首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescence In Situ Hybridization (FISH) technique has been applied on somatic chromosomes and extended DNA fibers in the medicinally important species of Chlorophytum to elucidate physical localization and measurement of the rDNA sites using two rRNA multigene families homologous to 45S and 5S rDNA. The two species of Chlorophytum, namely C. borivillianum and C. comosum, both with 2n = 28, reveal diversity for copy number and localization of rDNA sites. C. borivillianum is comprised of five 45S-rDNA sites:one each in the secondary constriction region of chromosomes 7, 8, 9; one in the subtelomeric region of the short arm of chromosome 2 and the telomeric region of the short arm of chromosome 12; and one 5S-rDNA site in the subtelomeric region of the long arm of chromosome 1. In C. comosum, there are three 45S-rDNA sites (one each in the short arm of chromosomes 12, 13, and 14) and two 5S-rDNA sites (in the secondary constriction regions of chromosomes 2 and 13). Fiber FISH analysis conducted on extended DNA fibers revealed variation in the size of continuous tandem strings for the two r-DNA families. Taking the standard value of native B DNA equivalent to 3.27 kb for 1 mum, it was estimated that the physical size of continuous DNA strings is of the order of approximately 90 kb, 180 kb, and 300 kb for 45S-rDNA and of the order of 60 kb, 150 kb for 5S-rDNA in C. comosum, grossly in correspondence to their respective physical sizes at metaphase.  相似文献   

2.
The molecular basis of a highly polymorphic RFLP marker, HTY146c3 (D7S591), within the subtelomeric region of human chromosome 7q was determined by restriction-fragment and DNA sequence analysis. Two polymorphic systems were found--a simple base-substitution polymorphism and a GC-rich VNTR element with a core structure of C3AG2C2. In addition, a compound-imperfect CA dinucleotide-repeat element was identified approximately 10-20 kb from the telomeric sequence repeat (T2AG3), demonstrating that microsatellites can extend essentially to the ends of human chromosomes. The microsatellite marker, sAVH-6 (D7S594), is highly polymorphic, with 10 alleles and an observed heterozygosity of 84% found with the CEPH (Centre d'Etude du Polymorphisme Humain) reference pedigree collection. In combination with the RFLPs, the informativeness of the markers contained within 240 kb at the telomere approaches 100%. A unique genetic and physical STS marker, sAVH-6, defines the endpoint of the long arm of human chromosome 7.  相似文献   

3.
Ji X  Zhao S 《Genomics》2008,91(3):249-258
We discovered two new complex elements while studying large genomic rearrangements and segmental duplications in the human genome. Both resemble bacterial composite DNA transposon Tn9, consisting of a core flanked by mobile elements, except that the flanking element is not a DNA transposon but instead is long terminal repeat retrotransposon-like with human endogenous retrovirus and satellite sequences. Based on the core size, we named them Xiao ( approximately 30 kb) and DA ( approximately 280 kb), meaning small and big, respectively, in Chinese. Xiao originated from a 19p region encoding olfactory receptor 7E members after the human/ape divergence from Old World monkeys, while DA likely evolved from a Xiao by inserting approximately 200 kb of chimeric sequence from 16p and 21q into the Xiao core, resulting in a target site duplication of 3.4 kb. DA/Xiao was identified in 30 loci on 12 chromosomes, and only DAs mediated intrachromosomal rearrangements, based on our reconstructed human-mouse-rat ancestral genome and the rhesus macaque genome.  相似文献   

4.
Telomeres are DNA-protein complexes that protect linear chromosomes from degradation and fusions. Telomeric DNA is repetitive and G-rich, and protrudes towards the end of the chromosomes as 3'G-overhangs. In Leishmania spp., sequences adjacent to telomeres comprise the Leishmania conserved telomere associated sequences (LCTAS) that are around 100 bp long and contain two conserved sequence elements (CSB1 and CSB2), in addition to non-conserved sequences. The aim of this work was to study the genomic organization of Leishmania (Leishmania) amazonensis telomeric/subtelomeric sequences. Leishmania amazonensis chromosomes were separated in a single Pulsed Field Gel Electrophoresis (PFGE) gel as 25 ethidium bromide-stained bands. All of the bands hybridized with the telomeric probe (5'-TTAGGG-3')3 and with probes generated from the conserved subtelomeric elements (CSB1, CSB2). Terminal restriction fragments (TRF) of L. amazonensis chromosomes were analyzed by hybridizing restriction digested genomic DNA and chromosomal DNA separated in 2D-PFGE with the telomeric probe. The L. amazonensis TRF was estimated to be approximately 3.3 kb long and the telomeres were polymorphic and ranged in size from 0.2 to 1.0 kb. Afa I restriction sites within the conserved CSB1 elements released the telomeres from the rest of the chromosome. Bal 31-sensitive analysis confirmed the presence of terminal Afa I restriction sites and served to differentiate telomeric fragments from interstitial internal sequences. The size of the L. amazonensis 3' G-overhang was estimated by non-denaturing Southern blotting to be approximately 12 nt long. Using similar approaches, the subtelomeric domains CSB1 and CSB2 were found to be present in a low copy number compared to telomeres and were organized in blocks of 0.3-1.5 kb flanked by Hinf I and Hae III restriction sites. A model for the organization of L. amazonensis chromosomal ends is provided.  相似文献   

5.
DNA rearrangements in Paramecium lead to the formation of macronuclear chromosomes, the sizes of which range from 50 and 800 kb (1 kb is 10(3) base-pairs). This process does not appear to be a simple size reduction of the micronuclear chromosomes by specific and reproducible DNA sequence elimination and chromosomal breakage followed by chromosomal amplification. On the contrary, this process generates a variety of different, but sequence-related, macronuclear chromosomes from a unique set of micronuclear chromosomes. This paper describes an attempt to understand the nature of the diversity of the macronuclear chromosomes and the mechanisms of their production. The structure of three macronuclear chromosomes, 480, 250 and 230 kb in size, have been determined utilizing chromosome-jumping and YAC-cloning techniques. The two smallest chromosomes correspond roughly to the two halves of the longest chromosome. The main contribution to the diversity arises from the chromosomal ends and is due to variable positions of the telomere addition sites and/or to variable rearrangements of DNA sequences. The 480 kb chromosome contains a region of variable length, which is likely to be due to a variable deletion, located at the position of telomerization seen in the two small chromosomes. A model of chromosomal breakage is proposed to rationalize this result where micronuclear DNA is first amplified, broken and degraded to various extent from the newly formed ends, which subsequently are either telomerized or religated. Potential implications of these processes for gene expression is discussed. Known phenotypes that have a macronuclear determinism could be explained by this type of process.  相似文献   

6.
We report on a study performed to determine a boundary of the region with the potential to contribute to the predisposition to human narcolepsy (the susceptibility region) in the human leukocyte antigen (HLA) region. We investigated a Japanese narcolepsy family, in which a de novo chromosomal recombination occurred between the HLA-DRB1 and HLA-B genes in the proband. The recombinant chromosome carrying HLA-DRB1*1501 was transmitted to the affected child and grandchild, suggesting that a strong genetic factor(s) predisposing to the disorder was (were) present on the chromosome, and that the recombination breakpoint could be regarded as a boundary to the susceptibility region. To search for the breakpoint, we carried out allele typing at various polymorphic sites, e.g., microsatellite repeat polymorphisms, restriction fragment length polymorphisms, and single-nucleotide polymorphisms in the HLA region, and examined haplotypes with the polymorphic sites in the family members. Haplotype analyses revealed that the recombination breakpoint was present approximately 50 kb to the telomeric side of the palmitoyl-protein thioesterase-2 (PPT2) gene in the HLA class III region. From the gene map of the HLA region, the cyclic AMP response element-binding protein-related protein gene (CREB-RP) appeared to be located at the telomeric end in the 50-kb region. Therefore, the data presented here suggest that the susceptibility region for the disorder in the family is present on the centromeric side of the CREB-RP gene in the recombinant Chromosome 6 carrying HLA-DRB1*1501.  相似文献   

7.
Brunner S  Keller B  Feuillet C 《Genetics》2003,164(2):673-683
Grass genomes differ greatly in chromosome number, ploidy level, and size. Despite these differences, very good conservation of the marker order (collinearity) was found at the genetic map level between the different grass genomes. Collinearity is particularly good between rice chromosome 1 and the group 3 chromosomes in the Triticeae. We have used this collinearity to saturate the leaf rust resistance locus Rph7 on chromosome 3HS in barley with ESTs originating from rice chromosome 1S. Chromosome walking allowed the establishment of a contig of 212 kb spanning the Rph7 resistance gene. Sequencing of the contig showed an average gene density of one gene/20 kb with islands of higher density. Comparison with the orthologous rice sequence revealed the complete conservation of five members of the HGA gene family whereas intergenic regions differ greatly in size and composition. In rice, the five genes are closely associated whereas in barley intergenic regions are >38-fold larger. The size difference is due mainly to the presence of six additional genes as well as noncoding low-copy sequences. Our data suggest that a major rearrangement occurred in this region since the Triticeae and rice lineage diverged.  相似文献   

8.
Kota RS  Dvorak J 《Genetics》1988,120(4):1085-1094
A massive restructuring of chromosomes was observed during the production of a substitution of chromosome 6B(s) from Triticum speltoides (Tausch) Gren. ex Richter for chromosome 6B of Chinese Spring wheat (Triticum aestivum L.). Deletions, translocations, ring chromosomes, dicentric chromosomes and a paracentric inversion were observed. Chromosome rearrangements occurred in both euchromatic and heterochromatic regions. Chromosome rearrangements were not observed either in the amphiploid between Chinese Spring and T. speltoides or in Chinese Spring. No chromosome rearrangements were observed in the backcross derivatives; however, after self-pollination of a monosomic substitution (2n = 41) of chromosome 6B(s) for wheat chromosome 6B, 49 of the 138 plants carried chromosome aberrations. Chromosome rearrangements were observed in both wheat and T. speltoides chromosomes. The frequency of chromosome rearrangements was high among the B-genome chromosomes, moderate among the A-genome chromosomes, and low among the D-genome chromosomes. In the B genome, the rearrangements were nonrandom, occurring most frequently in chromosomes 1B and 5B. Chromosome rearrangements were also frequent for the 6B(s) chromosome of T. speltoides. An intriguing aspect of these observations is that they indicate that wheat genomes can be subject to uneven rates of structural chromosome differentiation in spite of being in the same nucleus.  相似文献   

9.
针对眼斑拟石首鱼Sciaenops ocellatus染色体标记匮乏的问题, 利用荧光原位杂交(FISH)定位了眼斑拟石首鱼的18S rDNA、5S rDNA和端粒序列。结果显示, 眼斑拟石首鱼的核型公式为2n=48t; 仅有1对18S rDNA位点, 位于第1对染色体的次缢痕部位; 有2对5S rDNA位点, FISH信号强度不等, 强信号位于第8对染色体的近着丝粒端, 弱信号位于第3对染色体的臂间。端粒FISH信号出现于所有染色体的两端, 但表现出染色体两端信号不平衡的特点, 着丝粒端FISH信号明显强于远端信号。这一特点为判定染色体的方向提供了便利。结合其他石首鱼的核型数据可以推断, 2n=48t的核型及单对近着丝粒分布的18S rDNA位点是石首鱼的共同祖征; 在石首鱼进化过程中, 曾发生活跃但不影响宏观核型的小规模重排。研究结果丰富了眼斑拟石首鱼染色体的辨识标记, 并为研究石首鱼染色体进化提供了基础数据。  相似文献   

10.
A physical map including four pseudogenes and 10 gene fragments and spanning 500 kb in the juxta-centromeric region of the long arm of human chromosome 21 is presented. cDNA fragments isolated from a selected cDNA library were characterized and mapped to the 831B6 YAC and to two BAC contigs that cover 250 kb of the region. An 85 kb genomic sequence located in the proximal region of the map was analyzed for putative exons. Four pseudogenes were found, including psiIGSF3, psiEIF3, psiGCT-rel whose functional copies map to chromosome 1p13, chromosome 2 and chromosome 22q11, respectively. The TTLL1 pseudogene corresponds to a new gene whose functional copy maps to chromosome 22q13. Ten gene fragments represent novel sequences that have related sequences on different human chromosomes and show 97-100% nucleotide identity to chromosome 21. These may correspond to pseudogenes on chromosome 21 and to functional genes in other chromosomes. The 85 kb genomic sequence was analyzed also for GC content, CpG islands, and repetitive sequence distribution. A GC-poor L isochore spanning 40 kb from satellite 1 was observed in the most centromeric region, next to a GC-rich H isochore that is a candidate region for the presence of functional genes. The pericentric duplication of a 7.8 kb region that is derived from the 22q13 chromosome band is described. We showed that the juxta-centromeric region of human chromosome 21 is enriched for retrotransposed pseudogenes and gene fragments transferred by interchromosome duplications, but we do not rule out the possibility that the region harbors functional genes also.  相似文献   

11.
Summary The behaviour of chromosome 15 is very different from that of the other acrocentric chromosomes. The cytogenetic characteristics of rearrangements associated with Prader-Willi syndrome (PWS) are analyzed as similar rearrangements irrespective of the associated phenotype (reciprocal translocations of chromosome 15, small bisatellited additional chromosomes, Robertsonian translocations, interstitial deletions, pericentric inversions). This study suggests that: (1) The proximal (15q) region and PWS seem to be indissociable; (2) chromosome 15 has an indisputable cytogenetic originality which could be related to its histochemical properties. Chromosome 15 constitutive heterochromatin usually contains much 5-methylcytosine-rich DNA and a large amount of each of the four satellite DNAs. Furthermore the existence in the proximal (15q) region of one or several palindromic sequences could be postulated to explain the great lability of this region of chromosome 15.  相似文献   

12.
The mutation involved in myotonic dystrophy (DM) has been mapped to the region between the ERCC1 DNA repair gene and the anonymous D19S51 locus on 19q13.3. Starting at locus D19S112 (probe pX75b), which served as a novel entry site for this chromosome region, we have established a cosmid contig of approximately 200 kb. In the contig, a gene expressed in the brain and a highly informative, 12-allele (TG)n variable simple sequence motif (VSSM) were identified. With this marker, designated X75b-VSSM, a highly characteristic size distribution of alleles linked with DM, which differed significantly from that on normal chromosomes, was observed. Combining our physical mapping and genetic data, we show that the X75b-VSSM marker is the closest distal to DM, thus excluding the DM mutation from the entire telomeric portion of the ERCC1-D19S51 region.  相似文献   

13.
Subtelomeric regions of human chromosomes are the sites of increased meiotic recombination and have a male-to-female recombination ratio that is higher than elsewhere in the genome. We isolated two novel, polymorphic CA repeat markers from the distal part of the immunoglobulin heavy chain gene cluster, approximately 90 and 200 kb from the telomere of chromosome 14q. The 14q telomere was unambiguously located by physical mapping of telomeric YACs andBal31 exonuclease digestion of genomic DNA. We then constructed haplotypes using genotype data from these markers and data from sCAW1 (D14S826) for use as a highly polymorphic genetic marker. Linkage analysis using the 40 pedigree CEPH reference panel and genotype data from these and other loci physically mapped to the terminal 1.5 Mb of chromosome 14q revealed an apparent increase in meiotic recombination within this region, relative to the average rate for the genome. Further, we found that recombination was higher in females than in males, indicating that the subtelomeric region of 14q differs from other human subtelomeric regions.  相似文献   

14.
We have increased the density of genetic markers on the Arabidopsis lyrata chromosomes AL6 and AL7 corresponding to the A. thaliana chromosome IV, in order to determine chromosome rearrangements between these two species, and to compare recombination fractions across the same intervals. We confirm the two rearrangements previously inferred (a reciprocal translocation and a large inversion, which we infer to be pericentric). By including markers around the centromere regions of A. thaliana chromosomes IV and V, we localize the AL6 centromere, and can localize the breakpoints of these chromosome rearrangements more precisely than previously. One translocation breakpoint was close to the centromere, and the other coincided with one end of the inversion, suggesting that a single event caused both rearrangements. At the resolution of our mapping, apart from these rearrangements, all other markers are in the same order in A. lyrata and A. thaliana. We could thus compare recombination rates in the two species. We found slightly higher values in A. thaliana, and a minimum estimate for regions not close to a centromere in A. lyrata is 4-5 centimorgans per megabase. The mapped region of AL7 includes the self-incompatibility loci (S-loci), and this region has been predicted to have lower recombination than elsewhere in the genome. We mapped 17 markers in a region of 1.23 Mb surrounding these loci, and compared the approximately 600 kb closest to the S-loci with the surrounding region of approximately the same size. There were significantly fewer recombination events in the closer than the more distant region, supporting the above prediction, but showing that the low recombination region is very limited in size.  相似文献   

15.
Chromosome translocations involving one donor chromosome and multiple recipient chromosomes have been referred to as jumping translocations (JTs). Acquired JTs are commonly observed in cancer patients, mainly involving chromosome 1. Constitutional forms of JTs mostly involve the acrocentric chromosomes and their satellites and have been reported in patients with clinical abnormalities. Recognizable phenotypes resulting from these events have included Down, Prader-Willi, and DiGeorge syndromes. The presence of JTs in spontaneous abortions has not been previously described. The breakpoints of all JTs occur in areas rich in repetitive DNA (telomeric, centromeric, and nucleolus organizing regions). We report two different unstable chromosome rearrangements in samples derived from spontaneous abortions. The first case involved a chromosome 15 donor. The recipient chromosomes were 1, 9, 15, and 21, and the respective breakpoints were in either the heterochromatic regions or the centromeres. FISH studies confirmed that the breakpoints of the jumping 15 rearrangement did not involve the Prader-Willi region but originated at the centromere or in the proximal short arm. A second case of instability was observed with a rearrangement resulting from a presumed de novo 8;21 translocation. Three JT cell lines were observed. They consisted of a deleted 8p chromosome, a dicentric 8;21 translocation, and an 8q isochromosome. The instability regions appeared to be at the pericentromeric region of chromosome 8 and the satellite region of chromosome 21. Both cases proved to be de novo events. The unstable nature of the JT resulting in chromosomal imbalance most likely contributed to the fetal loss. It appears that JT events may predispose to chromosomal imbalance via nondisjunction and chromosomal rearrangement and, therefore, may be an unrecognized cause of fetal loss.  相似文献   

16.
Chibana H  Oka N  Nakayama H  Aoyama T  Magee BB  Magee PT  Mikami Y 《Genetics》2005,170(4):1525-1537
The size of the genome in the opportunistic fungus Candida albicans is 15.6 Mb. Whole-genome shotgun sequencing was carried out at Stanford University where the sequences were assembled into 412 contigs. C. albicans is a diploid basically, and analysis of the sequence is complicated due to repeated sequences and to sequence polymorphism between homologous chromosomes. Chromosome 7 is 1 Mb in size and the best characterized of the 8 chromosomes in C. albicans. We assigned 16 of the contigs, ranging in length from 7309 to 267,590 bp, to chromosome 7 and determined sequences of 16 regions. These regions included four gaps, a misassembled sequence, and two major repeat sequences (MRS) of >16 kb. The length of the continuous sequence attained was 949,626 bp and provided complete coverage of chromosome 7 except for telomeric regions. Sequence analysis was carried out and predicted 404 genes, 11 of which included at least one intron. A 7-kb indel, which might be caused by a retrotransposon, was identified as the largest difference between the homologous chromosomes. Synteny analysis revealed that the degree of synteny between C. albicans and Saccharomyces cerevisiae is too weak to use for completion of the genomic sequence in C. albicans.  相似文献   

17.
Chromosomal mapping of the butterfly lizards Leiolepis belliana belliana and L. boehmei was done using the 18S-28S and 5S rRNA genes and telomeric (TTAGGG)n sequences. The karyotype of L. b. belliana was 2n = 36, whereas that of L. boehmei was 2n = 34. The 18S-28S rRNA genes were located at the secondary constriction of the long arm of chromosome 1, while the 5S rRNA genes were found in the pericentromeric region of chromosome 6 in both species. Hybridization signals for the (TTAGGG)n sequence were observed at the telomeric ends of all chromosomes, as well as interstitially at the same position as the 18S-28S rRNA genes in L. boehmei. This finding suggests that in L. boehmei telomere-to-telomere fusion probably occurred between chromosome 1 and a microchromosome where the 18S-28S rRNA genes were located or, alternatively, at the secondary constriction of chromosome 1. The absence of telomeric sequence signals in chromosome 1 of L. b. belliana suggested that its chromosomes may have only a few copies of the (TTAGGG)n sequence or that there may have been a gradual loss of the repeat sequences during chromosomal evolution.  相似文献   

18.
The chromosome-sized DNAs of sporulation-deficient mutants, which had been isolated by mutagenizing spores of a homothallic diploid strain (MT98a-3D) of Saccharomyces cerevisiae, were analyzed by pulsed-field gel electrophoresis. While the size of chromosome III DNA of the parent strain was 450 kb, some mutants had one or more chromosome III DNAs of 350 kb, 450 kb, 530 kb and 630 kb. No size variation was observed for other chromosomes. Chromosome III DNAs of laboratory-stock strains, except MT98a-3D, were in the neighborhood of 350 kb. Size variation of chromosome III was observed at a high frequency in spore clones derived from MT98a-3D strain. The results suggest that DNA-length polymorphisms of chromosome III are generated by the loss or addition of a specific DNA unit of approximately 100 kb.  相似文献   

19.
Giardia trophozoites are polyploid and have five chromosomes. The chromosome homologues demonstrate considerable size heterogeneity due to variation in the subtelomeric regions. We used clones from the genome project with telomeric sequence at one end to identify six subtelomeric regions in addition to previously identified subtelomeric regions, to study the telomeric arrangement of the chromosomes. The subtelomeric regions included two retroposons, one retroposon pseudogene, and two vsp genes, in addition to the previously identified subtelomeric regions that include ribosomal DNA repeats. The presence of vsp genes in a subtelomeric region suggests that telomeric rearrangements may contribute to the generation of vsp diversity. These studies of the subtelomeric regions of Giardia may contribute to our understanding of the factors that maintain stability, while allowing diversity in chromosome structure.  相似文献   

20.
Chromosome painting, that is visualisation of chromosome segments or whole chromosomes based on fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes is widely used for chromosome studies in mammals, birds, reptiles and insects. Attempts to establish chromosome painting in euploid plants have failed so far. Here, we report on chromosome painting in Arabidopsis thaliana (n = 5, 125 Mb C(-1)). Pools of contiguous 113-139 BAC clones spanning 2.6 and 13.3 Mb of the short and the long arm of chromosome 4 (17.5 Mb) were used to paint this entire chromosome during mitotic and meiotic divisions as well as in interphase nuclei. The possibility of identifying any particular chromosome region on pachytene chromosomes and within interphase nuclei using selected BACs is demonstrated by differential labelling. This approach allows us, for the first time, to paint an entire autosome of an euploid plant to study chromosome rearrangements, homologue association, interphase chromosome territories, as well as to identify homeologous chromosomes of related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号