首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
A membrane-bound metallo-endopeptidase that hydrolyzes human parathyroid hormone (1-84) and reduced hen egg lysozyme between hydrophilic amino acid residues was isolated from rat kidney [Yamaguchi et al. (1991) Eur. J. Biochem. 200, 563-571]. In this study, the hydrolyses of various peptide hormones and neuropeptides by the metallo-endopeptidase were examined using an automated gas-phase protein sequencer. The purified enzyme hydrolyzed the oxidized insulin B chain and substance P most rapidly, followed by big endothelin 1, neurotensin, angiotensin 1, endothelin 1, rat alpha-atrial natriuretic peptide and bradykinin, in this order. The enzyme mainly cleaved these peptides at bonds involving a hydrophilic amino acid residue. However, it cleaved bonds between less hydrophilic amino acid pairs in several short peptides, e.g. at the His5-Leu6 bond in oxidized insulin B chain, the Ile28-Val29 bond in big endothelin-1 and the Ile5-His6 and Phe8-His9 bonds in angiotensin 1. The enzyme cleavage sites of oxidized insulin B chain and angiotensin 1 were different from the reported sites cleaved by meprin and by endopeptidase 2, respectively. Kinetic determination of bradykinin hydrolysis by the purified enzyme yielded values of Km = 18.1 microM and kcat = 0.473 s-1, giving a ratio of kcat/Km = 2.62 x 10(4) s-1.M-1. The Km value was about 20-fold lower than that reported for meprin and endopeptidase 2. These results indicate that the membrane-bound metallo-endopeptidase from rat kidney is distinguished from meprin and endopeptidase 2 in its substrate specificity and is not parathyroid hormone specific, but has potential capacities to inactivate various biologically active peptide hormones and neuropeptides in vivo.  相似文献   

2.
A chitinolytic bacterium was isolated from Lake Suwa and identified as Aeromonas hydrophila strain SUWA-9. The strain grew well on a synthetic medium containing colloidal chitin as sole carbon source. Chitin-degrading activity was induced by colloidal chitin or N-acetylglucosamine (GlcNAc). Most of the activity, however, was not detected in culture fluid but was associated with cells. A beta-N-acetylglucosaminidase was purified after it was solubilized from cells by sonication. The purified enzyme hydrolyzed N-acetylchitooligomers from dimer to pentamer and produced GlcNAc as a final product. The enzyme also hydrolyzed synthetic substrates such as p-nitrophenyl (pNP)-N-acetyl-beta-D-glucosaminide and pNP-N-acetyl-beta-D-galactosaminide. A gene coding for the purified beta-N-acetylglucosaminidase was isolated. The ORF identified is 2661 nucleotides long and encodes a precursor protein of 887 amino acids including a signal peptide of 22 amino acid residues. The amino acid sequence deduced showed a high similarity to those of bacterial beta-N-acetylhexosaminidases classified in family 20 of glycosyl hydrolases.  相似文献   

3.
The aim of this work was to purify and characterize the extra-cellular leucine amino peptidase (LAP) from Streptomyces gedanensis and also study its applications for protein hydrolysis. The enzyme was purified to homogeneity by ammonium sulfate fractionation and sequential chromatography steps. LAP appeared to be a monomeric enzyme with a molecular weight of ~75 kDa determined by sodium dodecyl sulfate poly acryl amide gel electrophoresis (SDS-PAGE). The enzyme preferentially hydrolyzed leucine p-nitroanilide followed by Met, Phe, Lys and Arg derivatives. Kinetic studies on the purified enzyme confirmed that it can hydrolyze peptide as well as ester substrates at comparable rates. This amino peptidase was highly resistant to different concentrations of various organic solvents. The characteristics of this amino peptidase, including thermo stability, organic solvent resistance, its activity against various substrates, and also it showed esterase and peptidase activity at comparable rates; identified this amino peptidase as a novel one. The specificity towards aromatic and hydrophobic amino acid residues, the solvent-resistance and thermo stability make this amino peptidase could offer interesting possibilities for various industrial applications including debittering of protein hydrolysates, peptide and ester synthesis.  相似文献   

4.
Human parathyroid hormone (hPTH) is a peptide hormone consisting of 84 amino acids (hPTH(1-84)). Employing the promoter and signal sequence of Staphylococcus aureus-protein A we have expressed hPTH in Escherichia coli. The expressed proteins are excreted to the growth medium, allowing for rapid and easy purification of the desired products. By amino acid sequence analysis and mass spectrometry, we have shown that the major excreted product is correctly processed human identical hPTH(1-84). The purified recombinant hPTH(1-84) stimulates adenylate cyclase activity in rat osteosarcoma cell membranes to exactly the same extent as synthetic parathyroid hormone standards, indicating that the recombinant product has full biological activity.  相似文献   

5.
Thermus sp. strain Rt41A produces an extracellular thermostable alkaline proteinase. The enzyme has a high isoelectric point (10.25-10.5) which can be exploited in purification by using cation-exchange chromatography. The proteinase was purified to homogeneity and has a molecular mass of 32.5 kDa by SDS/PAGE. It is a glycoprotein, containing 0.7% carbohydrate as glucose equivalents, and has four half-cystine residues present as two disulphide bonds. Maximum proteolytic activity was observed at pH 8.0 against azocasein and greater than 75% of this activity was retained in the pH range 7.0-10.0. Substrate inhibition was observed with casein and azocasein. The enzyme was stable in the pH range 5.0-10.0 and maximum activity, in a 10-min assay, was observed at 90 degrees C with 5 mM CaCl2 present. No loss of activity was observed after 24 h at 70 degrees C and the half-lives at 80 degrees C and 90 degrees C were 13.5 h and 20 min, respectively. Removal of Ca2+ reduced the temperature for maximum proteolytic activity against azocasein to 60 degrees C and the half-life at 70 degrees C was 2.85 min. The enzyme was stable at low and high ionic strength and in the presence of denaturing reagents and organic solvents. Rt41A proteinase cleaved a number of synthetic amino acid p-nitrophenol esters, the kinetic data indicating that small aliphatic or aromatic amino acids were the preferred residue at the P1 position. The kinetic data for the hydrolysis of a number of peptide p-nitroanilide substrates are also reported. Primary cleavage of the oxidized insulin B chain occurred at sites where the P1' amino acid was aromatic. Minor cleavage sites (24 h incubation) were for amino acids with aliphatic side chains at the P1' position. The esterase and insulin cleavage data indicate the specificity is similar for both the P1 and P1' sites.  相似文献   

6.
An endopeptidase was purified to homogeneity from the cell extracts of Treponema denticola ATCC 35405 (a human oral spirochete) by a procedure that comprised dialysis, anion exchange fast protein liquid chromatography (FPLC), hydroxylapatite FPLC, immobilized metal affinity FPLC, FPLC chromatofocusing, and two consecutive gel permeation FPLC steps. The enzyme is a 62-kDa protein with an isoelectric point of 6.5-7.0. Experiments with enzyme inhibitors suggest that this enzyme is a metallopeptidase and that its activity is not dependent on sulfhydryl or serine residues. The enzyme is active on furylacryloyl-Leu-Gly-Pro-Ala (FALGPA; pH optimum near 6.25), bradykinin (Bk), and several Bk-related peptides. In FALGPA, the cleavage site is the Leu-Gly bond. An imino acid is absolutely necessary in position P'2. The shortest hydrolyzed peptide was FALGPA, the hydrolysis of which is strongly and competitively inhibited by Bk (Ki = 5.0 microM). The pyrophosphate ion and phosphoramidon also inhibited the hydrolysis of FALGPA. The enzyme does not hydrolyze all typical synthetic collagenase substrates, Azocoll, Azocasein, or Type I and Type IV collagens, or any other proteins tested. In Bk-related peptides, the hydrolyzed bond was Phe5-Ser6. Since a Bk antagonist and a Bk-potentiating pentapeptide also were good substrates, it is possible that the enzyme hydrolyzes Bks and related peptides only because of the coincidental, specific amino acid sequence of those substrates. A proposal is made that since a substantial portion of the amino acid sequence of FALGPA is present in collagen (and additionally acknowledging that the furylacryloyl residue structurally resembles that of proline), the natural substrates of this enzyme may be small, soluble collagen fragments produced by other enzymes from periodontal connective tissue, and that such peptides are important for the nutrition and pathogenicity of T. denticola.  相似文献   

7.
The cel-3 gene cloned from Fibrobacter succinogenes into Escherichia coli coded for the enzyme EG3, which exhibited both endoglucanase and cellobiosidase activities. The gene had an open reading frame of 1,974 base pairs, coding for a protein of 73.4 kilodaltons (kDa). However, the enzyme purified from the osmotic shock fluid of E. coli was 43 kDa. The amino terminus of the 43-kDa protein matched amino acid residue 266 of the protein coded for by the open reading frame, indicating proteolysis in E. coli. In addition to the 43-kDa protein, Western immunoblotting revealed a 94-kDa membranous form of the enzyme in E. coli and a single protein of 118 kDa in F. succinogenes. Thus, the purified protein appears to be a proteolytic degradation product of a native protein which was 94 kDa in E. coli and 118 kDa in F. succinogenes. The discrepancy between the molecular weight expected on the basis of the DNA sequence and the in vivo form may be due to anomalous migration during electrophoresis, to glycosylation of the native enzyme, or to fatty acyl substitution at the N terminus. One of two putative signal peptide cleavage sites bore a strong resemblance to known lipoprotein leader sequences. The purified 43-kDa peptide exhibited a high Km (53 mg/ml) for carboxymethyl cellulose but a low Km (3 to 4 mg/ml) for lichenan and barley beta-glucan. The enzyme hydrolyzed amorphous cellulose, and cellobiose and cellotriose were the major products of hydrolysis. Cellotriose, but not cellobiose, was cleaved by the enzyme. EG3 exhibited significant amino acid sequence homology with endoglucanase CelC from Clostridium thermocellum, and as with both CelA and CelC of C. thermocellum, it had a putative active site which could be aligned with the active site of hen egg white lysozyme at the highly conserved amino acid residues Asn-44 and Asp-52.  相似文献   

8.
Bradykinin-hydrolyzing enzyme was purified 200-fold from a soluble fraction of cornified cells from 2-day-old rat epidermis. The enzyme has an Mr of 80,000 as identified by SDS polyacrylamide gel electrophoresis and HPLC gel filtration. The isoelectric point of the enzyme is 5.05. The enzyme hydrolyzed Phe5-Ser6 of bradykinin and seven bradykinin-related peptides, and Tyr5-Ser6 of Tyr5-bradykinin. Production of bradykinin fragments, Arg-Pro-Pro-Gly-Phe and Ser-Pro-Phe-Arg, proceeded in a stoichiometric fashion. Km and Vmax values for bradykinin were 33 microM and 22.2 mumol/min per mg, respectively. The enzyme did not hydrolyze azocasein, denatured hemoglobin or synthetic substrates for other epidermal proteinases. The enzyme activity was enhanced by reducing agents and inhibited by sulfhydryl-blocking agents and divalent cations. Diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride had no effects. The enzyme has a pH optimum of 7.0-7.5 and is stable at 4 degrees C for 1 month, but loses activity completely at 60 degrees C for 10 min. The epidermal endopeptidase differs in several properties from endooligopeptidase A purified from brain which hydrolyzes Phe5-Ser6 of bradykinin.  相似文献   

9.
An arginine specific protease, Sp-protease, was purified by column chromatography from freeze-dried Spirulina platensis using a five-step process. Purified Sp-protease has a molecular weight of 80 kDa. It hydrolyzed the synthetic substrates containing arginine residue in the P1 position but did not hydrolyze synthetic substrates containing other amino acid residues, including lysine residue in the P1 position. Among the synthetic substrates tested, a substrate of plasminogen activator (Pyr-Gly-Arg-MCA) was hydrolyzed most effectively with the enzyme (Km = 5.5 × 10−6 M), and fibrin gel was solubilized via activation of intrinsic plasminogen to plasmin with the enzyme. Activity was inhibited completely with camostat mesilate (Ki = 1.1 × 10−8 M) and leupeptin (Ki = 3.9 × 10−8 M) but was not inhibited with Nα-tosyl-L-lysine chloromethyl ketone (TLCK). The optimum pH of the enzyme has a range of pH 9.0 to pH 11.0. The optimum temperature was 50°C; the enzyme was stable at 0–50°C.  相似文献   

10.
A novel protease produced by Bacillus cereus grown on wool as carbon and nitrogen source was purified. B. cereus protease is a neutral metalloprotease with a molecular mass of 45.6 kDa. The optimum activity was at 45 °C and pH 7.0. The substrate specificity was assessed using oxidized insulin B-chain and synthetic peptide substrates. The cleavage of the insulin B-chain was determined to be Asn3, Leu6, His10-Leu11, Ala14, Glu21, after 12 h incubation. Among the peptide substrates, the enzyme did not exhibit activity towards ester substrates; with p-nitroanilide, the kinetic data indicate that aliphatic and aromatic amino acids were the preferred residues at the P1 position. For furylacryloyl peptides substrates, which are typical substrates for thermolysin, the enzyme exhibited high hydrolytic activity with a Km values of 0.858 and 2.363 mM for N-(3-[2-Furyl]acryloyl)-Ala-Phe amide and N-(3-[2-Furyl]acryloyl)-Gly-Leu amide, respectively. The purified protease hydrolysed proteins substrates such as azocasein, azocoll, keratin azure and wool.  相似文献   

11.
Hebeloma crustuliniforme produced an extracellular acid proteinase in a liquid medium containing bovine serum albumin as the sole nitrogen source. The proteinase was purified 26-fold with 20% activity recovery and was shown to have a molecular weight of 37,800 (as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and an isoelectric point of 4.8 +/- 0.2. The enzyme was most active at 50 degrees C and pH 2.5 against bovine serum albumin and was stable in the absence of substrates at temperatures up to 45 degrees C and pHs between 2.0 and 5.0. Pepstatin A, diazoacetyl-dl-norleucine methylester, metallic ions Fe and Fe, and phenolic acids severely inhibited the enzyme activity, while antipain, leupeptin, N-alpha-p-tosyl-l-lysine chloromethyl ketone, and trypsin inhibitor inhibited the activity moderately. The proteinase hydrolyzed bovine serum albumin and cytochrome c rapidly compared with casein and azocasein but failed to hydrolyze any of the low-molecular-weight peptide derivatives tested.  相似文献   

12.
Saccharomyces cerevisiaewas used as host for high-level production of intact human parathyroid hormone (hPTH). The yield increased about 30-fold by changing from the constitutive MFα promoter to the inducibleCUP1promoter in the expression cassettes, use of another host strain, and optimization of growth conditions where especially the pH value was crucial. The secreted products consisted mainly of intact hormone, hPTH(1-84). In addition, two C-terminally truncated forms that lacked the four or five last amino acid residues, hPTH(1-80) and hPTH(1-79), were identified. These hPTH forms migrated aberrantly by SDS–PAGE as 14-kDa proteins, while the real masses measured by mass spectrometry on HPLC-purified products were about 9 kDa. Availability of such easily purified truncated forms will be valuable for studies of how the C-terminal residues affect the structure and function of the hormone. Combination of mutations and disruptions of the host genes encoding proteinase A, B, carboxypeptidase Y, and Kex1p or Mkc7p did not influence the C-terminal deletions. The secretion of hPTH could be enhanced by overexpression of the yeast syntaxin geneSSO2, but the total level of the hormone was not improved due to impaired growth.  相似文献   

13.
An extracellular xylanase produced by Streptomyces matensis DW67 was purified from the culture supernatant by ammonium sulfate precipitation, ion exchange and gel filtration chromatography and characterized. The xylanase was purified to 14.5-fold to homogeneity with a recovery yield of 14.1%. The purified xylanase appeared as a single protein band on SDS-PAGE with a molecular mass of 21.2 kDa. However, it had a very low apparent molecular mass of 3.3 kDa as determined by gel filtration chromatography. The N-terminal sequence of first 15 amino acid residues was determined as ATTITTNQTGYDGMY. The optimal temperature and pH for purified xylanase was 65 °C and pH 7.0, respectively. The enzyme was stable within the pH range of 4.5–8.0 and was up to 55 °C. The xylanase showed specific activity towards different xylans and no activity towards other substrates tested. Hydrolysis of birchwood xylan by the xylanase yielded xylobiose and xylotriose as principal products. The enzyme hardly hydrolyzed xylobiose and xylotriose, but it could hydrolyze xylotetraose and xylopentaose to produce mainly xylobiose and xylotriose through transglycosylation. These unique properties of the purified xylanase make this enzyme attractive for biotechnological applications, such as bioblenching in paper and pulp industries, production of xylooligosaccharides. This is the first report of the xylanase from S. matensis.  相似文献   

14.
Tadpole collagenase hydrolyzed native and denatured collagen and synthetic peptides with sequences of 2,4-dinitrophenyl-L-prolyl-L-leucylglycyl-L-isoleucyl-L-alanylglycyl-L-arginie amide and 2,4-dinitrophenyl-L-prolyl-L-glutaminyl-glycyl-L-isoleucyl-L-alanylglycyl-L-glutaminyl-D-arginine. The specific enzyme activity against the latter substrate and collagen fibrils is found to be 933 nmol/min per mg protein and 8440 units (microgram collagen degraded/min), respectively. Optimum pH for the enzyme is 7.5-8.5. A collagenase complex with alpha2-macroglobulin did not hydrolyze collagen fibrils, but digested the synthetic substrates at the Gly-Ile bond. The amino acid composition of the enzyme was determined. Immunoelectrophoresis of the enzyme at pH 8.6 against anti-tadpole collagenase rabbit immunoglobulin G shows a single precipitin line at a position migrating faster than human serum albumin and corresponding to enzyme activity against collagen fibril and synthetic substrates.  相似文献   

15.
A fibrinolytic enzyme from Bacillus subtilis BK-17 has been purified to homogeneity by gel-filtration and ion-exchange chromatography. Compared to the crude enzyme extract, the specific activity of the enzyme increased 929-fold with a recovery of 29%. The subunit molecular mass of the purified enzyme was estimated to be 31 kDa by SDS–PAGE. The N-terminal amino acid sequence of the purified fibrinolytic enzyme was: A-Q-S-V-P-Y-G-V-S-Q-I-K-A-P-A-A-H-N. The sequence was highly homologous to the fibrinolytic enzymes nattokinase, subtilisin J and subtilisin E from Bacillus spp. However, there was a substitution of three amino acid residues in the N-terminal sequence. The amidolytic activity of the purified enzyme for several substrates was assessed. In comparison with nattokinase and CK (fibrinolytic enzyme from a Bacillus spp.), which showed strong fibrinolytic activity, the amidolytic activity of the enzyme for the synthetic substrate, kallikrein (H-D-Val-Leu-Arg-pNA, S-2266) increased 2.4- and 11.8-fold, respectively.  相似文献   

16.
An endopeptidase (LEP-II), which has a unique substrate specificity, was purified to homogeneity by conventional chromatographic techniques from Streptococcus cremoris H61. The enzyme was a metalloendopeptidase since it was inhibited by EDTA and 1,10-phenanthroline; the metal-depleted enzyme could be fully reactivated by micromolar levels of Zn2+ and was not inhibited by specific inhibitors for serine or thiol protease. The molecular mass of the enzyme was estimated to be 80 kDa by Sephacryl S-300 gel filtration and high-performance liquid chromatography with a TSK-G3000SW column. The enzyme consisted of two identical subunits and the N-terminal sequence of LEP-II was determined up to the 19th residue. Although the enzyme had a broad substrate specificity it specifically hydrolyzed the peptide bonds involving the amino groups of hydrophobic amino acid residues. Various small polypeptides, such as alpha s1-CN(f1-23), alpha s1-CN(f91-100), oxidized insulin B chain, glucagon and some biologically active peptides were hydrolyzed. However, a variety of larger polypeptides or proteins, such as alpha s1-CN(f1-54), alpha s1-CN(f61-123), alpha s1-CN(f136-196), alpha s1-casein, beta-casein, and kappa-casein were not hydrolyzed. LEP-II recognized the size of its substrates, which were limited below a molecular mass of about 3.5 kDa.  相似文献   

17.
A novel fish muscle serine protease named muscle soluble serine protease (MSSP) was purified from the soluble fraction of lizard fish (Saurida undosquamis: Synodontidae) muscle by ammonium sulfate fractionation followed by four steps of column chromatographies. In native-PAGE, the purified enzyme appeared as a single band with an estimated mol. mass of approximately 380 kDa by gel filtration. In SDS-PAGE under reducing conditions, the purified enzyme migrated as two protein bands at 110 and 100 kDa, named subunits A and B, respectively. The 20 residues of N-terminal amino acid sequence of subunit B showed 70% of homology to beta-chain of carp alpha(2)-macroglobulin-1. Moreover, both subunits A and B showed immunoreactivity with anti carp alpha(2)-macroglobulin antibody. Purified MSSP was inactivated by Pefabloc SC, aprotinin, benzamidine and TLCK, but not by alpha(1)-antitrypsin. After acid treatment (pH 2, 24 h), however, the enzyme activity eluted at 14 kDa from Sephacryl S-200 carried out under acidic conditions was inhibited by alpha(1)-antitrypsin. Lizard fish MSSP most rapidly hydrolyzed Boc-Val-Pro-Arg-MCA and Boc-Gln-Arg-Arg-MCA, but did not hydrolyzed Suc-Leu-Leu-Val-Tyr-MCA and Suc-Ala-Ala-Pro-Phe-MCA, and was not suppressed either by E-64, pepstatin A and ethylenediaminetetraacetic acid (EDTA). These results indicate that the purified MSSP is a serine protease complexed with alpha(2)-macroglobulin, and the entrapped protease was dissociated by the acid treatment. Purified and free MSSPs were most active at pH 10.0 and 9.0, respectively. Purified MSSP degraded myofibrillar proteins and casein but time courses of degradation of these substrates by the enzyme differed.  相似文献   

18.
The lysozyme (rabbit kidney lysozyme) from the homogenate of rabbit kidney (Japanese white) was purified by repeated cation-exchange chromatography on Bio-Rex 70. The amino acid sequence was determined by automated gas-phase Edman degradation of the peptides obtained from the digestion of reduced and S-carboxymethylated rabbit lysozyme with Achromobacter protease I (lysyl endopeptidase). The sequence thus determined was KIYERCELARTLKKLGLDGYKGVSLANWMCLAKWESSYNTRATNYNPGDKSTDYGIFQ INSRYWCNDGKTPRAVNACHIPCSDLLKDDITQAVACAKRVVSDPQGIRAWVAWRNHCQ NQDLTPYIRGCGV, indicating 25 amino acid substitutions from human lysozyme. The lytic activity of rabbit lysozyme against Micrococcus lysodeikticus at pH 7, ionic strength of 0.1, and 30 degrees C was found to be 190 and 60% of those of hen and human lysozymes, respectively. The lytic activity-pH profile of rabbit lysozyme was slightly different from those of hen and human lysozymes. While hen and human lysozymes had wide optimum activities at around pH 5.5-8.5, the optimum activity of rabbit lysozyme was at around pH 5.5-7.0. The high proline content (five residues per molecule compared with two prolines per molecule in hen or human lysozyme) is one of the interesting features of rabbit lysozyme. The transition temperatures for the unfolding of rabbit, human, and hen lysozymes in 3 M guanidine hydrochloride at pH 5.5 were 51.2, 45.5, and 45.4 degrees C, respectively, indicating that rabbit lysozyme is stabler than the other two lysozymes. The high proline content may be responsible for the increased stability of rabbit lysozyme.  相似文献   

19.
Snake Venom Metalloproteinases (SVMPs) are the most abundant components present in Viperidae venom. They are important in the induction of systemic alterations and local tissue damage after envenomation. In the present study, a metalloproteinase named BpMPI was isolated from Bothropoides pauloensis snake venom and its biochemical and enzymatic characteristics were determined. BpMPI was purified in two chromatography steps on ion exchange CM-Sepharose Fast flow and Sephacryl S-300. This protease was homogeneous on SDS-PAGE and showed a single chain polypeptide of 20 kDa under non reducing conditions. The partial amino acid sequence of the enzyme showed high similarity with other SVMPs enzymes from snake venoms. BpMPI showed proteolytic activity upon azocasein and bovine fibrinogen and was inhibited by EDTA, 1,10 phenanthroline and β-mercaptoethanol. Moreover, this enzyme showed stability at neutral and alkaline pH and it was inactivated at high temperatures. BpMPI was able to hydrolyze glandular and tissue kallikrein substrates, but was unable to act upon factor Xa and plasmin substrates. The enzyme did not induce local hemorrhage in the dorsal region of mice even at high doses. Taken together, our data showed that BpMP-I is in fact a fibrinogenolytic metalloproteinase and a non hemorrhagic enzyme.  相似文献   

20.
Burkholderia sp. HY-10 isolated from the digestive tracts of the longicorn beetle, Prionus insularis, produced an extracellular lipase with a molecular weight of 33.5 kDa estimated by SDS-PAGE. The lipase was purified from the culture supernatant to near electrophoretic homogenity by a one-step adsorption-desorption procedure using a polypropylene matrix followed by a concentration step. The purified lipase exhibited highest activities at pH 8.5 and 60 degrees . A broad range of lipase substrates, from C4 to C18 rho-nitrophenyl esters, were hydrolyzed efficiently by the lipase. The most efficient substrate was rho-nitrophenyl caproate (C6). A 2485 bp DNA fragment was isolated by PCR amplification and chromosomal walking which encoded two polypeptides of 364 and 346 amino acids, identified as a lipase and a lipase foldase, respectively. The N-terminal amino acid sequence of the purified lipase and nucleotide sequence analysis predicted that the precursor lipase was proteolytically modified through the secretion step and produced a catalytically active 33.5 kDa protein. The deduced amino acid sequence for the lipase shared extensive similarity with those of the lipase family I.2 of lipases from other bacteria. The deduced amino acid sequence contained two Cystein residues forming a disulfide bond in the molecule and three, well-conserved amino acid residues, Ser131, His330, and Asp308, which composed the catalytic triad of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号