首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A method is described for the efficient concentration of viruses from large volumes of tap water in relatively short time periods. Virus in acidified tap water in the presence of aluminum chloride is adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in series at flow rates of up to 37.8 liters/min (10 gallons/min). This filter series is capable of efficiently adsorbing virus from greater than 19,000 liters (5,000 gallons) of treated tap water. Adsorbed viruses are eluted from the filters with glycine buffer (pH 10.5) and the eluate is reconcentrated using an aluminum flocculation process. Viruses are eluted from the aluminum floc with glycine buffer (pH 11.5). Using this procedure, viruses in 1,900 liters (500 gallons) of tap water can be concentrated 100,000-fold in 3 h with an average recovery of 40 to 50%.  相似文献   

2.
Methods are described for the efficient concentration of an enterovirus from large volumes of tap water, sewage, and seawater. Virus in acidified water (pH 3.5) in the presence of aluminum chloride was adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in a series at flow rates of up to 37.8 liters (10 gallons) per min. Adsorbed viruses were eluted from the filters with glycine buffer (pH 10.5 to 11.5), and the eluate was reconcentrated by using a combination of aluminum flocculation followed by hydroextraction. With this procedure, poliovirus in large volumes of tap water, seawater, and sewage could be concentrated with an average efficiency of 52, 53, and 50%, respectively. It was demonstrated that this method is capable of detecting surface solid-associated viruses originating from sewage treatment plants. No difference in virus recovery between laboratory batch studies and a set-up with acid-salt injection was found. This unified scheme for the concentration of viruses has many advantages over previously described systems. These include: high operating flow rates, low weight and small size, effectiveness with a variety of waters with widely varying qualities, and filters with a high resistance to clogging.  相似文献   

3.
Methods are described for the efficient concentration of an enterovirus from large volumes of tap water, sewage, and seawater. Virus in acidified water (pH 3.5) in the presence of aluminum chloride was adsorbed to a 10-inch (ca. 25.4 cm) fiberglass depth cartridge and a 10-inch pleated epoxy-fiberglass filter in a series at flow rates of up to 37.8 liters (10 gallons) per min. Adsorbed viruses were eluted from the filters with glycine buffer (pH 10.5 to 11.5), and the eluate was reconcentrated by using a combination of aluminum flocculation followed by hydroextraction. With this procedure, poliovirus in large volumes of tap water, seawater, and sewage could be concentrated with an average efficiency of 52, 53, and 50%, respectively. It was demonstrated that this method is capable of detecting surface solid-associated viruses originating from sewage treatment plants. No difference in virus recovery between laboratory batch studies and a set-up with acid-salt injection was found. This unified scheme for the concentration of viruses has many advantages over previously described systems. These include: high operating flow rates, low weight and small size, effectiveness with a variety of waters with widely varying qualities, and filters with a high resistance to clogging.  相似文献   

4.
A method is described for the efficient concentration of viruses from large volumes of highly turbid estuary water. Virus in acidified seawater in the presence of aluminum chloride is adsorbed to a 10-in. (about 25.4 cm) fibreglass depth cartridge and 2- and 0.65-micron epoxy-fibreglass filters in series. This filter series is capable of efficiently adsorbing enteroviruses from 50 U.S. gallons (about 190) of estuary water of varying salinity and turbidity. Adsorbed viruses were eluted from the filters with glycine buffer (pH 11.5) and the eluate reconcentrated by using a precipitate formed by the addition of ferric chloride. Viruses were eluted from this precipitate with fetal calf serum. Using this procedure, four different enteroviruses in 50 gallons (about 190) of estuary water were concentrated 9 000- to 12 000-fold with an overall efficiency of 41%.  相似文献   

5.
Concentration of enteroviruses from estuarine water.   总被引:11,自引:10,他引:1       下载免费PDF全文
Pleated cartridge filters readily adsorb viruses in estuarine water at low pH containing aluminum chloride. Adsorbed viruses are efficiently recovered by treating filters with glycine buffer at high pH. By using these procedures, it was possible to recover approximately 70% of the poliovirus added to 400 liters of estuarine water in 3 liters of filter eluate. Reconcentration of virus in the filter eluate in small volumes that are convenient for viral assays was more difficult. Reconcentration methods described previously for eluates from filters that process tap water or treated wastewater were inadequate when applied to eluates from filters used to process estuarine water containing large amounts of organic compounds. Two methods were found to permit efficient concentration of virus in filter eluates in small volumes. In both methods, virus in 3 liters of filter eluate was adsorbed to aluminum hydroxide flocs and then recovered in approximately 150 ml of buffered fetal calf serum. Additional reductions in volume were achieved by ultrafiltration or hydroextraction. By using these procedures 60 to 80% of the virus in 3 liters of filter eluate could be recovered in a final volume of 10 to 40 ml.  相似文献   

6.
Pleated cartridge filters readily adsorb viruses in estuarine water at low pH containing aluminum chloride. Adsorbed viruses are efficiently recovered by treating filters with glycine buffer at high pH. By using these procedures, it was possible to recover approximately 70% of the poliovirus added to 400 liters of estuarine water in 3 liters of filter eluate. Reconcentration of virus in the filter eluate in small volumes that are convenient for viral assays was more difficult. Reconcentration methods described previously for eluates from filters that process tap water or treated wastewater were inadequate when applied to eluates from filters used to process estuarine water containing large amounts of organic compounds. Two methods were found to permit efficient concentration of virus in filter eluates in small volumes. In both methods, virus in 3 liters of filter eluate was adsorbed to aluminum hydroxide flocs and then recovered in approximately 150 ml of buffered fetal calf serum. Additional reductions in volume were achieved by ultrafiltration or hydroextraction. By using these procedures 60 to 80% of the virus in 3 liters of filter eluate could be recovered in a final volume of 10 to 40 ml.  相似文献   

7.
J F Ma  J Naranjo    C P Gerba 《Applied microbiology》1994,60(6):1974-1977
The MK filter is an electropositively charged filter that can be used to concentrate enteroviruses from large volumes (400 to 1,000 liters) of water. This filter is less expensive than the commonly used 1MDS electropositive filter. In this study, we compared the recovery of poliovirus 1 (PV1) and that of coxsackievirus B3 (CB3) from 378 liters of tap water, using both the MK and the 1MDS filters. Viruses were eluted from the filters with 3% beef extract buffered with 0.05 M glycine (pH 9.5) and reconcentrated via organic flocculation. At high virus inputs (approximately 10(6) PFU), the overall recovery (after elution and reconcentration) of PV1 and CB3 from tap water with the MK filter was less than that achieved with the 1MDS filter (P < 0.05). The recoveries of PV1 from tap water with the MK and 1MDS filters were 73.2% +/- 26% (n = 5 trials) and 90.2% +/- 5.9% (n = 5 trials), respectively. The recoveries of CB3 from tap water with the MK and 1MDS filters were 32.8% +/- 34.5% (n = 4 trials) and 95.8% +/- 12.0% (n = 4 trials), respectively. This study indicated that the MK filter consistently provided lower recovery, with wider variability, of PV1 and CB3 from tap water than the 1MDS filter.  相似文献   

8.
A simple method with poliovirus as the model was developed for recovering human enteric viruses from aerosols. Filterite filters (pore size, 0.45 micron; Filterite Corp., Timonium, Md.) moistened with glycine buffer (pH 3.5) were used for adsorbing the aerosolized virus. No virus passed the filter, even with air flow rates of 100 liters/min. Virus recovery from the filter was achieved by rapid elution with 800 ml of glycine buffer, pH 10. The virus in the primary eluate was reconcentrated by adjusting the pH to 3.5, adding AlCl3 to 0.0005 M, collecting the virus on a 0.25-micron-pore Filerite disk (diameter, 25 mm) and and eluting with 6 ml of buffer, pH 10. With this method, virus could be detected regularly in aerosols produced by flushing when 3 X 10(8) PFU of poliovirus were present in the toilet bowl. Poliovirus-containing fecal material from two of four infants who had recently received oral polio vaccine also yielded virus in the aerosols when feces containing 2.4 X 10(7) to 4.5 X 10(7) PFU of virus had been added to the toilet bowl. Persons infected with a variety of natural enteric viruses are known to excrete this amount of virus in their daily stools.  相似文献   

9.
Method for detecting viruses in aerosols.   总被引:2,自引:1,他引:1       下载免费PDF全文
A simple method with poliovirus as the model was developed for recovering human enteric viruses from aerosols. Filterite filters (pore size, 0.45 micron; Filterite Corp., Timonium, Md.) moistened with glycine buffer (pH 3.5) were used for adsorbing the aerosolized virus. No virus passed the filter, even with air flow rates of 100 liters/min. Virus recovery from the filter was achieved by rapid elution with 800 ml of glycine buffer, pH 10. The virus in the primary eluate was reconcentrated by adjusting the pH to 3.5, adding AlCl3 to 0.0005 M, collecting the virus on a 0.25-micron-pore Filerite disk (diameter, 25 mm) and and eluting with 6 ml of buffer, pH 10. With this method, virus could be detected regularly in aerosols produced by flushing when 3 X 10(8) PFU of poliovirus were present in the toilet bowl. Poliovirus-containing fecal material from two of four infants who had recently received oral polio vaccine also yielded virus in the aerosols when feces containing 2.4 X 10(7) to 4.5 X 10(7) PFU of virus had been added to the toilet bowl. Persons infected with a variety of natural enteric viruses are known to excrete this amount of virus in their daily stools.  相似文献   

10.
A virus concentration method using a cation-coated filter was developed for large-volume freshwater applications. Poliovirus type 1 (LSc 2ab Sabin strain) inoculated into 40 ml of MilliQ (ultrapure) water was adsorbed effectively to a negatively charged filter (Millipore HA, 0.45- micro m pore size) coated with aluminum ions, 99% (range, 81 to 114%) of which were recovered by elution with 1.0 mM NaOH (pH 10.8) following an acid rinse with 0.5 mM H(2)SO(4) (pH 3.0). More than 80% poliovirus recovery yields were obtained from 500-ml, 1,000-ml, and 10-liter MilliQ water samples and from tap water samples. This method, followed by TaqMan PCR detection, was applied to determine the presence of noroviruses in tap water in Tokyo, Japan. In a 14-month survey, 4 (4.1%) and 7 (7.1%) of 98 tap water samples (100 to 532 liters) contained a detectable amount of noroviruses of genotype 1 and genotype 2, respectively. This method was proved to be useful for surveying the occurrence of enteric viruses, including noroviruses, in large volumes of freshwater.  相似文献   

11.
The sensitivity of several microporous virus-adsorbent media for reliably detecting low levels of poliovirus from 380 and 1,900 liters of drinking water by use of the tentative standard method was investigated. The virus-adsorbent media tested were (i) nitrocellulose membrane filters, (ii) epoxy-fiber glass-asbestos filters, (iii) yarn-wound fiber glass depth filters, and (iv) epoxy-fiber glass filter tubes. Virus was adsorbed to the filter media at pH 3.5 and eluted with glycine buffer, pH 11.5. The results from 44 samples demonstrated that poliovirus was detected with a 95% reliability at mean virus input levels of 3 to 7 plaque-forming units/380 liters when 1,900 liters of water was sampled. At mean virus input levels of less than 1 to 2 plaque-forming units/380 liters, the detection reliability was 66% in 76 samples when 1,900 liters of water was sampled. No significant difference in virus detection sensitivity was observed among the various virus adsorbent media tested. Overall virus recovery efficiency ranged from 28 to 42%, with a grand average of 35%. Members of the coxsackievirus groups A and B, echovirus, and adenovirus were also detected when 380 and 1,900 liters of water were sampled. These experimental observations attest to the sensitivity of the tentative standard method for detecting low levels of virus in large volumes of drinking water.  相似文献   

12.
The sensitivity of several microporous virus-adsorbent media for reliably detecting low levels of poliovirus from 380 and 1,900 liters of drinking water by use of the tentative standard method was investigated. The virus-adsorbent media tested were (i) nitrocellulose membrane filters, (ii) epoxy-fiber glass-asbestos filters, (iii) yarn-wound fiber glass depth filters, and (iv) epoxy-fiber glass filter tubes. Virus was adsorbed to the filter media at pH 3.5 and eluted with glycine buffer, pH 11.5. The results from 44 samples demonstrated that poliovirus was detected with a 95% reliability at mean virus input levels of 3 to 7 plaque-forming units/380 liters when 1,900 liters of water was sampled. At mean virus input levels of less than 1 to 2 plaque-forming units/380 liters, the detection reliability was 66% in 76 samples when 1,900 liters of water was sampled. No significant difference in virus detection sensitivity was observed among the various virus adsorbent media tested. Overall virus recovery efficiency ranged from 28 to 42%, with a grand average of 35%. Members of the coxsackievirus groups A and B, echovirus, and adenovirus were also detected when 380 and 1,900 liters of water were sampled. These experimental observations attest to the sensitivity of the tentative standard method for detecting low levels of virus in large volumes of drinking water.  相似文献   

13.
A virus concentration method using a cation-coated filter was developed for large-volume freshwater applications. Poliovirus type 1 (LSc 2ab Sabin strain) inoculated into 40 ml of MilliQ (ultrapure) water was adsorbed effectively to a negatively charged filter (Millipore HA, 0.45-μm pore size) coated with aluminum ions, 99% (range, 81 to 114%) of which were recovered by elution with 1.0 mM NaOH (pH 10.8) following an acid rinse with 0.5 mM H2SO4 (pH 3.0). More than 80% poliovirus recovery yields were obtained from 500-ml, 1,000-ml, and 10-liter MilliQ water samples and from tap water samples. This method, followed by TaqMan PCR detection, was applied to determine the presence of noroviruses in tap water in Tokyo, Japan. In a 14-month survey, 4 (4.1%) and 7 (7.1%) of 98 tap water samples (100 to 532 liters) contained a detectable amount of noroviruses of genotype 1 and genotype 2, respectively. This method was proved to be useful for surveying the occurrence of enteric viruses, including noroviruses, in large volumes of freshwater.  相似文献   

14.
The 1-MDS Virosorb filter and the 50S and 30S Zeta-plus filters, all with a net positive charge, were compared with the negatively charged Filterite filter for concentration of naturally occurring coliphages and animal viruses from sewage effluent. When Filterite filters were used, the effluent was adjusted to pH 3.5 and AlCl3 was added before filtration to facilitate virus adsorption. No adjustment was required with the positively charged filters. Sets of each filter type were eluted with 3% beef extract (pH 9.5) or eluted with 0.05 M glycine (pH 11.5). A maximum volume of 19 liters could be passed through 142-mm diameter Filterite filters before clogging, whereas only 11, 11, and 15 liters could be passed through the 1-MDS, 50S, and 30S filters, respectively. For equal volumes passed through the filters, coliphage recoveries were 14, 15, 18, and 37% in primary effluent and 40, 97, 50, and 46% in secondary effluent for the Filterite , 1-MDS, 50S, and 30S filters, respectively. No statistically significant difference was observed in the recovery of animal viruses among the filters from secondary effluent, whereas in the Filterite and 50S filters, higher numbers of viruses from primary effluent were recovered than in the 1-MDS and 30S filters in two of three collections. Glycine was found to be a less-efficient eluent than beef extract in the recovery of naturally occurring viruses.  相似文献   

15.
The 1-MDS Virosorb filter and the 50S and 30S Zeta-plus filters, all with a net positive charge, were compared with the negatively charged Filterite filter for concentration of naturally occurring coliphages and animal viruses from sewage effluent. When Filterite filters were used, the effluent was adjusted to pH 3.5 and AlCl3 was added before filtration to facilitate virus adsorption. No adjustment was required with the positively charged filters. Sets of each filter type were eluted with 3% beef extract (pH 9.5) or eluted with 0.05 M glycine (pH 11.5). A maximum volume of 19 liters could be passed through 142-mm diameter Filterite filters before clogging, whereas only 11, 11, and 15 liters could be passed through the 1-MDS, 50S, and 30S filters, respectively. For equal volumes passed through the filters, coliphage recoveries were 14, 15, 18, and 37% in primary effluent and 40, 97, 50, and 46% in secondary effluent for the Filterite , 1-MDS, 50S, and 30S filters, respectively. No statistically significant difference was observed in the recovery of animal viruses among the filters from secondary effluent, whereas in the Filterite and 50S filters, higher numbers of viruses from primary effluent were recovered than in the 1-MDS and 30S filters in two of three collections. Glycine was found to be a less-efficient eluent than beef extract in the recovery of naturally occurring viruses.  相似文献   

16.
Enteroviruses added to 114 liters of dechlorinated tap water were recovered in a 16-ml sample by a two-stage concentration procedure in which different types of membrane filters were used in each concentration stage. Viruses in tap water at pH 3.5 were first adsorbed to 10-in. (ca. 25.4-cm) epoxy-fiber glass filters (Filterite). Viruses adsorbed to these filters were eluted with a solution of 0.2 M sodium trichloroacetate buffered at pH 9 with 0.2 M lysine. Viruses in this solution were adsorbed to 47-mm asbestos filters (Seitz) without pH adjustment or other modification of the solution. Viruses were recovered from the Seitz filters with 16 ml of either Casitone or fetal calf serum at pH 9. With these procedures ca. 45% of several types of enteroviruses added to 114 liters of tap water could be recovered in the final 16-ml sample.  相似文献   

17.
Enteroviruses added to 114 liters of dechlorinated tap water were recovered in a 16-ml sample by a two-stage concentration procedure in which different types of membrane filters were used in each concentration stage. Viruses in tap water at pH 3.5 were first adsorbed to 10-in. (ca. 25.4-cm) epoxy-fiber glass filters (Filterite). Viruses adsorbed to these filters were eluted with a solution of 0.2 M sodium trichloroacetate buffered at pH 9 with 0.2 M lysine. Viruses in this solution were adsorbed to 47-mm asbestos filters (Seitz) without pH adjustment or other modification of the solution. Viruses were recovered from the Seitz filters with 16 ml of either Casitone or fetal calf serum at pH 9. With these procedures ca. 45% of several types of enteroviruses added to 114 liters of tap water could be recovered in the final 16-ml sample.  相似文献   

18.
A method is described for the concentration of an enterovirus from large volumes of tap water by addition of small amounts of aluminum chloride to enhance virus removal by membrane filters. Tap water treated with 2 X 10(-5) M aluminum chloride showed a slight decrease in pH (less than 0.5), a slight increase in turbidity, and enhanced removal of poliovirus by membrane filters. Virus was quantitatively recovered by treating the filters with a basic buffer, and this eluate was reconcentrated to a small volume by adsorption to aluminum hydroxide flocs. Using these procedures, virus from 1,000 liters of water was reduced to a final eluate of 20 to 80 ml with a mean recovery of 70%.  相似文献   

19.
A method is described for the concentration of an enterovirus from large volumes of tap water by addition of small amounts of aluminum chloride to enhance virus removal by membrane filters. Tap water treated with 2 X 10(-5) M aluminum chloride showed a slight decrease in pH (less than 0.5), a slight increase in turbidity, and enhanced removal of poliovirus by membrane filters. Virus was quantitatively recovered by treating the filters with a basic buffer, and this eluate was reconcentrated to a small volume by adsorption to aluminum hydroxide flocs. Using these procedures, virus from 1,000 liters of water was reduced to a final eluate of 20 to 80 ml with a mean recovery of 70%.  相似文献   

20.
Microporous filters that are more electropositive than the negatively charged filters currently used for virus concentrations from water by filter adsorption-elution methods were evaluated for poliovirus recovery from tap water. Zeta Plus filters composed of diatomaceous earth-cellulose-"charge-modified" resin mixtures and having a net positive charge of up to pH 5 to 6 efficiently adsorbed poliovirus from tap water at ambient pH levels 7.0 to 7.5 without added multivalent cation salts. The adsorbed virus were eluted with glycine-NaOH, pH 9.5 to 11.5. Electropositive asbestos-cellulose filters efficiently adsorbed poliovirus from tap water without added multivalent cation salts between pH 3.5 and 9.0, and the absorbed viruses could be eluted with 3% beef extract, pH 9, but not with pH 9.5 to 11.5 glycine-NaOH. Under water quality conditions in which poliovirus recoveries from large volumes of water were less than 5% with conventional negatively charged filters and standard methods, recoveries with Zeta Plus filters averaged 64 and 22.5% for one- and two-stage concentration procedures, respectively. Electropositive filters appear to offer distinct advantages over conventional negatively charged filters for concentrating enteric viruses from water, and their behavior tends to confirm the importance of electrostatic forces in virus recovery from water by microporous filter adsorption-elution methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号