共查询到20条相似文献,搜索用时 15 毫秒
1.
J B Ames A M Dizhoor M Ikura K Palczewski L Stryer 《The Journal of biological chemistry》1999,274(27):19329-19337
Guanylyl cyclase activating protein-2 (GCAP-2) is a Ca2+-sensitive regulator of phototransduction in retinal photoreceptor cells. GCAP-2 activates retinal guanylyl cyclases at low Ca2+ concentration (<100 nM) and inhibits them at high Ca2+ (>500 nM). The light-induced lowering of the Ca2+ level from approximately 500 nM in the dark to approximately 50 nM following illumination is known to play a key role in visual recovery and adaptation. We report here the three-dimensional structure of unmyristoylated GCAP-2 with three bound Ca2+ ions as determined by nuclear magnetic resonance spectroscopy of recombinant, isotopically labeled protein. GCAP-2 contains four EF-hand motifs arranged in a compact tandem array like that seen previously in recoverin. The root mean square deviation of the main chain atoms in the EF-hand regions is 2.2 A in comparing the Ca2+-bound structures of GCAP-2 and recoverin. EF-1, as in recoverin, does not bind calcium because it contains a disabling Cys-Pro sequence. GCAP-2 differs from recoverin in that the calcium ion binds to EF-4 in addition to EF-2 and EF-3. A prominent exposed patch of hydrophobic residues formed by EF-1 and EF-2 (Leu24, Trp27, Phe31, Phe45, Phe48, Phe49, Tyr81, Val82, Leu85, and Leu89) may serve as a target-binding site for the transmission of calcium signals to guanylyl cyclase. 相似文献
2.
Guanylyl cyclase (GC) plays a central role in the responses of vertebrate rod and cone photoreceptors to light. cGMP is an internal messenger molecule of vertebrate phototransduction. Light stimulates hydrolysis of cGMP, causing the closure of cGMP-dependent cation channels in the plasma membranes of photoreceptor outer segments. Light also lowers the concentration of intracellular free Ca(2+) and by doing so it stimulates resynthesis of cGMP by guanylyl cyclase. The guanylyl cyclases that couple Ca(2+) to cGMP synthesis in photoreceptors are members of a family of transmembrane guanylyl cyclases that includes atrial natriuretic peptide receptors and the heat-stable enterotoxin receptor. The photoreceptor membrane guanylyl cyclases, RetGC-1 and RetGC-2 (also referred to as GC-E and GC-F), are regulated intracellularly by two Ca(2+)-binding proteins, GCAP-1 and GCAP-2. GCAPs bind Ca(2+) at three functional EF-hand structures. Several lines of biochemical evidence suggest that guanylyl cyclase activator proteins (GCAPs) bind constitutively to an intracellular domain of RetGCs. In the absence of Ca(2+) GCAP stimulates and in the presence of Ca(2+) it inhibits cyclase activity. Proper functioning of RetGC and GCAP is necessary not only for normal photoresponses but also for photoreceptor viability since mutations in RetGC and in GCAP cause photoreceptor degeneration. 相似文献
3.
Guanylyl cyclase activator proteins (GCAPs) are calcium-binding proteins closely related to recoverin, neurocalcin, and many other neuronal Ca(2+)-sensor proteins of the EF-hand superfamily. GCAP-1 and GCAP-2 interact with the intracellular portion of photoreceptor membrane guanylyl cyclase and stimulate its activity by promoting tight dimerization of the cyclase subunits. At low free Ca(2+) concentrations, the activator form of GCAP-2 associates into a dimer, which dissociates when GCAP-2 binds Ca(2+) and becomes inhibitor of the cyclase. GCAP-2 is known to have three active EF-hands and one additional EF-hand-like structure, EF-1, that deviates form the EF-hand consensus sequence. We have found that various point mutations within the EF-1 domain can specifically affect the ability of GCAP-2 to interact with the target cyclase but do not hamper the ability of GCAP-2 to undergo reversible Ca(2+)-sensitive dimerization. Point mutations within the EF-1 region can interfere with both the activation of the cyclase by the Ca(2+)-free form of GCAP-2 and the inhibition of retGC basal activity by the Ca(2+)-loaded GCAP-2. Our results strongly indicate that evolutionary conserved and GCAP-specific amino acid residues within the EF-1 can create a contact surface for binding GCAP-2 to the cyclase. Apparently, in the course of evolution GCAP-2 exchanged the ability of its first EF-hand motif to bind Ca(2+) for the ability to interact with the target enzyme. 相似文献
4.
Guanylyl cyclase activating protein 1 (GCAP-1), a Ca(2+)/Mg(2+) sensor protein that accelerates retinal guanylyl cyclase (RetGC) in the light and decelerates it in the dark, is inactive in cation-free form. Binding of Mg(2+) in EF-hands 2 and 3 was essential for RetGC activation in the conditions mimicking light adaptation. Mg(2+) binding in EF-hand 2 affected the conformation of a neighboring non-metal binding domain, EF-hand-1, and increased GCAP-1 affinity for RetGC nearly 40-fold compared with the metal-free EF-hand 2. Mg(2+) binding in EF-hand 3 increased GCAP-1 affinity for RetGC 5-fold and its maximal RetGC stimulation 2-fold. Mg(2+) binding in EF-hand 4 affected neither GCAP-1 affinity for RetGC, nor RetGC activation. Inactivation of Ca(2+) binding in EF-hand 4 was sufficient to render GCAP-1 a constitutive activator of RetGC, whereas the EF-hand 3 role in Ca(2+)-dependent deceleration of RetGC was likely to be through the neighboring EF-hand 4. Inactivation of Ca(2+) binding in EF-hand 2 affected cooperativity of RetGC inhibition by Ca(2+), but did not prevent the inhibition. We conclude that 1) Mg(2+) binding in EF-hands 2 and 3, but not EF-hand 4, is essential for the ability of GCAP-1 to activate RetGC in the light; 2) Mg(2+) or Ca(2+) binding in EF-hand 3 and especially in EF-hand 2 is required for high-affinity interaction with the cyclase and affects the conformation of the neighboring EF-hand 1, a domain required for targeting RetGC; and 3) RetGC inhibition is likely to be primarily caused by Ca(2+) binding in EF-hand 4. 相似文献
5.
We explored the possibility that, in the regulation of an effector enzyme by a Ca(2+)-sensor protein, the actual Ca(2+) sensitivity of the effector enzyme can be determined not only by the affinity of the Ca(2+)-sensor protein for Ca(2+) but also by the relative affinities of its Ca(2+)-bound versus Ca(2+)-free form for the effector enzyme. As a model, we used Ca(2+)-sensitive activation of photoreceptor guanylyl cyclase (RetGC-1) by guanylyl cyclase activating proteins (GCAPs). A substitution Arg(838)Ser in RetGC-1 found in human patients with cone-rod dystrophy is known to shift the Ca(2+) sensitivity of RetGC-1 regulation by GCAP-1 to a higher Ca(2+) range. We find that at physiological concentrations of Mg(2+) this mutation increases the free Ca(2+) concentration required for half-maximal inhibition of the cyclase from 0.27 to 0.61 microM. Similar to rod outer segment cyclase, Ca(2+) sensitivity of recombinant RetGC-1 is strongly affected by Mg(2+), but the shift in Ca(2+) sensitivity for the R838S mutant relative to the wild type is Mg(2+)-independent. We determined the apparent affinity of the wild-type and the mutant RetGC-1 for both Ca(2+)-bound and Ca(2+)-free GCAP-1 and found that the net shift in Ca(2+) sensitivity of the R838S RetGC-1 observed in vitro can arise predominantly from the change in the affinity of the mutant cyclase for the Ca(2+)-free versus Ca(2+)-loaded GCAP-1. Our findings confirm that the dynamic range for RetGC regulation by Ca(2+)/GCAP is determined by both the affinity of GCAP for Ca(2+) and relative affinities of the effector enzyme for the Ca(2+)-free versus Ca(2+)-loaded GCAP. 相似文献
6.
The enzyme soluble guanylyl cyclase (SGC) mediates physiological effects of the gaseous signalling molecule nitric oxide by generating the second messenger molecule cyclic-GMP (cGMP). Here we have demonstrated that SGC is expressed in photoreceptor cells of locust compound eyes. However, stimulation of SGC activity in the eyes was observed only in the dark, indicating that light may cause inhibition of SGC activity in locust photoreceptor cells. Because light causes elevation of cytosolic Ca2+ in insect photoreceptor cells, we investigated the involvement of Ca2+ in mediating the inhibitory effect of light on SGC activity in the locust eye. Light-adapted locust eyes incubated with Ca2+-free physiological saline displayed a similar level of stimulated SGC activity to that normally seen only in dark-adapted eyes. These data indicate for the first time that Ca2+ may regulate SGC activity in cells. Moreover, the dark dependence of SGC activity in the locust eye suggests that SGC and cGMP may participate in dark-adaptation mechanisms in insect photoreceptor cells. 相似文献
7.
Sunghyuk Lim Igor V. Peshenko Alexander M. Dizhoor James B. Ames 《Biomolecular NMR assignments》2013,7(1):39-42
Guanylyl cyclase activating protein 1 (GCAP1), a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca2+-dependent activation of retinal guanylyl cyclase that regulates the visual light response. GCAP1 is genetically linked to retinal degenerative diseases. We report backbone NMR chemical shift assignments of Ca2+-saturated GCAP1 (BMRB no. 18026). 相似文献
8.
Guanylyl cyclase activating protein 1 (GCAP1), after substitution of Ca(2+) by Mg(2+) in its EF-hands, stimulates photoreceptor guanylyl cyclase, RetGC1, in response to light. We inactivated metal binding in individual EF-hands of GCAP1 tagged with green fluorescent protein to assess their role in GCAP1 binding to RetGC1 in co-transfected HEK293 cells. When expressed alone, GCAP1 was uniformly distributed throughout the cytoplasm and the nuclei of the cells, but when co-expressed with either fluorescently tagged or non-tagged RetGC1, it co-localized with the cyclase in the membranes. The co-localization did not occur when the C-terminal portion of RetGC1, containing its regulatory and catalytic domains, was removed. Mutations that preserved Mg(2+) binding in all three metal-binding EF-hands did not affect GCAP1 association with the cyclase in live cells. Locking EF-hand 4 in its apo-conformation, incapable of binding either Ca(2+) or Mg(2+), had no effect on GCAP1 association with the cyclase. In contrast to EF-hand 4, inactivation of EF-hand 3 reduced the efficiency of the co-localization, and inactivation of EF-hand 2 drastically suppressed GCAP1 binding to the cyclase. These results directly demonstrate that metal binding in EF-hand 2 is crucial for GCAP1 attachment to RetGC1, and that in EF-hand 3 it is less critical, although it enhances the efficiency of the GCAP1 docking on the target enzyme. Metal binding in EF-hand 4 has no role in the primary attachment of GCAP1 to the cyclase, and it only triggers the activator-to-inhibitor functional switch in GCAP1. 相似文献
9.
E V Olshevskaya A N Ermilov A M Dizhoor 《The Journal of biological chemistry》1999,274(36):25583-25587
Ca(2+)-binding guanylyl cyclase-activating proteins (GCAPs) stimulate photoreceptor membrane guanylyl cyclase (retGC) in the light when the free Ca(2+) concentrations in photoreceptors decrease from 600 to 50 nM. RetGC activated by GCAPs exhibits tight dimerization revealed by chemical cross-linking (Yu, H., Olshevskaya, E., Duda, T., Seno, K., Hayashi, F., Sharma, R. K., Dizhoor, A. M., and Yamazaki, A. (1999) J. Biol. Chem. 274, 15547-15555). We have found that the Ca(2+)-loaded GCAP-2 monomer undergoes reversible dimerization upon dissociation of Ca(2+). The ability of GCAP-2 and its several mutants to activate retGC in vitro correlates with their ability to dimerize at low free Ca(2+) concentrations. A constitutively active GCAP-2 mutant E80Q/E116Q/D158N that stimulates retGC regardless of the free Ca(2+) concentrations forms dimers both in the absence and in the presence of Ca(2+). Several GCAP-2/neurocalcin chimera proteins that cannot efficiently activate retGC in low Ca(2+) concentrations are also unable to dimerize in the absence of Ca(2+). Additional mutation that restores normal activity of the GCAP-2 chimera mutant also restores its ability to dimerize in the absence of Ca(2+). These results suggest that dimerization of GCAP-2 can be a part of the mechanism by which GCAP-2 regulates the photoreceptor guanylyl cyclase. The Ca(2+)-free GCAP-1 is also capable of dimerization in the absence of Ca(2+), but unlike GCAP-2, dimerization of GCAP-1 is resistant to the presence of Ca(2+). 相似文献
10.
Soluble guanylyl cyclase (sGC) is activated upon the interaction of NO with heme in the sGC beta1 subunit. To identify the domains contributing to heme-binding, we constructed a series of deletion mutants of the beta1 subunit, and evaluated their heme-binding capability. Deletion mutants consisting of residues 1-120 [beta1(1-120)] and 80-385 [beta1(80-385)] were the shortest mutants exhibiting heme binding among the C-terminal and N-terminal-truncated mutants, respectively. The region common to both beta1(1-120) and beta1(80-385), i.e., residues 80-120, is therefore essential for heme binding, although the residues 341-385 play an auxiliary role in heme binding. Two deletion mutants, beta1(80-195) and beta1(60-195), which include only the essential region, exhibited strong heme binding and spectral properties similar to those of the nitrosyl complex of native sGC. Thus, these heme-binding core proteins may serve as model proteins for future studies on the tertiary structure of the nitrosyl complex of sGC. 相似文献
11.
Yuehui Tian Shiqiang Gao Eva Laura von der Heyde Armin Hallmann Georg Nagel 《BMC biology》2018,16(1):144
Background
The green algae Chlamydomonas reinhardtii and Volvox carteri are important models for studying light perception and response, expressing many different photoreceptors. More than 10 opsins were reported in C. reinhardtii, yet only two—the channelrhodopsins—were functionally characterized. Characterization of new opsins would help to understand the green algae photobiology and to develop new tools for optogenetics.Results
Here we report the characterization of a novel opsin family from these green algae: light-inhibited guanylyl cyclases regulated through a two-component-like phosphoryl transfer, called “two-component cyclase opsins” (2c-Cyclops). We prove the existence of such opsins in C. reinhardtii and V. carteri and show that they have cytosolic N- and C-termini, implying an eight-transmembrane helix structure. We also demonstrate that cGMP production is both light-inhibited and ATP-dependent. The cyclase activity of Cr2c-Cyclop1 is kept functional by the ongoing phosphorylation and phosphoryl transfer from the histidine kinase to the response regulator in the dark, proven by mutagenesis. Absorption of a photon inhibits the cyclase activity, most likely by inhibiting the phosphoryl transfer. Overexpression of Vc2c-Cyclop1 protein in V. carteri leads to significantly increased cGMP levels, demonstrating guanylyl cyclase activity of Vc2c-Cyclop1 in vivo. Live cell imaging of YFP-tagged Vc2c-Cyclop1 in V. carteri revealed a development-dependent, layer-like structure at the immediate periphery of the nucleus and intense spots in the cell periphery.Conclusions
Cr2c-Cyclop1 and Vc2c-Cyclop1 are light-inhibited and ATP-dependent guanylyl cyclases with an unusual eight-transmembrane helix structure of the type I opsin domain which we propose to classify as type Ib, in contrast to the 7 TM type Ia opsins. Overexpression of Vc2c-Cyclop1 protein in V. carteri led to a significant increase of cGMP, demonstrating enzyme functionality in the organism of origin. Fluorescent live cell imaging revealed that Vc2c-Cyclop1 is located in the periphery of the nucleus and in confined areas at the cell periphery.12.
Recoverin, a new calcium binding protein from bovine rod photoreceptor cells, activates guanylyl cyclase below a free calcium concentration of 200 nM. We show here that recoverin is phosphorylated by an endogenous kinase and Mg-ATP at the same decreased calcium concentration. The calcium-dependent activation of guanylyl cyclase is enhanced in the presence of ATP. We suggest that phosphorylation of recoverin reinforces the stimulation of guanylyl cyclase at decreased calcium concentrations. 相似文献
13.
A key challenge in studying protein/protein interactions is to accurately identify contact surfaces, i.e. regions of two proteins that are in direct physical contact. Aside from x-ray crystallography and NMR spectroscopy few methods are available that address this problem. Although x-ray crystallography often provides detailed information about contact surfaces, it is limited to situations when a co-crystal of proteins is available. NMR circumvents this requirement but is limited to small protein complexes. Other methods, for instance protection from proteolysis, are less direct and therefore less informative. Here we describe a new method that identifies candidate contact surfaces in protein complexes. The complexes are first stabilized by cross-linking. They are then digested with a protease, and the cross-linked fragments are analyzed by mass spectrometry. We applied this method, referred to as COSUMAS (contact surfaces by mass spectrometry), to two proteins, retinal guanylyl cyclase 1 (RetGC1) and guanylyl cyclase-activating protein-1 (GCAP-1), that regulate cGMP synthesis in photoreceptors. Two regions in GCAP-1 and three in RetGC1 were identified as possible contact sites. The two regions of RetGC1 that are in the vicinities of Cys(741) and Cys(780) map to a kinase homology domain in RetGC1. Their identities as contact sites were independently evaluated by peptide inhibition analysis. Peptides with sequences from these regions block GCAP-1-mediated regulation of guanylyl cyclase at both high and low Ca2+ concentrations. The two regions of GCAP-1 cross-linked to these peptides were in the vicinities of Cys(17) and Cys(105) of GCAP-1. Peptides with sequences derived from these regions inhibit guanylyl cyclase activity directly. These results support a model in which GCAP-1 binds constitutively to RetGC1 and regulates cyclase activity by structural changes caused by the binding or dissociation of Ca2+. 相似文献
14.
Photoreceptor ROS-GC1 (rod outer segment membrane guanylate cyclase) is a vital component of phototransduction. It is a bimodal Ca(2+) signal transduction switch, operating between 20 and ~1000 nM. Modulated by Ca(2+) sensors guanylate cyclase activating proteins 1 and 2 (GCAP1 and GCAP2, respectively), decreasing [Ca(2+)](i) from 200 to 20 nM progressively turns it "on", as does the modulation by the Ca(2+) sensor S100B, increasing [Ca(2+)](i) from 100 to 1000 nM. The GCAP mode plays a vital role in phototransduction in both rods and cones and the S100B mode in the transmission of neural signals to cone ON-bipolar cells. Through a programmed domain deletion, expression, in vivo fluorescence spectroscopy, and in vitro reconstitution experiments, this study demonstrates that the biochemical mechanisms modulated by two GCAPs in Ca(2+) signaling of ROS-GC1 activity are totally different. (1) They involve different structural domains of ROS-GC1. (2) Their signal migratory pathways are opposite: GCAP1 downstream and GCAP2 upstream. (3) Importantly, the isolated catalytic domain, translating the GCAP-modulated Ca(2+) signal into the generation of cyclic GMP, in vivo, exists as a homodimer, the two subunits existing in an antiparallel conformation. Furthermore, the findings demonstrate that the N-terminally placed signaling helix domain is not required for the catalytic domain's dimeric state. The upstream GCAP2-modulated pathway is the first of its kind to be observed for any member of the membrane guanylate cyclase family. It defines a new model of Ca(2+) signal transduction. 相似文献
15.
We investigated the molecular mechanism of cyclic GMP-induced down-regulation of soluble guanylyl cyclase expression in rat aorta. 3-(5'-Hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), an allosteric activator of this enzyme, decreased the expression of soluble guanylyl cyclase alpha(1) subunit mRNA and protein. This effect was blocked by the enzyme inhibitor 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b-1,4)oxazin-1-one (NS2028) and by actinomycin D. Guanylyl cyclase alpha(1) mRNA-degrading activity was increased in protein extracts from YC-1-exposed aorta and was attenuated by pretreatment with actinomycin D and NS2028. Gelshift and supershift analyses using an adenylate-uridylate-rich ribonucleotide from the 3'-untranslated region of the alpha(1) mRNA and a monoclonal antibody directed against the mRNA-stabilizing protein HuR revealed HuR mRNA binding activity in aortic extracts, which was absent in extracts from YC-1-stimulated aortas. YC-1 decreased the expression of HuR, and this decrease was prevented by NS2028. Similarly, down-regulation of HuR by RNA interference in cultured rat aortic smooth muscle cells decreased alpha(1) mRNA and protein expression. We conclude that HuR protects the guanylyl cyclase alpha(1) mRNA by binding to the 3'-untranslated region. Activation of guanylyl cyclase decreases HuR expression, inducing a rapid degradation of guanylyl cyclase alpha(1) mRNA and lowering alpha(1) subunit expression as a negative feedback response. 相似文献
16.
Koesling D 《Methods (San Diego, Calif.)》1999,19(4):485-493
Soluble guanylyl cyclase acts as the receptor for the signaling molecule nitric oxide. The enzyme consists of two different subunits. Each subunit shows the cyclase catalytic domain, which is also conserved in the membrane-bound guanylyl cyclases and the adenylyl cyclases. The N-terminal regions of the subunits are responsible for binding of the prosthetic heme group of the enzyme, which is required for the stimulatory effect of nitric oxide (NO). The five-coordinated ferrous heme displays a histidine as the axial ligand; activation of soluble guanylyl cyclase by NO is initiated by binding of NO to the heme iron and proceeds via breaking of the histidine-to-iron bond. Recently, a novel pharmacological and possibly physiological principle of guanylyl cyclase sensitization was demonstrated. The substance YC-1 has been shown to activate the enzyme independent of NO, to potentiate the effect of submaximally effective NO concentrations, and to turn carbon monoxide into an effective activator of soluble guanylyl cyclase. 相似文献
17.
18.
CyaG, a novel cyanobacterial adenylyl cyclase and a possible ancestor of mammalian guanylyl cyclases
A novel gene encoding an adenylyl cyclase, designated cyaG, was identified in the filamentous cyanobacterium Spirulina platensis. The predicted amino acid sequence of the C-terminal region of cyaG was similar to the catalytic domains of Class III adenylyl and guanylyl cyclases. The N-terminal region next to the catalytic domain of CyaG was similar to the dimerization domain, which is highly conserved among guanylyl cyclases. As a whole, CyaG is more closely related to guanylyl cyclases than to adenylyl cyclases in its primary structure. The catalytic domain of CyaG was expressed in Escherichia coli and partially purified. CyaG showed adenylyl cyclase (but not guanylyl cyclase) activity. By site-directed mutagenesis of three amino acid residues (Lys(533), Ile(603), and Asp(605)) within the purine ring recognition site of CyaG to Glu, Arg, and Cys, respectively, CyaG was transformed to a guanylyl cyclase that produced cGMP instead of cAMP. Thus having properties of both cyclases, CyaG may therefore represent a critical position in the evolution of Class III adenylyl and guanylyl cyclases. 相似文献
19.