (PBLs) and is constitutively present on activated cell lines. In contrast to LFA-1 on leukocytes, the functional activity of LFA-1 on fibroblastoid cells was not influenced by phorbol ester treatment. Furthermore, the use of agents that interfere with intracellular signaling, a protein kinase C inhibitor, cAMP analogue, or the combination of a phosphodiesterase inhibitor and adenyl cyclase activator, did not affect the binding of COS cells expressing LFA-1 to purified ICAM-1.  相似文献   

4.
A patient and his parents, deficient for lymphocyte function associated antigen-1 (LFA-1) and Mo1 (OKM1), were studied with respect to leukocyte surface marker expression and functional properties. The patient had a history of severe recurrent bacterial infections. Two siblings had already died of bacterial infections. The patient's granulocytes, monocytes, and lymphocytes expressed low but detectable amounts (less than or equal to 10%) of LFA-1 and Mo1. Intracellularly, LFA-1 and Mo1 (OKM1) were detectable and LFA-1 expression was enhanced on patient T cells stimulated with phytohemagglutinin. Granulocytes and monocytes of both the patient's parents expressed markedly decreased amounts of LFA-1 and Mo1. Lymphocytes of the mother expressed 40 to 60% of the amount of LFA-1 expressed on control lymphocytes, but his father's lymphocytes showed a normal LFA-1 expression. Granulocytes of the patient and of his deceased sister showed normal phagocytosis, but they had a dysfunction in the activation of the oxidative metabolism. Functional activities mediated by patient T cells were all normal. Moreover, all lymphocyte functions, including killer (K), natural killer (NK), cytotoxic T cell activity, helper activity for in vitro immunoglobulin (Ig) production by normal B cells, and PHA-induced proliferation were inhibitable by anti-LFA-1 monoclonal antibodies. K and NK activity mediated by patient leukocytes was 100-fold more sensitive to the inhibiting effect of anti-LFA-1 antibody than K and NK activity of normal donor leukocytes. Thus, although the amount of LFA-1 expressed was strongly reduced, it was still sufficient and required for the functional activity exhibited by patient T cells. The major functional defect observed with leukocytes of the patient and his father was an apparent B cell defect. B cells of the father and of the patient failed to produce Ig in the pokeweed mitogen (PWM)-driven system. The B cells of patient and of his father only produced Ig when cultured with T cells of the father, and not with normal donor T cells or T cells of the mother, in the presence of exogenous interleukin 2 (IL 2). In addition, the father's B cells produced Ig when cocultivated with patient T cells in the IL 2-driven system. This restriction of helper T cell activity is noteworthy because PWM- and IL 2-driven Ig synthesis by normal lymphocytes show no histocompatibility requirements between cooperating T and non-T cell populations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The lymphatic circulation mediates drainage of fluid and cells from the periphery through lymph nodes, facilitating immune detection of lymph-borne foreign Ags. The 10.1.1 mAb recognizes a lymphatic endothelial Ag, in this study purified by Ab-affinity chromatography. SDS-PAGE and mass spectrometry identified murine chloride channel calcium-activated 1 (mCLCA1) as the 10.1.1 Ag, a 90-kDa cell-surface protein expressed in lymphatic endothelium and stromal cells of spleen and thymus. The 10.1.1 Ab-affinity chromatography also purified LFA-1, an integrin that mediates leukocyte adhesion to endothelium. This mCLCA1-LFA-1 interaction has functional consequences, as lymphocyte adhesion to lymphatic endothelium was blocked by 10.1.1 Ab bound to endotheliumor by LFA-1 Ab bound to lymphocytes. Lymphocyte adhesion was increased by cytokine treatment of lymphatic endothelium in association with increased expression of ICAM-1, an endothelial surface protein that is also a ligand for LFA-1. By contrast, mCLCA1 expression and the relative contribution of mCLCA1 to lymphocyte adhesion were unaffected by cytokine activation, demonstrating that mCLCA1 and ICAM-1 interactions with LFA-1 are differentially regulated. mCLCA1 also bound to the LFA-1-related Mac-1 integrin that is preferentially expressed on leukocytes. mCLCA1-mediated adhesion of Mac-1- or LFA-1-expressing leukocytes to lymphatic vessels and lymph node lymphatic sinuses provides a target for investigation of lymphatic involvement in leukocyte adhesion and trafficking during the immune response.  相似文献   

6.
The activity of integrins on leukocytes is kept under tight control to avoid inappropriate adhesion while these cells are circulating in blood or migrating through tissues. Using lymphocyte function-associated antigen-1 (LFA-1) on T cells as a model, we have investigated adhesion to ligand intercellular adhesion molecule-1 induced by the Ca2+ mobilizers, ionomycin, 2,5-di-t-butylhydroquinone, and thapsigargin, and the well studied stimulators such as phorbol ester and cross-linking of the antigen-specific T cell receptor (TCR)– CD3 complex. We report here that after exposure of T cells to these agonists, integrin is released from cytoskeletal control by the Ca2+-induced activation of a calpain-like enzyme, and adhesive contact between cells is strengthened by means of the clustering of mobilized LFA-1 on the membrane. We propose that methods of leukocyte stimulation that cause Ca2+ fluxes induce LFA-1 adhesion by regulation of calpain activity. These findings suggest a mechanism whereby engagement of the TCR could promote adhesion strengthening at an early stage of interaction with an antigen-presenting cell.  相似文献   

7.
Yoon WK  Kim HJ  Son HY  Jeong KS  Park SJ  Kim TH  An MY  Kim SH  Kim SR  Ryu SY 《Regulatory peptides》2005,124(1-3):151-156
Leukocyte function-associated antigen-1 (LFA-1) is one of the integrins that are expressed on the leukocytes, and has been shown to play an important role in leukocyte trafficking. The adhesive activity of LFA-1 is governed partially by the Rap1. This study examined that the relationship between LFA-1 and Rap1 mRNA expressions by anti-CD3 and anti-CD3+SOM treatment in the CD4+ and CD8+ T cells. The LFA-1 mRNA expression levels following the anti-CD3 and anti-CD3+SOM treatment for 30 min was greater on the CD8+ T cells, and the LFA-1 expression of the CD8+ T cells with anti-CD+SOM treatment was affected more severely than that of the CD4+ T cells. The Rap1 mRNA expression patterns following anti-CD3 and anti-CD3+SOM stimulation in the CD4+ and CD8+ T cells were similar to the LFA-1 expression patterns, and the expression level following anti-CD3+SOM treatment was suppressed more significantly in the CD8+ T cells. These results suggest that the difference in the Rap1 expression level after stimulation might explain the differences in the LFA-1 expression level on the T cell subsets, and that the down-regulation of Rap1 expression following SOM treatment is closely related to the diminished LFA-1 expression.  相似文献   

8.
Specific leukocyte/endothelial interactions are critical for immunity and inflammation, yet the molecular details of this interaction interface remain poorly understood. Thus, we investigated, with confocal microscopy, the distribution dynamics of the central adhesion molecules ICAM-1 and LFA-1 in this context. Monolayers of activated HUVECs stained with fluorescent anti-ICAM-1 Fabs or Chinese hamster ovary-K1 cells expressing ICAM-1-green fluorescent protein were allowed to bind LFA-1-bearing monocytes, neutrophils, or K562 LFA-1 transfectants. ICAM-1 was rapidly relocalized to newly formed microvilli-like membrane projections in response to binding LFA-1 on leukocytes. These ICAM-1-enriched projections encircled the leukocytes extending up their sides and clustered LFA-1 underneath into linear tracks. Projections formed independently of VCAM-1/very late Ag 4 interactions, shear, and proactive contributions from the LFA-1-bearing cells. In the ICAM-1-bearing endothelial cells, projections were enriched in actin but not microtubules, required intracellular calcium, and intact microfilament and microtubule cytoskeletons and were independent of Rho/Rho kinase signaling. Disruption of these projections with cytochalasin D, colchicine, or BAPTA-AM had no affect on firm adhesion. These data show that in response to LFA-1 engagement the endothelium proactively forms an ICAM-1-enriched cup-like structure that surrounds adherent leukocytes but is not important for firm adhesion. This finding leaves open a possible role in leukocyte transendothelial migration, which would be consistent with the geometry and kinetics of formation of the cup-like structure.  相似文献   

9.
The leukocyte-specific beta(2) integrin lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)/beta(2)) mediates activation-dependent adhesion to intercellular adhesion molecule (ICAM)-1. In leukocytes, LFA-1 requires activation by intracellular messengers to bind ICAM-1. We observed malfunctioning of LFA-1 activation in leukemic T cells and K562-transfected cells. This defective inside-out integrin activation is only restricted to beta(2) integrins, since beta(1) integrins expressed in K562 readily respond to activation signals, such as phorbol 12-myristate 13-acetate. To unravel these differences in inside-out signaling between beta(1) and beta(2) integrins, we searched for amino acids in the beta(2) cytoplasmic domain that are critical in the activation of LFA-1. We provide evidence that substitution of a single amino acid (L732R) in the beta(2) cytoplasmic DLRE motif, creating the DRRE motif, is sufficient to completely restore PMA responsiveness of LFA-1 expressed in K562. In addition, an intact TTT motif in the C-terminal domain is necessary for the acquired PMA responsiveness. We observed that restoration of the PMA response altered neither LFA-1 affinity nor the phosphorylation status of LFA-1. In contrast, strong differences were observed in the capacity of LFA-1 to form clusters, which indicates that inside-out activation of LFA-1 strongly depends on cytoskeletal induced receptor reorganization that was induced by activation of the Ca(2+)-dependent protease calpain.  相似文献   

10.
LFA-1 (alphalbeta2) is constitutively expressed on leukocytes, but its activity is rapidly regulated. This rapid activation has been proposed to be associated with conformation changes in the inserted ("I") domain within the headpiece of LFA-1 as well as conversion of the molecules from bent to extended forms. To study these molecular changes as they relate to affinity regulation of LFA-1, we developed and synthesized a fluorescent derivative of BIRT-377 [Kelly et al. (2001) J. Immunol.] to examine changes in LFA-1 affinity in a flow cytometer with live cells. BIRT-377 binds to the ligand-binding or "I" domain of LFA-1. Structure-activity relationships studies indicated that an aminoalkyl group could be added to the central hydantoin group without significantly affecting binding. Using this modified derivative [1-(N-fluoresceinylthioureidobutyl)-[5R]-(4-bromobenzyl)-3-(3,5-dichlorophenyl)-5-methyl-imidazolidine-2,4-dione (FBABIRT)], we analyzed the affinity of FBABIRT binding to LFA-1 on live cells. The binding affinity increases, and the dissociation rate decreases with divalent cation (Mn(2+)) stimulation. We then used FBABIRT with fluorescent resonance energy transfer (FRET) to show that LFA-1 changes its height relative to the cell surface when cells were treated with dithiothreitol (DTT) but not Mn(2+). Competition assays among FBABIRT and BIRT derivatives defined structure-affinity relationships that refine the current model of BIRT-377 binding to the I domain. Our data supports the model in which BIRT-377 binds to the I domain and stabilizes the bent structure of LFA-1, while divalent cation activation results in a small conformational change in the I domain without significant extension of LFA-1. DTT, in contrast, induces a conversion to the extended form of LFA-1 in the presence of BIRT-377 on live cells. The structure-activity studies suggest that BIRT-377 is a fully optimized inhibitor.  相似文献   

11.
Intercellular adhesion molecule-1 (ICAM-1) occurs as both a membrane and a soluble, secreted glycoprotein (sICAM-1). ICAM-1 on endothelial cells mediates leukocyte adhesion by binding to leukocyte function associated antigen-1 (LFA-1) and macrophage antigen-1 (Mac-1). Recombinant mouse sICAM-1 induces the production of macrophage inflammatory protein-2 (MIP-2) in mouse astrocytes by a novel LFA-1- and Mac-1-independent mechanism. Here we showed that N-glycan structures of sICAM-1 influence its ability to induce MIP-2 production. sICAM-1 expressed in Chinese hamster ovary (CHO) cells was a more potent inducer of MIP-2 production than sICAM-1 expressed in HEK 293 cells, suggesting that posttranslational modification of sICAM-1 could influence its signaling activity. To explore the roles of glycosylation in sICAM-1 activity, we expressed sICAM-1 in mutant CHO cell lines differing in glycosylation, including Lec2, Lec8, and Lec1 as well as in CHO cells cultured in the presence of the alpha-mannosidase-I inhibitor kifunensine. Signaling activity of sICAM-1 lacking sialic acid was reduced 3-fold compared with sICAM-1 from CHO cells. The activity of sICAM-1 lacking both sialic acid and galactose was reduced 12-fold, whereas the activity of sICAM-1 carrying only high mannose-type N-glycans was reduced 12-26-fold. sICAM-1 glycoforms carrying truncated glycans retained full ability to bind to LFA-1 on leukocytes. Thus, sialylated and galactosylated complex-type N-glycans strongly enhanced the ability of sICAM-1 to induce MIP-2 production in astrocytes but did not alter its binding to LFA-1 on leukocytes. Glycosylation could therefore serve as a means to regulate specifically the signaling function of sICAM-1 in vivo.  相似文献   

12.
The cellular adhesion molecule LFA-1 and its ICAM-1 ligand play an important role in promoting HIV-1 infectivity and transmission. These molecules are present on the envelope of HIV-1 virions and are integral components of the HIV virological synapse. However, cellular activation is required to convert LFA-1 to the active conformation that has high affinity binding for ICAM-1. This study evaluates whether such activation can be induced by HIV itself. The data show that HIV-1 gp120 was sufficient to trigger LFA-1 activation in fully quiescent naïve CD4 T cells in a CD4-dependent manner, and these CD4 T cells became more susceptible to killing by LtxA, a bacterial leukotoxin that preferentially targets leukocytes expressing high levels of the active LFA-1. Moreover, virus p24-expressing CD4 T cells in the peripheral blood of HIV-infected subjects were found to have higher levels of surface LFA-1, and LtxA treatment led to significant reduction of the viral DNA burden. These results demonstrate for the first time the ability of HIV to directly induce LFA-1 activation on CD4 T cells. Although LFA-1 activation may enhance HIV infectivity and transmission, it also renders the cells more susceptible to an LFA-1-targeting bacterial toxin, which may be harnessed as a novel therapeutic strategy to deplete virus reservoir in HIV-infected individuals.  相似文献   

13.
Integrin LFA-1 is a receptor that is able to transmit multiple intracellular signals in leukocytes. Herein we show that LFA-1 induces a potent and transient increase in the activity of the small GTPase Rac-1 in T cells. Maximal Rac-1 activity peaked 10-15 min after LFA-1 stimulation and rapidly declined to basal levels at longer times. We have identified Vav, a guanine nucleotide exchange factor for Rac-1, and PI3K/Akt, as regulators of the activation and inactivation phases of the activity of Rac-1, respectively, in the context of LFA-1 signaling based on the following experimental evidence: (i) LFA-1 induced activation of Vav and PI3K/Akt with kinetics consistent with a regulatory role for these molecules on Rac-1, (ii) overexpression of a constitutively active Vav mutant induces activation of Rac independently of LFA-1 stimulation whereas overexpression of a dominant-negative Vav mutant blocks LFA-1-mediated Rac activation, (iii) pharmacological inhibition of PI3K/Akt prevented the fall in the activity of Rac-1 after its initial activation but had no effect on Vav activity, and (iv) overexpression of a dominant-negative or a constitutively active Akt-1 induced or inhibited, respectively, Rac-1 activity. Finally, we show that T cells with a sustained Rac activity have impaired capacity to elongate onto ICAM-1. These results demonstrate that down-regulation of the activity of this GTPase is a requirement for the regulation of T cell morphology and motility and highlight the importance of temporal regulation of the signaling triggered from this integrin.  相似文献   

14.
Measles virus (MV) infection of U937 cell or peripheral blood leukocyte cultures was shown to induce changes in the expression of leukocyte function antigen 1 (LFA-1) and cause marked aggregation of these cells. Addition of selected monoclonal antibodies specific for LFA-1 epitopes that did not neutralize MV in standard neutralization assays were found to block both virus-induced leukocyte aggregation and virus dissemination. These data suggest that MV modulation of LFA-1 expression on leukocytes may be an important step in MV pathogenesis.  相似文献   

15.
LFA-1 exists in a low avidity state on resting leukocytes and is believed to adopt a high avidity state when the cells are exposed to a stimulus. Current evidence supports both aggregation of LFA-1 on the cell surface and conformational changes in the reversible acquisition of a high avidity state. We studied this regulation by selecting a Jurkat T cell clone, J-lo1.3, that expresses LFA-1 yet fails to bind to purified ICAM-1 despite treatment of the cells with PMA or Mn2+. Several lines of evidence demonstrated the absence of any changes within LFA-1 itself. LFA-1 protein purified from the J-lo1.3 clone and the wild-type Jurkat clone, Jn.9, were found to be functionally equivalent. The cDNA sequences encoding the LFA-1 alpha- and beta-chains from J-lo1.3 were identical with the published sequences except for nine base pairs. However, these differences were also found in a Jurkat mutant with a constitutively avid phenotype, J+hi1.19 or the wild-type Jn.9 genomic or cDNA. Fusion of J-lo1.3 with Jn.9 yielded hybrids that exhibited the J-lo1.3 adhesion phenotype, which indicated a dominant mutation in J-lo1.3. This phenotype was relatively specific for LFA-1 among all integrins expressed by Jurkat. Interestingly, the J-lo1.3 cells had a 1.2-fold faster doubling time than did the Jn.9 cells. Reversion of J-lo1.3 to the wild-type adhesion phenotype by mutagenesis and selection also decreased the growth rate. These data support a connection between cellular growth and cellular adhesion in lymphocytes.  相似文献   

16.
Lymphokine-activated killer (LAK) cells are peripheral blood lymphocytes (PBLs) that possess the ability to kill target cells in a non-major histocompatibility complex (MHC)-restricted manner. Both NK and T cells can be stimulated with interleukin-2 (IL-2) to become LAK cells. We previously reported that the interaction of LAK cells with tumor cells also induces the secretion of interferon-gamma (IFN-gamma). The NK subset of LAK (LAK-NK) cells is stimulated by tumor cells to secrete IFN-gamma in a non-MHC-restricted manner while the T cell subset of LAK (LAK-T) cells is stimulated to secrete IFN-gamma upon cross-linking of the T cell receptor (TCR)-CD3 complex. We here report that LAK-T cells stimulated with anti-CD3 mAbs and tumor cells secrete two additional cytokines, tumor necrosis factor-alpha (TNF-alpha) and TNF-beta/lymphotoxin (TNF-beta). In addition, we demonstrate that at least four other structurally unrelated molecules, in addition to the TCR-CD3 complex, on LAK-T cells participate in the stimulation of IFN-gamma, TNF-alpha, and TNF-beta production. These molecules are the lymphocyte function associated antigen-1 (LFA-1), lymphocyte function associated antigen-2 (LFA-2), CD44, and CD45. LFA-1 is an integrin, LFA-2 is a member of the immunoglobulin supergene family, CD44 is homologous to the cartilage link proteins, and CD45 is a tyrosine phosphatase. Ligands to three of these molecules have been identified; ICAM-1, LFA-3, and hyaluronic acid binding to LFA-1, LFA-2, and CD44, respectively. LFA-1, LFA-2, and CD44 are reported to function both as adhesion molecules and as costimulators in resting T cells. Our data suggest that these three molecules enhance IFN-gamma, TNF-alpha, and TNF-beta production by augmenting LAK-T cell to tumor cell adhesion and also by functioning as costimulators.  相似文献   

17.
The LFA-1 integrin is crucial for the firm adhesion of circulating leukocytes to ICAM-1-expressing endothelial cells. In the present study, we demonstrate that LFA-1 can arrest unstimulated PBL subsets and lymphoblastoid Jurkat cells on immobilized ICAM-1 under subphysiological shear flow and mediate firm adhesion to ICAM-1 after short static contact. However, LFA-1 expressed in K562 cells failed to support firm adhesion to ICAM-1 but instead mediated K562 cell rolling on the endothelial ligand under physiological shear stress. LFA-1-mediated rolling required an intact LFA-1 I-domain, was enhanced by Mg2+, and was sharply dependent on ICAM-1 density. This is the first indication that LFA-1 can engage in rolling adhesions with ICAM-1 under physiological shear flow. The ability of LFA-1 to support rolling correlates with decreased avidity and impaired time-dependent adhesion strengthening. A beta2 cytoplasmic domain-deletion mutant of LFA-1, with high avidity to immobilized ICAM-1, mediated firm arrests of K562 cells interacting with ICAM-1 under shear flow. Our results suggest that restrictions in LFA-1 clustering mediated by cytoskeletal attachments may lock the integrin into low-avidity states in particular cellular environments. Although low-avidity LFA-1 states fail to undergo adhesion strengthening upon contact with ICAM-1 at stasis, these states are permissive for leukocyte rolling on ICAM-1 under physiological shear flow. Rolling mediated by low-avidity LFA-1 interactions with ICAM-1 may stabilize rolling initiated by specialized vascular rolling receptors and allow the leukocyte to arrest on vascular endothelium upon exposure to stimulatory endothelial signals.  相似文献   

18.
Mannheimia haemolytica is an important cause of pneumonia in bighorn sheep (BHS; Ovis canadensis). Leukotoxin (Lkt), the primary virulence determinant of M. haemolytica, induces cytolysis of all subsets of leukocytes. Previously, we have shown that CD18, the beta subunit of beta2-integrins, mediates Lkt-induced cytolysis. However, it is not clear whether CD18 of all three beta2-integrins, LFA-1, Mac-1, and CR4, mediates Lkt-induced cytolysis. The objective of this study was to determine whether BHS LFA-1 (CD11a/CD18) serves as a receptor for Lkt. Plasmids encoding cDNA for BHS CD11a and CD18 were cotransfected into Lkt-resistant HEK-293 cells. Flow cytometric analysis of transfectants confirmed cell surface expression of BHS LFA- 1, Lkt-LFA-1 binding and Lkt-induced intra-cellular calcium elevation. More importantly, the transfectants were efficiently lysed by Lkt in a concentration-dependent manner. Collectively, these results indicate that BHS LFA-1 serves as a functional receptor for M. haemolytica Lkt.  相似文献   

19.
The SARS-CoV accessory protein 7a is a type I membrane protein with an extracellular domain of 81 amino acid residues. It is described to be expressed during infection and to be a component of the virus particle surface. In this study, we demonstrate that protein 7a binds directly and specifically to human lymphocyte function-associated antigen 1 (LFA-1) on the cell surface of Jurkat cells. The binding is increased upon artificial cell activation with phorbol ester. These observations are confirmed by direct in vitro binding of recombinant protein 7a to the wild type and mutant K287C/K294C I domain showing that the I domain is the 7a binding site in the alpha(L) chain of LFA-1. Consequences of the LFA-1 interaction with 7a are discussed. In particular, our data suggest LFA-1 to be an attachment factor or the receptor for SARS-CoV on human leukocytes.  相似文献   

20.
《Life sciences》1995,57(15):PL217-PL223
We have previously demonstrated that somatostatin-14 and its octapeptide analogue, angiopeptin, decrease the ability of rat heart endothelial cells to bind leukocytes [Leszczynski, et al., Reg. Pept. 43 (1993) 131–140]. Here, we examined whether exposure of leukocytes to angiopeptin modifies their adhesiveness to the unstimulated and to IL-1β-activated endothelium. Monolayers of unstimulated endothelial cells bind 274 ± 12 leukocytes/mm2. Exposure of leukocytes for 1, 4 and 24 hours to angiopeptin (1 μM) reduced significantly (p < 0.05) adhesion of leukocytes from 274 ± 12 to 188 ± 10, 185 ± 8 and 172 ± 3 cells/mm2, respectively. Stimulation of endothelial cells with IL-1β (100U/ml) for 24 hours increased endothelial adhesiveness from 274 +- 12 to 381 ± 17 adhering leukocytes/mm2. Exposure of leukocytes for 1, 4 and 24 hours to angiopeptin (1μM) reduced significantly (p < 0.05) binding of leukocytes to IL-1β-activated endothelium from 381 ± 17 to 237 ± 8, 254 ± 11 and 248 ± 13 cells/mm2, respectively. Angiopeptin had no effect on the expression of lymphocyte function-associated molecule-1 (LFA-1; CDlla/CD18) by leukocytes, as assessed by flow cytometry. This suggests that angiopeptin modulates adhesive properties of leukocytes by (1) altering the expression of other than LFA-1 adhesion molecule(s) and/or (2) modulating the affinity of adhesion molecule(s) expressed by leukocytes. In conclusion, our results demonstrate that angiopeptin reduces leukocyte adhesiveness to unstimulated and to IL-1β-activated endothelium. It suggests that angiopeptin may suppress immune response via modulation of the leukocyte-endothelial interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号