首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human erythrocyte membranes contain a major transmembrane protein, known as Band 3, that is involved in anion transport. This protein contains a total of five reactive sulfhydryl groups, which can be assigned to either of two classes on the basis of their susceptibility to release from the membrane by trypsin. Two of the groups are located in the region COOH-terminal to the extracellular chymotrypsin-sensitive site of the protein and remain with a membrane-bound 55,000-dalton fragment generated by trypsin treatment. The three sulfhydryl groups NH2-terminal to the extracellular chymotrypsin site are released from the cytoplasmic surface of the membrane by trypsin. All three groups are present in a 20,000-dalton tryptic fragment of Band 3. Two of these groups are located very close to the sites of trypsin cleavage that generate the 20,000-dalton fragment. The third reactve group is probably located about 15,000-daltons from the most NH2-terminal sulfhydryl group. Two other well defined fragments of the protein do not contain reactive sulfhydryl groups. They are a 23,000-dalton fragment derived from the NH2-terminal end that is also released by trypsin from the cytoplasmic surface of the membrane and a 19,000-dalton membrane-bound region of the protein that is produced by treatment with chymotrypsin in ghosts. The 20,000-dalton tryptic fragment may, therefore, constitute a sulfhydryl-containing domain of the Band 3 protein.  相似文献   

2.
Monoclonal antibodies against the membrane domain of human red blood cell band 3 protein have been prepared and used in topographical studies of the arrangement of the polypeptide in the membrane. One of the antibodies binds to a site near the N terminus of the membrane domain; another binds to a site near the C terminus. The latter has been used to localize a site of intracellular trypsin digestion. The cleavage site, in human band 3, corresponds to Lys-761 in mouse band 3; the site is 168 residues from the C terminus of the protein. This is the first intracellular site in the membrane domain (other than the N terminus) that has been localized in the primary structure. The antibody that binds to the N-terminal portion of the membrane domain has been used to identify a new S-cyanylation cleavage site about 7,000 daltons from the C terminus. Proteolysis/cross-linking experiments with the stilbenedisulfonate derivative H2DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonate) reveal that one end of the H2DIDS reacts covalently with a lysine residue that is between about 70 and 168 residues from the C terminus of band 3. In addition to placing restrictions on the location of the H2DIDS-binding lysine, these studies provide direct evidence that the C-terminal 28,000-dalton papain fragment crosses the membrane at least three times. With previous data on the remainder of the membrane domain, there is now direct evidence that the band 3 polypeptide crosses the membrane at least eight times.  相似文献   

3.
Human erythrocyte ankyrin was cleaved by restricted proteolysis at 0 degrees C into two distinct chemical domains. The site on ankyrin that binds spectrin was found to be within a 55,000-dalton domain by spectrin affinity chromatography and co-sedimentation with spectrin in a sucrose gradient. A 32,000-dalton fragment of this domain was prepared (tryptic digest, 0 degrees C, 24 h), separated by gel filtration, and shown to inhibit spectrin binding to the membrane. By comparison with previous two-dimensional peptide maps, the spectrin-binding site was located within this 32,000-dalton fragment near the end of the molecule. The band 3-binding site was identified within an 82,000-dalton domain by binding to a band 3 affinity column. Gel electrophoresis in the absence of detergents confirmed these results and demonstrated that a peptide from the cytoplasmic portion of band 3 retained the capacity to bind the 82,000-dalton domain. The binding properties of the structural domains of ankyrin were correlated with a determination of the affinity constant of the intact molecule. Ankyrin bound with a high affinity to the cytoplasmic portion of band 3 (KD = 8 X 10(-8) M) and to spectrin tetramer (KD = 1 X 10(-7) M) but less so to spectrin dimer (KD = 1 X 10(-6) M). These findings are summarized in a preliminary structural and functional model of ankyrin's role in linking spectrin to the membrane.  相似文献   

4.
The (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum has been shown to ast as a Ca2+-dependent and selective ionophore in artificial lipid bilayers. Four fragments of 55,000, 45,000, 30,000, and 20,000 daltons have been purified from tryptic digests of the enzyme and it has been shown that the 55,000- and 45,000-dalton fragments are obtained from a single cleavage of the 100,000-dalton ATPase, while the 30,000- and 20,000-dalton fragments are obtained subsequently by a cleavage of the 55,000-dalton fragment. The 55,000- and 20,000-dalton fragments have ionophore activity inhibited by ruthenium red and by mercuric chloride but not by methylmercuric chloride, an inhibitor of the hydrolytic site of the enzyme. Under standard conditions the 45,000-dalton fragment was not active as an ionophore, while the 30,000-dalton fragment acted as a nonselective ionophore. The 55,000- and 30,000-dalton fragments have been shown to contain the site of phosphorylation and of N-ethyl [2-3H]-maleimide binding indicative of the hydrolytic site in the enzyme, and this site is absent from the 20,000-dalton fragment. Therefore, the ionophoric and hydrolytic sites are localized in separate regions of the ATPase molecule and they have now been physically separated. The 20,000-dalton fragment was degraded with cyanogen bromide and fragments were separated by molecular sieving. Ionophore activity was found in fragments of molecular mass less than 2,000 daltons.  相似文献   

5.
Band 3 is the predominant polypetide and the purported mediator of anion transport in the human erythrocyte membrane. Against a background of minor and apparently unrelated polypeptides of similar electrophoretic mobility, and despite apparent heterogeneity in its glycosylation, the bulk of band 3 exhibits uniform and characteristic behavior. This integral glycoprotein appears to exist as a noncovalent dimer of two ~ 93,000-dalton chains which span the membrane asymmetrically. The protein is hydrophobic in its composition and in its behaviour in aqueous solution and is best solubilized and purified in detergent. It can be cleaved while membrane-bound into large, topographically defined segments. An integral, outer-surface, 38,000-dalton fragment bears most of the band 3 carbohydrate. A 17,000-dalton, hydrophobic glycopeptide fragment spans the membrane. A ~ 40,000-dalton hydrophilic segment represents the cytoplasmic domain. In vitro, glyceraldehyde 3-P dehydrogenase and aldolase bind reversibly, in a metabolite-sensitive fashion, to this cytoplasmic segment. The cytoplasmic domain also bears the amino terminus of this polypetide, in contrast to other integral membrane proteins. Recent electron microscopic analysis suggests that the poles of the band 3 molecule can be seen by freezeetching at the two original membrane surfaces, while freeze-fracture reveals the transmembrane disposition of band 3 dimer particles. There is strong evidence that band 3 mediates 1:1 anion exchange across the membrane through a conformational cycle while remaining fixed and asymmetrical. Its cytoplasmic pole can be variously perturbed and even excised without a significant alteration of transport function. However, digestion of the outer-surface region leads to inhibition of transport, so that both this segment and the membrane-spanning piece (which is slectively labeled by covalent inhibitors of transport) may be presumed to be involved in transport. Genetic polymorphism has been observed in the structure and immunogenicity of the band 3 polypeptide but this feature has not been related to variation in anion transport or other band 3 activities.  相似文献   

6.
G J Chin 《Biochemistry》1985,24(21):5943-5947
Purified dog kidney (Na+,K+)-ATPase was reacted with tritiated sodium borohydride after treatment with neuraminidase and galactose oxidase. This procedure did not affect the ATPase activity of the enzyme, and all of the covalently bound radioactivity was found in the beta subunit (Mr 54 000). Papain digestion of the tritiated enzyme produced two labeled fragments of Mr 40 000 and 16 000. Further proteolysis generated an Mr 31 000 peptide from the larger fragment. Unlike the tryptic and chymotryptic sites of the alpha subunit, the sites of papain hydrolysis were insensitive to conformations of the (Na+,K+)-ATPase. Determination of the NH2-terminal sequences was used to arrange the fragments within the linear map of the beta chain. Finally, none of the labeled peptides was released from the membrane under nondenaturing conditions. These results are consistent with a model of the beta subunit containing a 40 000-dalton NH2-terminal piece and a 16 000-dalton COOH-terminal piece. Both fragments have extracellularly exposed carbohydrate and at least one membrane-bound domain.  相似文献   

7.
Glycogen synthase preparations from Saccharomyces cerevisiae contained two polypeptides of molecular weights 85,000 and 77,000. Oligonucleotides based on protein sequence were utilized to clone a S. cerevisiae glycogen synthase gene, GSY1. The gene would encode a protein of 707 residues, molecular mass 80,501 daltons, with 50% overall identity to mammalian muscle glycogen synthases. The amino-terminal sequence obtained from the 85,000-dalton species matched the NH2 terminus predicted by the GSY1 sequence. Disruption of the GSY1 gene resulted in a viable haploid with glycogen synthase activity, and purification of glycogen synthase from this mutant strain resulted in an enzyme that contained the 77,000-dalton polypeptide. Southern hybridization of genomic DNA using the GSY1 coding sequence as a probe revealed a second weakly hybridizing fragment, present also in the strain with the GSY1 gene disrupted. However, the sequences of several tryptic peptides derived from the 77,000-dalton polypeptide were identical or similar to the sequence predicted by the GSY1 gene. The data are explained if S. cerevisiae has two glycogen synthase genes encoding proteins with significant sequence similarity The protein sequence predicted by the GSY1 gene lacks the extreme NH2-terminal phosphorylation sites of the mammalian enzymes. The COOH-terminal phosphorylated region of the mammalian enzyme over-all displayed low identity to the yeast COOH terminus, but there was homology in the region of the mammalian phosphorylation sites 3 and 4. Three potential cyclic AMP-dependent protein kinase sites are located in this region of the yeast enzyme. The region of glycogen synthase likely to be involved in covalent regulation are thus more variable than the catalytic center of the molecule.  相似文献   

8.
The stilbenedisulfonate inhibitory site of the human erythrocyte anion-exchange system has been characterized by using serveral fluorescent stilbenedisulfonates. The covalent inhibitor 4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate (BIDS) reacts specifically with the band 3 protein of the plasma membrane when added to intact erythrocytes, and the reversible inhibitors 4,4'-dibenzamidostilbene-2,2'-disulfonate (DBDS) and 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS) show a fluorescence enhancement upon binding to the inhibitory site on erythrocyte ghosts. The fluorescence properties of all three bound probes indicate a rigid, hydrophobic site with nearby tryptophan residues. The Triton X-100 solublized and purified band 3 protein has similar affinities for DBDS, BADS, and 4,4'-dinitrostilbene-2,2'-disulfonate (DNDS) to those observed on intact erythrocytes and erythrocyte ghosts, showing that the anion binding site is not perturbed by the solubilization procedure. The distance between the stilbenedisulfonate binding site and a group of cysteine residues on the 40 000-dalton amino-terminal cytoplasmic domain of band 3 was measured by the fluorescence resonance energy transfer technique. Four different fluorescent sulfhydryl reagents were used as either energy transfer donors or energy transfer acceptors in combination with the stilbenedisulfonates (BIDS, DBDS, BADS, and DNDS). Efficiencies of transfer were measured by sensitized emisssion, donor quenching, and donor lifetime changes. Although these sites are approachable from opposite sides of the membrane by impermeant reagents, they are separated by only 34--42 A, indicating that the anion binding site is located in a protein cleft which extends some distance into the membrane.  相似文献   

9.
The nucleotide sequence of a PstI fragment prepared from a cloned MH2 virus genome, pMH2-Hd, has been deduced using chemical and enzymatic methods. This fragment, 1862 nucleotides in length, starts with the gag gene, encodes the v-mil sequence and stops within the v-myc gene. This sequence shows that the v-mil gene is fused to the gag gene giving rise to a fused polyprotein of 98 000 daltons: 515 amino acids at the amino terminus would correspond to p10, p19, p27 and part of p12 determinants, 347 amino acids at the carboxy terminus correspond to the v-mil specific sequence. The mil protein shares homology with a number of onc proteins such as src, fes, fms, mos, yes, fps and erbB, as well as with the catalytic chain of the cAMP-dependent protein kinase. This PstI fragment also encodes the beginning of the myc gene which was integrated in MH2 along with the 3' end of the preceding intron placing an acceptor splice site in front of the used open reading frame. As deduced from the sequence, the MH2 myc protein is not identical to the MC29 myc protein. It differs at its amino terminus, which contains little or no gag determinants, depending on the ATG used to initiate translation.  相似文献   

10.
Summary After treatment of red cell ghosts with chymotrypsin, the predominant intrinsic peptides remaining in the membrane fraction are 15,000 and 9,000 daltons mol wt. After partial extraction with Triton X-100, the residual membrane vesicles have almost no other stained peptides and such vesicles are reported to carry out anion transport activities sensitive to specific inhibitors. In vesicles derived from cells treated with DIDS(4,4-diisothiocyano-2,2-stilbene disulfonic acid), an irreversible inhibitor of anion transport that is highly localized in an abundant intrinsic protein known as band 3, the probe is largely recovered in the 15,000 dalton peptide. The part of band 3 from which it is derived is a previously reported 17,000 transmembrane segment (Steck, T.L., Ramos, R., Strapazon, E., 1976,Biochemistry 15:1154). The 9,000-dalton peptide is present in the vesicles in a one-to-one mole ratio with the 15,000-dalton peptide, suggesting that both are derived from the same protein. This conclusion is supported by the finding that the 35,000-dalton C-terminal end of band 3, derived by chymotrypsin treatment of cells, is further proteolysed if the cells are converted to ghosts and its disappearance coincides with the appearance of the 9,000-dalton fragment. Evidence is presented that the 9,000-dalton fragment crosses the bilayer and that it is closely associated with the 15,000-dalton peptide.This paper is dedicated to the memory of Walther Wilbrandt.  相似文献   

11.
12.
The Escherichia coli CMP-N-acetylneuraminic acid (CMP-NeuAc) synthetase gene is located on a 3.3-kilobase (kb) HindIII fragment of the plasmid pSR23 which contains the genes for K1 capsule production (Vann, W. F., Silver, R. P., Abeijon, C., Chang, K., Aaronson, W., Sutton, A., Finn, C. W., Lindner, W., and Kotsatos, M. (1987) J. Biol. Chem. 262, 17556-17562). The CMP-NeuAc synthetase gene expression was increased 10-30-fold by cloning of a 2.7-kb EcoRI-HindIII fragment onto the vector pKK223-3 containing the tac promoter. The complete nucleotide sequence of the gene encoding CMP-NeuAc synthetase was determined from progressive deletions generated by selective digestion of M13 clones containing the 2.7-kb fragment. CMP-NeuAc synthetase is located near the EcoRI site on this fragment as indicated by the detection of an open reading frame encoding a 49,000-dalton polypeptide. The amino- and carboxyl-terminal sequences of the encoded protein were confirmed by sequencing of peptides cleaved from both ends of the purified enzyme. The nucleotide deduced amino acid sequence was confirmed by sequencing several tryptic peptides of purified enzyme. The molecular weight is consistent with that determined from sodium dodecyl sulfate-gel electrophoresis. Gel filtration and ultracentrifugation experiments under nondenaturing conditions suggest that the enzyme is active as a 49,000-dalton monomer but may form aggregates.  相似文献   

13.
Two enkephalin-containing polypeptides of 4000 and 5000 daltons have been isolated from extracts of bovine adrenal medulla. Each polypeptide was purified to homogeneity and subjected to sequence analysis. The entire primary structure of the 4000-dalton polypeptide was established by a combination of automated Edman degradation and chemical analysis of its tryptic peptides. The polypeptide contains two copies of the [Met]-enkephalin sequence, one at the amino terminus and the other at the carboxyl terminus. Chemical analysis of the tryptic peptides and automated Edman degradation of the 5000-dalton polypeptide indicated the presence of a [Leu]enkephalin sequence at the carboxyl terminus and an internal [Met]enkephalin sequence. Both of the above enkephalin-containing polypeptides appear to be intermediates in the biosynthesis of the enkephalins.  相似文献   

14.
We examined the properties of 17 monoclonal antibodies to glycoprotein gD of herpes simplex type 1 (HSV-1) (gD-1) and HSV-2 (gD-2). The antibodies recognized eight separate determinants of gD, based on differences in radioimmuno-precipitation and neutralization assays. The determinants were distributed as follows: three were gD-1 specific, one was gD-2 specific, and four were type common. Several type-specific and type-common determinants appeared to be involved in neutralization. We developed a procedure for examining the effect that binding of monoclonal antibody has on proteolysis of native gD-1 by Staphylococcus aureus protease V8. We showed that several different patterns of protease V8 cleavage were obtained, depending on the monoclonal antibody used. The proteolysis patterns were generally consistent with the immunological groupings. With four groups of antibodies, we found that fragments of gD-1 remained bound to antibody after V8 treatment. A 38,000-dalton fragment remained bound to antibodies in three different groups of monoclonal antibodies. This fragment appeared to contain one type-common and two type-specific determinants. A 12,000-dalton fragment remained bound to antibodies belonging to one type-common group of monoclonal antibodies. Tryptic peptide analysis revealed that the 12,000-dalton fragment represented a portion of the 38,000-dalton fragment and was enriched in a type-common arginine tryptic peptide.  相似文献   

15.
Sulfate efflux was measured in inside-out vesicles obtained from human red cells. Inhibition was observed in vesicles derived from cells pretreated with DIDS (4,4′-diisothiocyano-2,2′-stilbene disulfonate) or after addition of dipyridamole to the vesicles, both agents being specific and potent inhibitors of anion transport in cells. Trypsinization of the cytoplasmic side of the membrane in order to release a 40 000 dalton fragment from band 3 (the purported anion transport protein) had no effect on sulfate efflux. Further degradation of band 3 to a 17 000 dalton segment, by trypsinization of inside-out vesicles derived from cells that had been pretreated with chymotrypsin, also showed little reduction in transport activity. Furthermore, such vesicles derived from DIDS pretreated cells were inhibited by over 90%. In DIDS-treated cells, the agent is highly localized in band 3. In trypsinized inside-out vesicles, it is largely found in a 55 000 fragment and in trypsinized vesicles derived from cells pretreated with chymotrypsin it is largely located in the 17 000 fragment. The data suggest that both the anion transport and inhibitor binding sites are located in a 17 000 transmembrane segment of band 3.  相似文献   

16.
The divalent metal ion binding sites of skeletal myosin were investigated by electron paramagnetic resonance (EPR) spectroscopy using the paramagnetic (Mn(II) ion as a probe. Myosin possesses two high affinity sites (K less than 1 muM) for Mn(II), which are located on the 5,5'-dithiobis(2-nitrobenzoate) (DTNB) light chains. Mn(II) bound to the isolated DTNB light chain gives rise to an EPR spectrum similar to that of Mn(II) bound to myosin and this indicates that the metal binding site comprises ligands from the DTNB light chain alone. Myosin preparations in which the DTNB light chain content is reduced by treatment with 5,5'-dithiobis(2-nitrobenzoate) show a corresponding reduction in the stoichiometry of Mn(II) binding, but the stoichiometry is recovered on reassociation of the DTNB light chain. Chymotryptic digestion of myosin filaments in the presence of ethylenediaminetetraacetic acid yields subfragment 1, but digestion in the presence of divalent metal ions produces heavy meromyosin. Myosin with a depleted DTNB light chain content gives rise to subfragment 1 on proteolysis, even in the presence of divalent metal ions. It is proposed that saturation of the DTNB light chain site with divalent ions protects this subunit against proteolysis, which, in turn, inhibits the cleavage of the subfragment 1-subfragment 2 link. Either the DTNB light chain is located near the region of the link and sterically blocks chymotryptic attack, or it is bound to the subfragment 1 moiety and affects the conformation of the link region. When the product heavy meromyosin was examined by sodium dodecyl sulfate gel electrophoresis, an apparent anomaly arose in that there was no trace of the 19 000-dalton band corresponding to the DTNB light chain. This was resolved by following the time course of chymotryptic digestion of the myosin heavy chain, the DTNB light chain, and the divalent metal binding site. The 19 000-dalton DTNB light chain is rapidly degraded to a 17 000-dalton fragment which comigrates with the alkali 2 light chain. The divalent metal site remains intact, despite this degradation, and the 17 000 fragment continues to protect the subfragment 1-subfragment 2 link. In the absence of divalent metal ions, the 17 000-dalton fragment is further degraded and attack of the subfragment 1 link ensues. Mn(II) bound to cardiac myosin gives an EPR spectrum basically similar to that of skeletal myosin, suggesting that their 19 000-dalton light chains are analogous with respect to their divalent metal binding sites, despite their chemical differences. The potential of EPR spectroscopy for characterizing the metal binding sites of myosin from different sources and of intact muscle fibers is discussed.  相似文献   

17.
Previous studies have shown that the molybdate-stabilized progesterone receptor from the chick oviduct contains a nonhormone binding component with a molecular weight of 90 000. This protein has also been shown to be associated with some other molybdate-stabilized steroid receptors of the oviduct. In order to access this larger pool of the receptor binding protein, we have developed an isolation procedure based on the observation that the protein is selectively shed from proteins adsorbed to heparin-agarose when molybdate is removed. The protein obtained by this procedure is shown to be the same as that isolated from affinity-purified progesterone receptor as compared by protease digestion and one-dimensional peptide mapping. Four immunoglobulin G secreting hybridoma cell lines were generated against the 90 000-dalton antigen. All of the antibodies recognize the 90 000-dalton protein obtained by electrophoretic transfer from sodium dodecyl sulfate-polyacrylamide gels. In addition, two of the antibodies complex the molybdate-stabilized progesterone receptor as demonstrated by sedimentation analysis on sucrose gradients. One of these antibodies was used to show the presence of the 90 000-dalton component in molybdate-stabilized glucocorticoid and androgen receptors and also to show its presence in brain, liver, and skeletal muscle, but not in serum.  相似文献   

18.
Human interleukin-1 beta (IL-1 beta) is expressed in activated monocytes as a 31-kDa precursor protein which is processed and secreted as a mature, unglycosylated 17-kDa carboxyl-terminal fragment, despite the fact that it contains a potential N-linked glycosylation site near the NH2 terminus (-Asn7-Cys8-Thr9-). cDNA coding for authentic mature IL-1 beta was fused to the signal sequence from the Candida albicans glucoamylase gene, two amino acids downstream from the signal processing site. Upon expression in Saccharomyces cerevisiae, approximately equimolar amounts of N-glycosylated (22 kDa) and unglycosylated (17 kDa) IL-1 beta protein were secreted. The N-glycosylated yeast recombinant IL-1 beta exhibited a 5-7-fold lower specific activity compared to the unglycosylated species. The mechanism responsible for inefficient glycosylation was also studied. We found no differences in secretion kinetics or processing between the two extracellular forms of IL-1 beta. The 17-kDa protein, which was found to lack core sugars, does not result from deglycosylation of the 22-kDa protein in vivo and does not result from saturation of the glycosylation enzymatic machinery through overexpression. Alteration of the uncommon Cys8 residue in the -Asn-X-Ser/Thr-glycosylation site to Ser also had no effect. However, increasing the distance between Asn7 and the signal processing site increased the extent of core N-linked glycosylation, suggesting a reduction in glycosylation efficiency near the NH2 terminus.  相似文献   

19.
Monospecific Kell blood group antibodies, of either human alloimmune or mouse monoclonal origin, react with a single surface-exposed protein of 93,000 daltons. Chymotryptic peptide maps of the 93,000-dalton protein isolated by antibodies of two different specificities (anti-K7 or anti-K14) indicate that Kell epitopes reside on the same protein. Kell protein is similar in size to band 3 protein but differs markedly in its tryptic and chymotryptic peptide maps, indicating that they are different proteins. In addition, sheep antibody to human band 3 does not react with Kell protein. Rabbit antibody to Kell protein reacts, by Western immunoblotting, with membrane proteins from Kell antigen positive red blood cells but not from those of a Ko (Kell null) cell. In intact red cells only a small portion of the Kell protein is available to lactoperoxidase-catalyzed iodination. Under nonreducing conditions Kell antigen is isolated not only as a 93,000-dalton protein but also as larger protein complexes ranging in size from above 200,000 to 115,000 daltons. Treatment of red cells with iodoacetamide, prior to isolation of Kell protein, reduces the amount of the very large complexes, but Kell protein occurs both as 115,000- and 93,000-dalton proteins.  相似文献   

20.
Identification of simian virus 40 protein A.   总被引:43,自引:27,他引:16       下载免费PDF全文
A large simian virus 40 (SV40)-specific protein can be efficiently immunoprecipitated from infected cell extracts with antisera obtained from hamsters bearing SV40-induced tumors. The protein has an apparent molecular weight of 88,000 to 100,000 with respect to markers with known molecular weights, but behaves anomalously on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Cell lines infected by two different strains of SV40 synthesize immunoreactive proteins that differ slightly in mobility during SDS-polyacrylamide gel electrophoresis, evidence that the protein is coded for by the virus. These differences in protein size correlate with differences in the electrophoretic mobility of viral DNA fragments obtained by digestion with HindII and III restriction enzymes. The size of the viral capsid proteins VP2 and VP3 also varies with the strain of virus. dl-1001, a constructed deletion mutant that lacks part of the SV40A gene, directs the synthesis of a 33,000-dalton polypeptide that is not detected in cells infected with wild-type virus. The deletion fragment, like the larger protein, is phosphorylated. Maps of tryptic peptides from the 88,000- to 100,000-dalton protein and the 33,000-dalton fragment show common peptides and provide strong direct evidence that the proteins are products of the SV40 A gene. The deletion fragment reacts with antitumor sera and binds to double-stranded DNA in the presence of the complete A protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号