首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Weisz  R H Shafer  W Egan  T L James 《Biochemistry》1992,31(33):7477-7487
Phase-sensitive two-dimensional nuclear Overhauser enhancement (2D NOE) and double-quantum-filtered correlated (2QF-COSY) spectra were recorded at 500 MHz for the DNA duplex d(CATTTGCATC).d(GATGCAAATG), which contains the octamer element of immunoglobulin genes. Exchangeable and nonexchangeable proton resonances including those of the H5' and H5" protons were assigned. Overall, the decamer duplex adopts a B-type DNA conformation. Scalar coupling constants for the sugar protons were determined by quantitative simulations of 2QF-COSY cross-peaks. These couplings are consistent with a two-state dynamic equilibrium between a minor N- and a major S-type conformer for all residues. The pseudorotation phase angle P of the major conformer is in the range 117-135 degrees for nonterminal pyrimidine nucleotides and 153-162 degrees for nonterminal purine nucleotides. Except for the terminal residues, the minor conformer comprises less than 25% of the population. Distance constraints obtained by a complete relaxation matrix analysis of the 2D NOE intensities with the MARDIGRAS algorithm confirm the dependence of the sugar pucker on pyrimidine and purine bases. Averaging by fast local motions has at most small effects on the NOE-derived interproton distances.  相似文献   

2.
R Stolarski  W Egan  T L James 《Biochemistry》1992,31(31):7027-7042
The self-complementary DNA octamer [d(GGAATUFCC)]2, containing the EcoRI recognition sequence with one of the thymines replaced by 5-fluorouracil (UF), was synthesized. Proton homonuclear two-dimensional nuclear Overhauser effect (2D NOE) and double-quantum-filtered correlation (2QF-COSY) spectra, as well as one-dimensional spectra at different temperatures, were recorded for the octamer. Consequently, all proton resonances were assigned. The thermally induced transition from the duplex to single strands has been followed, demonstrating the stability of the duplex containing 5-fluorouracil. Simulations of the 2QF-COSY cross-peaks by means of the programs SPHINX and LINSHA were compared with experimental data, establishing scalar coupling constants for the sugar ring protons and hence sugar pucker parameters. The deoxyribose rings exhibit a dynamic equilibrium of N- and S-type conformers with 75-95% populations of the latter. Two programs used for complete relaxation matrix analysis 2D NOE spectra, CORMA and MARDIGRAS, were modified to account for the influence of the fluorines on dipolar interactions in the proton system. Quantitative assessment of the 2D NOE cross-peak intensities for different mixing times, in conjunction with the program MARDIGRAS, gave a set of interproton distances for each mixing time. The largest and smallest values of each of the interproton distances were chosen as the upper and lower bounds for each distance constraint. The distance bounds define the size of a flat-well potential function term, incorporated into the AMBER force field, which was employed for restrained molecular dynamics calculations. Torsion angle constraints in the form of a flat-well potential were also constructed from the analysis of the sugar pucker data. Several restrained molecular dynamics runs of 35 ps were performed, utilizing 284 experimental distance and torsion angle constraints and two different starting structures, energy-minimized A- and B-DNA. Convergence to similar structures with a root-mean-square deviation of 1.2 A was achieved for the central hexamer of the octamer, starting from A- and B-DNA. The average structure from six different molecular dynamics runs was subjected to final restrained energy minimization. The resulting final structure was in good agreement with the structures derived from different molecular dynamics runs and showed a substantial improvement of the 2D NOE sixth-root residual index in comparison with classical and energy-minimized B-DNA. A detailed analysis of the conformation of the final structure and comparison with structures of similar sequences, obtained by different methods, were performed.  相似文献   

3.
The DNA octamer [d(GTATAATG].[(CATATTAC)], containing the prokaryotic upstream consensus recognition sequence, has been examined via proton homonuclear two-dimensional nuclear Overhauser effect (2D NOE) and double-quantum-filtered correlation (2QF-COSY) spectra. All proton resonances, except those of H5' and H5" protons, were assigned. A temperature dependence study of one-dimensional nuclear magnetic resonance (NMR) spectra, rotating frame 2D NOE spectroscopy (ROESY), and T1 rho measurements revealed an exchange process that apparently is global in scope. Work at lower temperatures enabled a determination of structural constraints that could be employed in determination of a time-averaged structure. Simulations of the 2QF-COSY cross-peaks were compared with experimental data, establishing scalar coupling constant ranges of the individual sugar ring protons and hence pucker parameters for individual deoxyribose rings. The rings exhibit a dynamic equilibrium of N and S-type conformers with 80 to 100% populations of the latter. A program for iterative complete relaxation matrix analysis of 2D NOE spectral intensities, MARDIGRAS, was employed to give interproton distances for each mixing time. According to the accuracy of the distance determination, upper and lower distance bounds were chosen. The distance bounds define the size of a flat-well potential function term, incorporated into the AMBER force-field, which was employed for restrained molecular dynamics calculations. Torsion angle constraints in the form of a flat-well potential were also constructed from the analysis of the sugar pucker data. Several restrained molecular dynamics runs of 25 picoseconds were performed, utilizing 184 experimental distance constraints and 80 torsion angle constraints; three different starting structures were used: energy minimized A-DNA, B-DNA, and wrinkled D-DNA, another member of the B-DNA family. Convergence to similar structures obtained with root-mean-square deviations between resulting structures of 0.37 to 0.92 A for the central hexamer of the octamer. The average structure from the nine different molecular dynamics runs was subjected to final restrained energy minimization. The resulting final structure was in good agreement with the structures derived from different molecular dynamics runs and exhibited a substantial improvement in the 2D NOE sixth-root residual index in comparison with the starting structures. An approximation of the structure in the terminal base-pairs, which displayed experimental evidence of fraying, was made by maintaining the structure of the inner four base-pairs and performing molecular dynamics simulations with the experimental structural constraints observed for the termini.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Pradhan P  Tirumala S  Liu X  Sayer JM  Jerina DM  Yeh HJ 《Biochemistry》2001,40(20):5870-5881
Two-dimensional NMR was used to determine the solution structure of an undecanucleotide duplex, d(CGGTCACGAGG).d(CCTCGTGACCG), in which (+)-(7S,8R,9S,10R)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene is covalently bonded to the exocyclic N(6)() amino group of the central deoxyadenosine, dA(6), through trans addition at C10 of the epoxide (to give a 10S adduct). The present study represents the first NMR structure of a benzo[a]pyrene (10S)-dA adduct in DNA with a complementary T opposite the modified dA. Exchangeable and nonexchangeable protons of the modified duplex were assigned by the use of TOCSY (in D(2)O) and NOESY spectra (in H(2)O and D(2)O). Sequential NOEs expected for a B-type DNA conformation with typical Watson-Crick base pairing are observed along the duplex, except at the lesion site. We observed a strong intraresidue NOE cross-peak between H1' and H8 of the modified dA(6). The sugar H2' and H2' ' of dC(5) lacked NOE cross-peaks with H8 of dA(6) but showed weak interactions with H2 of dA(6) instead. In addition, the chemical shift of the H8 proton (7.51 ppm) of dA(6) appears at a higher field than that of H2 (8.48 ppm). These NOE and chemical shift data for the dA(6) base protons are typical of a syn glycosidic bond at the modified base. Restrained molecular dynamics/energy minimization calculations show that the hydrocarbon is intercalated from the major groove on the 3'-side of the modified base between base pairs A(6)-T(17) and C(7)-G(16) and confirm the syn glycosidic angle (58 degrees ) of the modified dA(6). In the syn structure, a weak A-T hydrogen bond is possible between the N3-H proton of T(17) and N7 of dA(6) (at a distance of 3.11 A), whereas N1, the usual hydrogen bonding partner for N3-H of T when dA is in the anti conformation, is 6.31 A away from this proton. The 10(S)-dA modified DNA duplex remains in a right-handed helix, which bends in the direction of the aliphatic ring of BaP at about 42 degrees from the helical axis. ROESY experiments provided evidence for interconversion between the major, syn conformer and a minor, possibly anti, conformer.  相似文献   

5.
U Schmitz  G Zon  T L James 《Biochemistry》1990,29(9):2357-2368
Exchangeable and nonexchangeable proton and phosphorus resonances (11.75 T) of [d(GTATATAC)]2 in aqueous solution were assigned by using proton two-dimensional nuclear Overhauser effect (2D NOE) spectra, homonuclear proton double-quantum-filtered COSY (2QF-COSY) spectra, proton spin-lattice relaxation time measurements, and 31P1H heteronuclear shift correlation spectra. Due to the large line widths, it was not possible to directly extract vicinal proton coupling constant values from any spectrum including ECOSY or 2QF-COSY. However, comparison of quantitative 2QF-COSY spectral simulations with experimental spectra enabled elucidation of coupling constants. The scope and limitations of this approach were explored by computation and by use of experimental data. It was found that proton line widths exhibit some variability from one residue to the next as well as from one proton to the next within a residue and the exact line width is critical to accurate evaluation of coupling constants. Experimental 2QF-COSY spectra were not consistent with a rigid deoxyribose conformation for any of the nucleotide residues. A classical two-state model, with rapid jumps between C2'-endo (pseudorotation angle P = 162 degrees) and C3'-endo (P = 9 degrees) conformations, was able to account for the spectral characteristics of terminal residue sugars: 60% C2'-endo and 40% C3'-endo. However, the 2QF-COSY cross-peaks from the -TATATA- core could be simulated only if the classical two-state model was altered such that the dominant conformer had a pseudorotation angle at 144 degrees instead of 162 degrees. In this case, the major conformer amounted to 80-85%. Alternatively, the spectral data were consistent with a three-state model in which C2'-endo and C3'-endo conformations had the largest and smallest populations, respectively, but a third conformer corresponding to C1'-exo (P = 126 degrees) was present, consistent with recent molecular dynamics calculations. This alternative yielded populations of 50% (P = 162 degrees), 35% (P = 126 degrees), and 15% (P = 9 degrees) for the -TATATA- sugars. The spectral results indicate little variation of sugar pucker between T and A. Small differences in cross-peak component intensities and characteristic spectral distortions, however, do suggest some unquantified variation. 31P1H heteronuclear chemical shift correlation spectra manifested alternating chemical shifts and coupling constants suggestive of phosphodiester backbone conformational differences between TA and AT junctions.  相似文献   

6.
The novel hybrid duplex alpha-5'-d[TACACA]-3'.beta-5'-r[AUGUGU]-3' was analyzed extensively by 1D and 2D NMR methods. Two forms of the duplex exist in about an 80:20 ratio. Analysis of the exchangeable imino protons of the major component revealed that three AU and one AT base pair are present in addition to two GC base pairs, confirming that the duplex anneals in parallel orientation. The presence of the AT base pair, which can only be accounted for by a parallel duplex, was confirmed by a selective INEPT experiment, which correlated the thymidine imino proton to its C5 carbon. The lesser antiparallel form could be detected by exchangeable and nonexchangeable proton resonances in both strands. An exchange peak was observed in the NOESY spectrum for the thymidine methyl group resonance in both the predominant and lesser conformations, indicating the lifetime of the individual structures was on the millisecond time scale. The nonexchangeable protons of the predominant duplex were assigned by standard methods. The sugar pucker of the ribonucleosides was determined to be of the "S" type by a pseudorotation analysis according to Altona, with the J-couplings measured from the multiplet components of the phase-sensitive COSY experiment. The NOE pattern observed for the alpha-deoxynucleosides also suggested an S-type sugar pucker. The adoption of an S-type sugar pucker for both strands indicates that, in contrast to RNA.DNA duplexes formed exclusively from beta-nucleotides, the alpha-DNA.beta-RNA duplex may form a B-type helix. The 31P resonances of the alpha and beta strands have very different chemical shifts in the hybrid duplex and the difference persists above the helix melting temperature, indicating an intrinsic difference in 31P chemical shift for nucleotides differing only in the configuration about the glycosidic bond.  相似文献   

7.
B P Cho  F A Beland  M M Marques 《Biochemistry》1992,31(40):9587-9602
Proton NMR studies were conducted on the complementary 15-mer duplex d(5'-TACTCTTCTTGACCT).(5'-AGGTCAAGAAGAGTA) (designated as unmodified 15-mer duplex) spanning a portion of the mouse c-Ha-ras protooncogene centered around codon 61. Identical studies were carried out on the same sequence, after specific modification with a reactive derivative of the carcinogen 4-aminobiphenyl (ABP), which resulted in incorporation of a single N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP) adduct in the noncoding strand (designated as ABP-modified 15-mer duplex). The adduct was located at the position corresponding to the first base of codon 61. The NMR data for the unmodified 15-mer duplex were fully consistent with a standard right-handed B-type DNA duplex conformation, with the possible exception of the frayed terminal base pairs. The ABP-modified 15-mer duplex was found to adopt one major conformation, although at least one additional conformation could be detected especially near room temperature. The major form, which exhibited strikingly similar NOE patterns as to those of the parent oligomer, both in H2O and D2O spectra, assumed a standard Watson-Crick base pairing throughout the entire length of the duplex, including the modification site and its flanking base pairs. Although some local perturbation of the helix could be detected in the vicinity of the modified guanosine, the NOE distance constraints established that the helix was globally right-handed and that the glycosidic torsion angles had the normal anti orientation, both at the modified base and its partner cytidine. Furthermore, the absence of strong NOE interactions between protons in the ABP moiety, which was rapidly rotating, and the nucleic acid protons was consistent with positioning of the arylamine moiety in the major groove of a weakly distorted double-helical structure. Although insufficient data prevented a detailed characterization of the minor conformer(s), the observation of significant shieldings for all the arylamine protons indicated a different orientation at the modified site in the minor contributor(s), possibly with extensive stacking between the ABP fragment and the neighboring bases.  相似文献   

8.
This paper reports on a combined two-dimensional NMR and energy minimization computational characterization of the conformation of the N-(deoxyguanosyl-8-yl)aminofluorene adduct [(AF)G] positioned across adenosine in a DNA oligomer duplex as a function of pH in aqueous solution. This study was undertaken on the d[C1-C2-A3-T4-C5-(AF)G6-C7-T8-A9-C10-C11].[G12-G13-T14 -A15-G16-A17-G18- A19-T20-G21-G22] complementary undecamer [(AF)G 11-mer duplex]. The modification of the single G6 on the pyrimidine-rich strand was accomplished by reaction of the oligonucleotide with N-acetoxy-2-(acetylamino)fluorene and subsequent deacetylation under alkaline conditions. The HPLC-purified modified strand was annealed with the unmodified purine-rich strand to generate the (AF)G 11-mer duplex. The exchangeable and nonexchangeable protons are well resolved and narrow in the NMR spectra of the (AF)G 11-mer duplex so that the base and the majority of sugar nucleic acid protons, as well as several aminofluorene ring protons, have been assigned following analysis of two-dimensional NOESY and COSY data sets at pH 6.9, 30 degrees C in H2O and D2O solution. The NOE distance constraints establish that the glycosidic torsion angle is syn at (AF)G6 and anti at A17, which results in the aminofluorene ring being positioned in the minor groove. A very large downfield shift is detected at the H2' sugar proton of (AF)G6 associated with the (AF)G6[syn].A17[anti] alignment in the (AF)G 11-mer duplex. The NMR parameters demonstrate formation of Watson-Crick C5.G18 and C7.G16 base pairs on either side of the (AF)G6[syn].A17[anti] modification site with the imino proton of G18 more stable to exchange than the imino proton of G16. Several nonexchangeable aminofluorene protons undergo large downfield shifts as do the imino and H8 protons of G16 on lowering of the pH from neutrality to acidic values for the (AF)G 11-mer duplex. Both the neutral and acidic pH conformations have been defined by assigning the NOE constraints in the [C5-(AF)G6-C7].[G16-A17-G18] segment centered about the modification site and incorporating them in distance constrained minimized potential energy calculations in torsion angle space with the DUPLEX program. A series of NOEs between the aminofluorene protons and the DNA sugar protons in the neutral pH conformation establish that the aminofluorene ring spans the minor groove and is directed toward the G16-A17-G18 sugar-phosphate backbone on the partner strand.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
K M Morden  B M Gunn  K Maskos 《Biochemistry》1990,29(37):8835-8845
One- and two-dimensional NMR experiments were carried out on a decamer, d-(CGCTTTTCGC).d(GCGAAAAGCG), and on the same sequence with the addition of an unpaired thymidine, d(CGCTTTTCGC).d(GCGAATAAGCG), which will be referred to as the T-bulge decamer. Evidence from one-dimensional NOE experiments on the exchangeable protons indicates that the unpaired thymidine is extrahelical. This conclusion is also supported by numerous cross-peaks in the two-dimensional NOESY spectrum of the nonexchangeable protons. Assignments for all of the resonances, with the exception of the H5' and H5" resonances, have been made for both oligonucleotide duplexes through the use of 2D NOESY, COSY, and relayed COSY experiments. Temperature dependence of the methyl resonance chemical shifts indicates that the unpaired thymidine shows unusual behavior compared to other thymidines in the duplex. Two-dimensional NOESY experiments carried out from 5 to 35 degrees C indicate the unpaired thymidine remains extrahelical throughout this temperature range. A similar temperature dependence for the methyl chemical shift is found in the corresponding single-strand d(GCGAATAAGCG). The oligo-(dA).oligo(dT) tracts in both the decamer and the T-bulge decamer have structures different from B-form DNA and exhibit NOEs similar to those observed in other oligonucleotides containing A.T tracts. The formation of this unusual A.T tract structure may induce the extrahelical conformation of the unpaired thymidine.  相似文献   

10.
One-dimensional and two-dimensional (2D) nmr experiments were carried out on an oligonucleotide duplex that contains an unpaired cytosine, d(GCGAAC AAGCG)·d(CGCTTTTCGC), which will be referred to as the C-bulge decamer. Evidence from one-dimensional nuclear Overhauser effect (NOE) experiments on the exchangeable protons indicates that the unpaired cytosine is extrahelical. This conclusion is also supported by numerous cross-peaks in the 2D NOE spectroscopy (NOESY) spectrum of the nonexchangeable protons. The assignments for all of the resonances, with the exception of the H5′ and H5″ resonances, have been made through the use of 2D NOESY, correlated spectroscopy (COSY), and relayed COSY experiments. The temperature dependence of the C(H6) resonance chemical shifts indicates that the unpaired cytosine shows unusual behavior compared to other cytosines in the duplex. A comparison of chemical shifts for all, the assigned resonances of the duplexes with and without the unpaired cytosine suggests that the majority of the structural perturbation is localized in the A·T tract surrounding the unpaired base. The behavior of the imino resonances as a function of temperature also indicates that the perturbation to the duplex is localized and destabilizes the A·T base pairs adjacent to the unpaired base. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
The resonances of all the non-exchangeable protons (except 5'H and 5"H) of d(CGAAAAATCGG) + d(CCGATTTTTCG), a putatively bent DNA duplex, have been assigned using 1H two-dimensional nuclear magnetic resonance methods. The nuclear Overhauser effect data indicate an overall B-form structure for this double-helical DNA undecamer. However, several features of the NMR data such as some unusually weak C8/C6 proton to C1' proton NOE cross-peaks, the presence of relatively intense C2H to C1'H NOE cross-peaks, and unusual chemical shifts of some 2", 2', and 1' protons suggest a substantial perturbation of the helix structure at the junctions and along the length of the tract of A residues. These structural deviations are considered in terms of models of DNA bending.  相似文献   

12.
We have determined the three-dimensional structure of a non-self-complementary oligodeoxynucleotide duplex that contains a model abasic site. The duplex contains six GC base pairs plus the abasic site at the center of one strand and corresponds to an abasic frameshift. Two-dimensional NMR studies on the nonexchangeable protons show that the guanine bases on either side of the abasic site are stacked over each other and that the abasic site is rotated out of the helix. Close proton-proton interactions are observed between the H4' proton of the abasic site and sugar protons of the guanosine in the 5' direction, which allows the position of the free sugar to be well-defined. NOE buildup curves from NOESY spectra recorded at very short mixing times were used to calculate a set of interproton distances. This data set was incorporated into the refinement of the oligonucleotide structure by molecular mechanics calculations. Two conformations that differ in the sugar conformation of the guanosine next to the abasic site in the 3' direction were necessary to fit all the NMR data. One of these two conformations could only be stabilized by addition of counterions at specific sites.  相似文献   

13.
Solution conformation of self-complementary DNA duplex d-CGATCG, containing 5' d-CpG 3' site for intercalation of anticancer drug, daunomycin and adriamycin, has been investigated by nuclear magnetic resonance (NMR) spectroscopy. Complete resonance assignments of all the protons (except some H5'/H5" protons) have been obtained following standard procedures based on double quantum filtered correlation spectroscopy (dQF COSY) and two-dimensional nuclear Overhauser effect (NOE) spectra. Analysis of sums of coupling constants in one-dimensional NMR spectra, cross peak patterns in dQF COSY spectra and inter proton distances shows that the DNA sequence assumes a conformation close to the B-DNA family. The deoxyribose sugar conformation is in dynamic equilibrium with predominantly S-type conformer and a minor N-type conformer with N<-->S equilibrium varying with temperature. At 325 K, the mole fraction of the N-conformer increases for some of the residues by approximately 9%. Using a total of 10 spin-spin coupling constants and 112 NOE intensities, structural refinement has been carried out using Restrained Molecular Dynamics (rMD) with different starting structures, potential functions and rMD protocols. It is observed that pseudorotation phase angle of deoxyribose sugar for A3 and T4 residues is approximately 180 degrees and approximately 120 degrees, respectively while all other residues are close to C2'endo-conformation. A large propeller twist (approximately -18 degrees) and smallest twist angle (approximately 31 degrees) at A3pT4 step, in the middle of the sequence, a wider (12 A) and shallower (3.0 A) major groove with glycosidic bond rotation as high anti at both the ends of hexanucleotide are observed. The structure shows base-sequence dependent variations and hence strong local structural heterogeneity, which may have implications in ligand binding.  相似文献   

14.
The three-dimensional structure of the duplex formed by the association of the unnatural oligonucleotide alpha-d(TCTAAACTC) covalently linked to an acridine derivative (m5Acr) with its natural and parallel complementary sequence beta-d(AGATTTGAG) was investigated by nuclear magnetic resonance spectroscopy and constrained molecular mechanics calculations. All the nonexchangeable and exchangeable resonances were assigned in this duplex. The structure was refined by using interproton distances determined by NOE measurements. The NOE values were converted into distances by using the complete 190 x 190 relaxation matrix. The unnatural duplex Acrm5-alpha-d(TCTAAACTC)-beta-d(AGATTTGAG) forms a parallel right-handed helix with Watson-Crick base pairing; the alpha and beta deoxyriboses adopt a 3'-exo conformation. The acridine moiety was found stacked up the C9-G9 base pair. The structure of the first seven base pairs of this duplex was found similar to that of the duplex alpha-d(TCTAAAC)-beta-d(AGATTTG), which we had already investigated [Lancelot, G., et al. (1989) Biochemistry 28, 7871-7878]. Since these structures were generated by using experimental NOE values obtained independently on macromolecules whose global correlation time was different (3.8 and 2.2 ns), we conclude that this comparison is a good test of the viability of our method to generate three-dimensional structures of oligonucleotides in solution. Starting from different initial conformations, we show that the NOE constraints allow one to reach the same final restrained conformation, taking into account implicitly the solvent effect.  相似文献   

15.
Two-dimensional (2D) nmr methods (correlated spectroscopy, nuclear Overhauser enhancement spectroscopy, and relayed correlated spectroscopy) have been used to obtain resonance assignment of the nonexchangeable base and sugar protons of a double-helical DNA segment, d-(CG)6 in D2O solutions under conditions of low ionic strength. Detailed information about the glycosidic torsion angle, sugar geometry, stacking patterns of the bases, and the overall solution structure of the dodecanucleotide has been obtained from the relative intensities of cross-peaks in the 2D spectra. The molecule shows general features of B-DNA under the experimental conditions employed. However, in spite of the repeating base sequence, there are subtle and detectable variations in the structure along the double helix. The terminal residues show considerable conformational flexibility.  相似文献   

16.
X L Gao  D J Patel 《Biochemistry》1988,27(5):1744-1751
We report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets recorded in H2O and D2O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A change in sugar pucker from the C2'-endo range to the C3'-endo range is detected at C2 on formation of the d(ACGT) and d(TCGA) complexes. In addition, the sugar ring protons of C2 exhibit upfield shifts and a large 1 ppm separation between the H2' and H2" protons for both complexes. The L-Ala amide protons undergo large downfield complexation shifts consistent with their participation in intermolecular hydrogen bonds for both tetranucleotide complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
J D Puglisi  J R Wyatt  I Tinoco 《Biochemistry》1990,29(17):4215-4226
The hairpin conformation adopted by the RNA sequence 5'GCGAUUUCUGACCGCC3' has been studied by one- and two-dimensional NMR spectroscopy. Exchangeable imino spectra in 60 mM Na+ indicate that the hairpin has a stem of six base pairs (indicated by boldface type) and a loop of three nucleotides. NOESY spectra of nonexchangeable protons confirm the formation of the stem region. The duplex has an A-conformation and contains an A.C apposition; a G.U base pair closes the loop region. The stem nucleotides have C3'-endo sugar conformations, as expected of an A-form duplex, whereas the three loop nucleotides adopt C2'-endo sugar puckers. Stacking within the loop, C8 upon the sugar of U7, stabilizes the structure. The pH dependence of both the exchangeable and nonexchangeable NMR spectra is consistent with the formation of an A+.C base pair, protonated at the N1 position of adenine. The stability of the hairpin was probed by using absorbance melting curves. The hairpin structure with the A+.C base pair is about +2 kcal/mol less stable in free energy at 37 degrees C than the hairpin formed with an A.U pair replacing the A+.C pair.  相似文献   

18.
Proton and phosphorus NMR studies are reported for the complementary d(C-A-T-G-A-G-T-A-C).d(G-T-A-C-F-C-A-T-G) nonanucleotide duplex (designated APF 9-mer duplex) which contains a stable abasic site analogue, F, in the center of the helix. This oligodeoxynucleotide contains a modified tetrahydrofuran moiety, isosteric with 2-deoxyribofuranose, which serves as a structural analogue of a natural apurinic/apyrimidinic site [Takeshita, M., Chang, C.N., Johnson, F., Will, S., & Grollman, A.P. (1987) J. Biol. Chem. 262, 10171-10179]. Exchangeable and nonexchangeable base and sugar protons, including those located at the abasic site, have been assigned in the complementary APF 9-mer duplex by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H2O and D2O solution at low temperature (0 degrees C). These studies indicate that A5 inserts into the helix opposite the abasic site F14 and stacks with flanking G4.C15 and G6.C13 Watson-Crick base pairs. Base-sugar proton NOE connectivities were measured through G4-A5-G6 on the unmodified strand and between the base protons of C15 and the sugar protons of the 5'-flanking residue F14 on the modified strand. These studies establish that all glycosidic torsion angles are anti and that the helix is right-handed at and adjacent to the abasic site in the APF 9-mer duplex. Two of the 16 phosphodiester groups exhibit phosphorus resonances outside the normal spectral dispersion indicative of altered torsion angles at two of the phosphate groups in the backbone of the APF 9-mer duplex.  相似文献   

19.
The three-dimensional structure of the natural undecamer duplex d(CGCACACACGC). d(GCGTGTGTGCG) has been determined by the combined use of NMR spectroscopy and restrained molecular dynamics (rMD) and also by molecular mechanics calculations using the JUMNA program without experimental distance constraints. Both procedures have also been used to model the abasic structure d(CGCACOCACGC).d(GCGTGTGTGCG), where 'O' indicates a modified abasic site: 3-hydroxy-2-(hydroxymethyl) tetrahydrofuran. For the natural duplex, 134 interproton distances have been obtained by complete relaxation matrix analysis of the NOESY cross-peaks intensities, using MARDIGRAS software. These distances along with 100 torsion angles for sugar ring and additional data derived from canonical A and B-DNA, have been used for structures refinement by restrained molecular dynamics. Comparison of the natural oligomer with the abasic structure obtained earlier by NMR/rMD (Y. Coppel, N. Berthet, C. Coulombeau, Ce. Coulombeau, J. Garcia and J. Lhomme, Biochemistry 36, 4817-4830, 1997) confirms that the creation of an abasic site, in this sequence context, leads to marked helix kinking. It is also shown that the JUMNA procedure is capable of reproducing the overall structural features of the natural and damaged DNA conformations without the use of experimental constraints.  相似文献   

20.
Two-dimensional proton NMR studies were undertaken on the d(C-G-A-G-A-A-T-T-C-C-C-G) duplex (designated A.C 12-mer) where the A at the mismatch site is flanked by G residues and the d(C-G-C-G-A-A-T-T-C-A-C-G) duplex (designated C.A 12-mer) where the A at the mismatch site is flanked by C residues in an attempt to elucidate the role of flanking base pairs on the structure of the A.C mismatch. The exchangeable and nonexchangeable proton spectra of these two dodecanucleotides have been completely characterized by two-dimensional nuclear Overhauser enhancement (NOE) experiments in H2O and D2O solution at acidic pH. The NOE distance connectivities demonstrate that both A and C at the mismatch site are stacked into a right-handed helix between flanking G.C base pairs and exhibit anti-glycosidic torsion angles. The proton chemical shifts and NOE patterns are consistent with Wobble A.C pairing for the A.C 12-mer and C.A 12-mer duplexes in solution and demonstrate that the A.C mismatches introduce local conformational perturbations that do not extend to the central AATT segment. We detect that amino protons of adenosine (approximately 9.2 ppm) but not of cytidine at the A.C mismatch site in both duplexes on lowering the pH below 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号