首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aquatic macrophyte Stratiotes aloides Linnaeus, which has recently received attention in studies on allelopathy, has been shown to suppress phytoplankton growth. In the Netherlands, S. aloides often co-occurs with floating filamentous algae. However, filamentous algae are generally absent in close proximity to S. aloides, resulting in gaps in filamentous algae mats. We analyzed whether those gaps may be caused by allelopathic substances excreted by S. aloides or by nutrient depletion. We studied in a field survey the colonization of natural S. aloides by filamentous algae and determined in situ nutrient concentrations in natural S. aloides stands. To analyze the relative importance of allelopathy and nutrient competition in the interaction between S. aloides and filamentous algae, we carried out field experiments. Introduction of artificial (non-allelopathic) plants in natural S. aloides stands enabled us to compare the colonization by filamentous algae of both Stratiotes sp. and artificial plants. The filamentous algae were absent in close vicinity to S. aloides. Significantly lower concentrations of ortho-phosphate and potassium were observed close to S. aloides as compared with the filamentous algae. In the field experiments the artificial plants were rapidly colonized by filamentous algae, mainly Cladophera Kützing and Spirogyra Link, while all natural plants remained free of such algae. Additionally, most nutrient concentrations did not significantly differ in the proximity of artificial or natural stands of S. aloides. The concentrations of the major growth-limiting nutrients, phosphate and nitrate, were significantly higher and nonlimiting in natural Stratiotes stands. Our main conclusion is that, although allelopathic interactions between S. aloides and filamentous algae do occur under natural conditions, nutrient competition between the two can also be an important factor.  相似文献   

2.
Summary This study aimed at isolating filamentous bacteria from full-scale activated sludge processes and studying them in pure culture. Three cultures were isolated using conventional microbiological techniques. The isolates were positively identified as Gordonia amarae, Thiothrix nivea and Type 1863/Acinetobacter spp., using fluorescent in situ hybridization (FISH) with 16S rRNA-targeted oligonucleotide probes. However, a ‘morphological shift’ from filamentous to single-cell form was observed in pure culture. The application of fluorescent in situ hybridization (FISH) showed filamentous bacteria to be much more diverse in their ability to adapt to their changing enviroments. Pure culture studies of filamentous bacteria form the basis for application in full-scale activated sludge plants. It therefore remains important that the taxonomic status of filamentous bacteria be determined.  相似文献   

3.
The spore germination, protonemal development, and gametophyte differentiation of Hypnum pacleseens were observed in cultivation. Photomicrographs showed that spore germination of Hypnum pacleseens occured within the exospore. Its protonema is massive with filamentous chloronema formed inside. The terminal part of the chloronema differentiated into filamentous caulonema and its rhizoid was derived from the apical cell of the filamentous chloronema. The initial cell of gametophyte differentiated from chloronema and caulonema. Sporeling-type of Hypnum pacleseens is developmentally similar to Glyphmitrium-type.  相似文献   

4.
《Autophagy》2013,9(6):604-609
Under conditions of nitrogen stress, the budding yeast S. cerevisiae initiates a cellular response involving the activation of autophagy, an intracellular catabolic process for the degradation and recycling of proteins and organelles. In certain strains of yeast, nitrogen stress also drives a striking developmental transition to a filamentous form of growth, in which cells remain physically connected after cytokinesis. We recently identified an interrelationship between these processes, with the inhibition of autophagy resulting in exaggerated filamentous growth. Our results suggest a model wherein autophagy mitigates nutrient stress, and filamentous growth is responsive to the degree of this stress. Here, we extended these studies to encompass a phenotypic analysis of filamentous growth upon overexpression of autophagy-related (ATG) genes. Specifically, overexpression of ATG1, ATG3, ATG7, ATG17, ATG19, ATG23, ATG24, and ATG29 inhibited filamentous growth. From our understanding of autophagy in yeast, overexpression of these genes does not markedly affect the activity of the pathway; thus, we do not expect that this filamentous growth phenotype is due strictly to diminished nitrogen stress in ATG overexpression mutants. Rather, these results highlight an additional undefined regulatory mechanism linking autophagy and filamentous growth, possibly independent of the upstream nitrogen-sensing machinery feeding into both processes.

Addendum to:

An Interrelationship Between Autophagy and Filamentous Growth in Budding Yeast

J. Ma, R. Jin, X. Jia, C.J. Dobry, L. Wang, F. Reggiori, J. Zhu and A. Kumar

Genetics 2007; In press  相似文献   

5.
6.
A summary is presented of estimates of distribution and growth of filamentous algae and its effect on the structure and functioning of epibenthic fauna and fish communities in shallow bays on the Swedish west coast. As a consequence of coastal eutrophication vegetation cover has gradually increased during the last decade, and during 1990's most bays in the Skagerrak-Kattegat area were variously covered with filamentous algae during spring and summer (May–July). In some areas filamentous algae (mainlyCladophora andEnteromorpha) completely covered the bottom. In field studies it was demonstrated that increased cover and dominance of filamentous algae result in structural changes of the epibenthic fauna community. Field studies showed that species richness and biomass of epibenthic fauna increased in a sandy bay with a moderate increase (30 to 50%) of filamentous algae cover. At higher cover (90%), biomass of epibenthic fauna was reduced, however, to the same level as for the sandy habitat, although the dominant epibenthic species were different. Heavy growth of epiphytic filamentous algae on eelgrass resulted in reduced biomass and a shift in the species composition of the epibenthic fauna community. Fish assemblage structure was also related to changes in vegetation. In eelgrass beds, fish species numbers were reduced with increasing cover of epiphytic filamentous algae, and at rocky bottoms with kelp algae (dominated byFucus), fish biomass decreased with increasing cover of attached filamentous algae. Further, foraging efficiency of juvenile cod and settling success of plaice were reduced as a response to increasing dominance of filamentous algae.  相似文献   

7.
Mycological investigation of the Pacific (giant) oyster Crassostrea gigas (Thunberg, 1793) (Bivalvia) from the Peter the Great Bay of the Sea of Japan was carried out. The taxonomic composition of filamentous fungi associated with C. gigas was studied. The taxonomic composition of the fungi associated with the giant oyster included 22 species of filamentous fungi of which 17 species were identified. The latter belonged to six genera: Alternaria, Aspergillus, Botrytis, Fusarium, Penicillium, and Trichoderma. The distribution of filamentous fungi in the internal organs of the bivalve mollusk was studied.  相似文献   

8.
Chloroflexi are currently believed to serve as backbone forming agents in the activated sludge of wastewater treatment plants (WWTPs). In this study, we isolated and characterized filamentous bacteria in the class Caldilineae of the phylum Chloroflexi in municipal WWTPs. Diversity analysis using Chloroflexi-specific 16S rRNA gene clone libraries showed that 97% of the clones belonged to the subdivision Anaerolineae comprising the two classes Anaerolineae (95%) and Caldilineae (2%). Clones of Caldilineae were related to a thermophilic filament Caldilinea aerophila with 93% 16S rRNA gene sequence similarity. We obtained filamentous isolates classified into the class Caldilineae showing the best match to C. aerophila with 89% 16S rRNA gene sequence similarity. Isolates showed no ability to assimilate glucose or N-acetylglucosamine or to degrade biopolymers which were observed in filamentous Chloroflexi of WWTPs. The assessment of relative abundance based on quantitative PCR of the 16S rRNA gene indicated that members of the class Caldilineae comprised 12–19% of the Chloroflexi in the activated sludge. Additionally, fluorescence in situ hybridization experiments showed that diverse filamentous Caldilineae inhabit the activated sludge of municipal WWTPs. These findings yield insight into the role of filamentous mesophilic Caldilinea in stabilizing flocs of activated sludge in a wide range of WWTPs.  相似文献   

9.
1. Stoichiometric theory predicts that the nitrogen : phosphorus (N : P) ratio of recycled nutrients should increase when P‐rich zooplankton such as Daphnia become dominant. We used an enclosure study to test the hypothesis that an increased biomass of Daphnia will increase the relative availability of N versus P sufficiently to decrease the abundance of filamentous cyanobacteria. The experiment was conducted in artificially enriched Lake 227 (L227) in the Experimental Lakes Area (ELA), north‐western Ontario, Canada. Previous studies in L227 have shown that the dominance of filamentous, N‐fixing cyanobacteria is strongly affected by changes in the relative loading rates of N and P. 2. We used a 2 × 2 factorial design with the addition or absence of D. pulicaria and high or low relative loading rates of N and P (+NH4, –NH4) in small enclosures as treatment variables. If Daphnia can strongly affect filamentous cyanobacteria by altering N and P availability, these impacts should be greatest with low external N : P loading rates. The phytoplankton community of L227 was predominantly composed of filamentous Aphanizomenon spp. at the start of the experiment. 3. Daphnia strongly reduced filamentous cyanobacterial density in all enclosures to which they were added. The addition of NH4 had only a small impact on algal community composition. Hence, we conclude that Daphnia did not cause reductions in cyanobacteria by altering the N : P ratio of available nutrients. 4. Despite the lack of evidence that Daphnia affected filamentous cyanobacteria by altering the relative availability of N and P, we found changes in nutrient cycling consistent with other aspects of stoichiometric theory. In the presence of Daphnia, total P in the water column decreased because of an increase in P sedimentation. In contrast to P, a decrease in suspended particulate N was offset by an increase in dissolved N (especially NH4). Hence, dissolved and total N : P ratios in the water column increased with Daphnia as a result of differences in the fate of suspended particulate N versus P. There was minimal accumulation and storage of P in Daphnia biomass in the enclosures. 5. Our experiment demonstrated that Daphnia can strongly limit filamentous cyanobacterial abundance and affect the biogeochemical cycling of nutrients. In our study, changes in nutrient cycling were apparently insufficient to cause the changes in phytoplankton community composition that we observed. Daphnia therefore limited filamentous cyanobacteria by other mechanisms.  相似文献   

10.
Cyanobacteria samples were collected from smears and mats growing on the surfaces of buildings, roadside walls, rocks, and monuments near Gimhae City, Korea. These populations were not as thick and dense, nor as diverse, as those found in temperate and tropical regions. Crusts at Gimhae City were dominated by colonial forms of species fromChroococcus, Aphanothece,Aphanocapsa, Gloeofthece,Gloeocapsa, andChroococidiopsis, as well as by filamentous forms from species ofScytonema andTolypothrix. The colonial forms appeared primarily as smears, especially for species ofGloeocapsa andChroococcidiopsis, whereas filamentous forms were the major constituents of mat populations. Invariably, the cells and trichomes of these colonial and filamentous forms were enclosed with a thick, firm, multi-colored laminar sheath, as seen by transmission electron microscopy. Such an association between cell walls and trichomes was stronger in the colonial forms, particularly forGloeocapsa, compared with the filamentous forms, in which the sheath did not detach from the wall even under arid conditions. The organization of cytoplasmic structures, particularly the thylakoid membranes, was least affected by acute dryness.  相似文献   

11.
Fuchs U  Steinberg G 《Protoplasma》2005,226(1-2):75-80
Summary. Filamentous fungi are an important group of tip-growing organisms, which include numerous plant pathogens such as Magnaporthe grisea and Ustilago maydis. Despite their ecological and economical relevance, we are just beginning to unravel the importance of endocytosis in filamentous fungi. Most evidence for endocytosis in filamentous fungi is based on the use of endocytic tracer dyes that are taken up into the cell and delivered to the vacuole. Moreover, genomewide screening for candidate genes in Neurospora crassa and U. maydis confirmed the presence of most components of the endocytic machinery, indicating that endocytosis participates in filamentous growth. Indeed, it was shown that in U. maydis early endosomes cluster at sites of growth, where they support morphogenesis and polar growth, most likely via endosome-based membrane recycling. In humans, such recycling processes to the plasma membrane involve small GTPases such as Rab4. A homologue of this protein is encoded in the genome of U. maydis but is absent from the yeast Saccharomyces cerevisiae, suggesting that Rab4-mediated recycling is important for filamentous growth. Furthermore, human Rab4 regulates traffic of early endosomes along microtubules, and a similar microtubule-based transport is described for U. maydis. These observations suggest that Rab4-like GTPases might regulate endosome- and microtubule-based recycling during tip growth of filamentous fungi. Correspondence and reprints: MPI für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Federal Republic of Germany.  相似文献   

12.
The phytopathogenic fungus Ustilago maydis exhibits a dimorphic transition in which non-pathogenic, yeast-like cells mate to form a pathogenic, filamentous dikaryon. Northern analysis indicated that two chitin synthase genes, chs1 and chs2, from U. maydis are expressed at similar levels in yeast-like cells and in cells undergoing the mating reaction leading to the filamentous cell type. A mutation was constructed in each of the chitin synthase genes by targeted gene disruption. Each mutant showed a reduction in the level of trypsin-activated enzyme activity, compared with a wild-type strain, but retained the wild-type morphology, the ability to mate and the ability to form the filamentous pathogenic cell type.  相似文献   

13.
Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants   总被引:1,自引:1,他引:0  
Insect-associated microbes exhibit a wide range of interactions with their hosts. One example of such interactions is the insect-driven dispersal of microorganisms, which plays an essential role in the ecology of several microbes. To study dispersal of microorganisms by leaf-cutting ants (Formicidae: Attini), we applied culture-dependent methods to identify the filamentous fungi and yeasts found in two different body parts of leaf-cutting ant gynes: the exoskeleton and the infrabuccal pocket. The gynes use the latter structure to store a pellet of the ants’ symbiotic fungus during nest founding. Many filamentous fungi (n = 142) and yeasts (n = 19) were isolated from the gynes’ exoskeleton. In contrast, only seven filamentous fungi and three yeasts isolates were recovered from the infrabuccal pellets, suggesting an efficient mechanism utilized by the gynes to prevent contamination of the symbiotic fungus inoculum. The genus Cladosporium prevailed (78%) among filamentous fungi whereas Aureobasidium, Candida and Cryptococcus prevailed among yeasts associated with gynes. Interestingly, Escovopsis, a specialized fungal pathogen of the leaf-cutting ant-fungus symbiosis, was not isolated from the body parts or from infrabuccal pellets of any gynes sampled. Our results suggest that gynes of the leaf-cutter ants Atta laevigata and A. capiguara do not vertically transmit any particular species of yeasts or filamentous fungi during the foundation of a new nest. Instead, fungi found in association with gynes have a cosmopolitan distribution, suggesting they are probably acquired from the environment and passively dispersed during nest foundation. The possible role of these fungi for the attine ant–microbial symbiosis is discussed.  相似文献   

14.
Synopsis Dead sections of bleached corals in the United States Virgin Islands and British Virgin Islands were found to be colonized by filamentous algae harboring epiphytic dinoflagellates implicated in ciguatera fish poisonings. The dinoflagellates Ostreopsis lenticularis, Prorocentrum concavum, and P. lima were found in association with filamentous algae growing on dead sections of bleached Montastrea annularis and Acropora cervicornis. Several fish species from the families Acanthuridae, Pomacentridae, and Scaridae were observed to readily consume this filamentous algae/epiphytic dinoflagellate food source. Such fishes are common prey for large piscivores inhabiting tropical reefs. An increased incidence of ciguatoxic fishes may occur on reefs where bleaching events have caused significant coral mortality.  相似文献   

15.
A laboratory scale study to evaluate the potentiality of filamentous fungi for the production of cellulolytic enzymes using palm oil mill effluent (POME) as a basal medium was initiated. A total of 25 filamentous fungi in which 16 filamentous fungi were isolated and purified from oil palm industrial residues and 9 strains from laboratory stock were screened using POME with 1% total suspended solids. Trichoderma reesei RUT C-30 was identified as a potential strain for cellulolytic enzyme production as compared to other genera of Aspergillus, Penicillum, Rhizopus, Phanerochaete, Trichoderma and basidiomycete groups. The results showed that T. reesei RUT C-30 gave the highest filter paper cellulase and carboxy methyl cellulase activity of 0.917 and 2.51 U/ml respectively at day 5 of fermentation. Other parameters such as growth formation, pH, filterability and total biosolids were observed to evaluate the bioconversion process.  相似文献   

16.
Microscopy of organic-rich, sulfidic sediment samples of marine and freshwater origin revealed filamentous, multicellular microorganisms with gliding motility. Many of these neither contained sulfur droplets such as the Beggiatoa species nor exhibited the autofluorescence of the chlorophyll-containing cyanobacteria. A frequently observed morphological type of filamentous microorganism was enriched under anoxic conditions in the dark with isobutyrate plus sulfate. Two strains of filamentous, gliding sulfate-reducing bacteria, Tokyo 01 and Jade 02, were isolated in pure cultures. Both isolates oxidized acetate and other aliphatic acids. Enzyme assays indicated that the terminal oxidation occurs via the anaerobic C1 pathway (carbon monoxide dehydrogenase pathway). The 16S rRNA genes of the new isolates and of the two formerly described filamentous species of sulfate-reducing bacteria, Desulfonema limicola and Desulfonema magnum, were analyzed. All four strains were closely related to each other and affiliated with the δ-subclass of Proteobacteria. Another close relative was the unicellular Desulfococcus multivorans. Based on phylogenetic relationships and physiological properties, Strains Tokyo 01 and Jade 02 are assigned to a new species, Desulfonema ishimotoi. A new, fluorescently labeled oligonucleotide probe targeted against 16S rRNA was designed so that that it hybridized specifically with whole cells of Desulfonema species. Filamentous bacteria that hybridized with the same probe were detected in sediment samples and in association with the filamentous sulfur-oxidizing bacterium Thioploca in its natural habitat. We conclude that Desulfonema species constitute an ecologically significant fraction of the sulfate-reducing bacteria in organic-rich sediments and microbial mats. Received: 30 December 1998 / Accepted: 19 July 1999  相似文献   

17.
Microscale bioprocessing techniques are rapidly emerging as a means to increase the speed of bioprocess design and to reduce material consumption. However, there is still a lack of suitable parallelized techniques to investigate the industrially important group of filamentous bacteria and fungi. Cultivation of filamentous organisms in shake flasks is still the favored technique for comparing and optimizing cultivation conditions of production strains at mL‐scale. In this paper, the application of a microtiter plate‐based cultivation system in combination with the filamentous fungus Aspergillus niger was investigated. A protocol for reproducible cultivation was developed and evaluated. Productivity of A. niger concerning the rose‐like aroma compound 2‐phenylethanol showed low standard deviations while regular and consistent morphologies appeared in the parallelized system. Furthermore, the effect of addition of microparticles on the morphology was investigated. The results can be used to accelerate the process development with A. niger and other filamentous organisms.  相似文献   

18.
Chemical composition of the filamentous cells of Lactobacillus delbrueckii produced by vitamin B12 deficient culture was studied. Protein and RNA contents per unit cell volume of the filamentous cells were nearly equal to those of normal cells, but the DNA content was much reduced. A cytoplast of the filamentous cell possessed about twice as large volume as that of the normal cell. A cytoplast of either filamentous or normal cell seems to contain the same amount of DNA. DNA level and membrane formation necessary for cell division remained as future problems.  相似文献   

19.
Summary Pure culture transient experiments with Arthrobacter globiformis and Sphaerotilus natans revealed that the floc-forming species A. globiformis can adapt better to intermittent feeding (I-feeding) than the filamentous species S. natans. The floc-forming bacterium showed a larger overcapacity for substrate uptake, a larger accumulation of reserves (polysaccharides and poly--hydroxybutyric acid) and a more efficient mobilization of these polymers. As a consequence A. globiformis became dominant in an I-fed dual culture of S. natans and A. globiformis. The transient behaviour of filamentous continuously fed (C-fed) sludge was similar to the response of S. natans. Consequently, I-feeding of activated sludge could prevent the excessive growth of filamentous bacteria. I-fed sludge, showed a higher overcapacity, the accumulation of more reserves and a shorter lag phase in protein synthesis than C-fed activated sludge, during the transient response, after a pulse dose of substrate. However, to be effective in the control of bulking, the frequency of I-feeding should allow for a sufficiently long endogenous phase. In addition the available fraction of the COD is important in the optimization of I-feeding as a control strategy for filamentous bulking.  相似文献   

20.
Purified AFS (anti-filamentous phage substance) produced by Streptomyces lavendulae AM–7a showed specific antiphage activity against the male specific, deoxyribonucleic acid-containing filamentous phages of Escherichia coli without any activity against other DNA-phages nor the male-specific ribonucleic acid-containing phages of E. coli. AFS brought about no inactivation of free particles of filamentous phage, fl, nor the receptor of the host cells for the phage, while it showed strong killing effect against the fl-infected host cells at the concentration below 0.01 μg/ml. Antiphage activity of AFS might be due to its highly specific killing effect only on the E. coli cells infected with the filamentous DNA phages, while it exerted no effect on the growth of the unifected E. coli nor other microorganisms. Killing by AFS seemed to require the energy metabolism of the phage-infected host cells. Macro-molecular synthesis and respiration of the infected host cells were inhibited soon after the addition of small amounts of AFS without any cell lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号