首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 525 毫秒
1.
Zooxanthellae mitotic index (MI) and expulsion rates were measured in the facultatively symbiotic scleractinian Astrangia poculata during winter and summer off the southern New England coast, USA. While MI was significantly higher in summer than in winter, mean expulsion rates were comparable between seasons. Corals therefore appear to allow increases in symbiont density when symbiosis is advantageous during the warm season, followed by a net reduction during the cold season when zooxanthellae may draw resources from the coral. Given previous reports that photosynthesis in A. poculata symbionts does not occur below approximately 6°C, considerable zooxanthellae division at 3°C and in darkness suggests that zooxanthellae are heterotrophic at low seasonal temperatures. Finally, examination of expulsion as a function of zooxanthellae density revealed that corals with very low zooxanthellae densities export a significantly greater proportion of their symbionts, apparently allowing them to persist in a stable azooxanthellate state.  相似文献   

2.
Brooding in the octocoralXenia macrospiculata is described. Young planulae ofX. macrospiculata were found in brooding pouches located below the anthocodia among the polyps’ cavities. These cavities are connected by and lined with ectoderm. Detached zooxanthellae were present within the brooding pouches, and are most probably acquired later by the planulae. The zooxanthellae enter into ectodermal ameboid cells by phagocytosis, and are then transferred to the endoderm.  相似文献   

3.
Effects of temperature on carbon fixation rates and partitioning between Aiptasia pallida (Verrill) and its symbiotic alga Symbiodinium microadriaticum Freudenthal were examined by 14C incubation studies. Total fixation varied strongly with temperature, with an optimum of 32 °C. More photosynthate was translocated to the host at 12 °C (82%) than at 27 °C (63%). Partitioning among three fractions (alcohol soluble, ether soluble, and alcohol/ether insoluble) varied with temperature in Aiptasia pallida, but not in the alga. Relative partitioning between host and alga increased with time in favor of A. pallida when maintained at 12 °C, but absolute levels of translocation to the host did not change; however, photosynthate retention by the alga did decline substantially. Total fixation declined by ≈ 80% after 10 days at 12 °C. Turnover rates of fixed carbon also varied with temperature, as determined by pulse-chase studies, and the effect varied for the different fractions.These results suggest that zooxanthellae are less thermally adaptable than their hosts, and may be especially susceptible to low temperatures. Thermal effects on biochemical partitioning may have great importance in relation to growth and reproduction of animal hosts of zooxanthellae and the viability of the symbiotic relationship. These effects, combined with the pronounced effect of temperature on total photosynthate production, probably play a major role in limitation of zooxanthellal symbioses to warm waters.  相似文献   

4.
Yellow band and dark spot syndromes have been frequently observed to affect coral species throughout the Caribbean within the last 10 years. These syndromes significantly impair at least three important reef-building species. Yellow band (also known as yellow blotch) appears as rings or blotches on Montastrea annularis throughout the Caribbean. The coral tissue necrosis occurs at a rate of approximately 0.6 cm/month. Transect measurements at various locations indicated that as many as 90% of M. annularis were affected by yellow band during 1997–98. Tissue samples reveal a 41–96.9% decrease in zooxanthellae/sample compared to healthy specimens, depending on distance from healthy tissue. Mitotic indices (MI) of zooxanthellae (symbiotic algae appearing as doublets) for M. annularis are 2.5%. MI in yellow band samples directly bordering healthy tissue are less than 0.9%, and zooxanthellae directly within the band bordering exposed skeleton had a mitotic index of 0.0%. This indicates impairment of zooxanthellae cell division in yellow band specimens. Zooxanthellae are not expelled and appear vacuolated and devoid of organelles. Dark spot, characterized by tissue necrosis as well as a depression of the colony surface, affects Stephanocoenia michelinii and Siderastrea siderea throughout the Caribbean. Transects showed that as many as 56% of S. michelinii and S. siderea showed signs of dark spot during 1997–98. Affected tissues of S. siderea died at a rate of 4.0 cm/month. In dark spot samples from S. siderea, the total number of zooxanthellae was 56% of that in healthy tissue; dark spot-affected specimens of S. michelinii showed a 14% decrease in the number of zooxanthellae compared to healthy tissue samples. Mitotic indices of zooxanthellae from healthy specimens of S. sidereawere 1.20% compared to 0.40% in dark spot samples. Mitotic indices of healthy S. michelinii were 1.54% compared to 0.23% in dark spot samples, also indicating a decrease in algal cell division. Zooxanthellae from dark spot tissue are swollen and darker in pigment. Due to the changes that are evident in the symbiotic algae, we suggest that both syndromes act primarily on the zooxanthellae symbiont, and secondarily on the cnidarian host.  相似文献   

5.
Bleaching (loss of symbiotic dinoflagellates) is known to significantly decrease the fitness of symbiotic marine invertebrates resulting in reduced growth, fecundity and survival. This report is the first to quantify the effects of bleaching on inorganic carbon (Ci) and ammonium flux, fixation and export of photosynthate to the host, in this case the giant clam Tridacna gigas. The 1998 bleaching event was found to decrease the zooxanthellae population 30‐fold when comparing bleached to non‐bleached clams. This resulted in significant increases in haemolymph Ci and decreases in haemolymph pH and glucose concentration, the predominant photosynthate exported from zooxanthellae in this symbiosis. There was also a decrease in the expression levels of host carbonic anhydrase, an enzyme involved in Ci transport to the zooxanthellae, and although host glutamine synthase levels were unaffected, the clams ability to assimilate ammonium was eliminated in bleached individuals, suggesting that photosynthate from the zooxanthellae is required for ammonium assimilation. In an artificial bleaching experiment haemolymph Ci (r2 = 0.97), pH (r2 = 0.94) and glucose levels (r2 = 0.95) were correlated to zooxanthellae numbers during both bleaching and recovery. Recovery of the zooxanthellae population, was enhanced four‐fold by the addition of organic and inorganic nutrients, as were related haemolymph characteristics. These results highlight the profound physiological changes that occur in symbiotic organisms during and after a bleaching event.  相似文献   

6.
The ultrastructure of symbiotic dinoflagellates (Symbiodinium sp., zooxanthellae) in the sea anemone Aiptasia pallida Verrill was examined in well-fed or starved (up to 120 days) anemones maintained under two light levels (5 and 50 μmol · m?2· s?1). Cell size of zooxanthellae was not affected by feeding history; however, both light and feeding history affected the relative cell volume of chloroplasts, lipids, and vacuoles. Stereological analysis of transmission electron micrographs showed that algae in low-light starved anemones had 10 times as much lipid (17.4% of cell volume) as those in well-fed anemones under the same light conditions (1.8%). The lipid content of algae from anemones in high light increased from 15.4% in well-fed anemones to 30.1% in starved anemones. The starch content of zooxanthellae in low-light anemones was law (4.1%) and not affected by feeding history, while the starch content of zooxanthellae in high-light anemones was greater (10.7%), with some differences among groups. Algal photoacclimation to low light included an increase in chloroplast relative volume from 17% (in well-fed high-light anemones) to 33% in well-fed low-light anemones. Starvation of the host resulted in a significant decrease in chloroplast volume in zooxanthellae in anemones at both light levels. Morphometry provides quantitative confirmation of biochemical and physiological data on zooxanthellae, because the changes in zooxanthellae with starvation of the host are consistent with other indicators of nutrient limitation of zooxanthellae of A. pallida held without food for long periods of time.  相似文献   

7.
The sea anemone Anthopleura elegantissima (Brandt) hosts two species of symbiotic dinoflagellates, known as zooxanthellae, which coexist within the host at southern latitudes only. One of these species, Symbiodinium muscatinei LaJeunesse et Trench, has a broad latitudinal distribution, occurring in intertidal anemones from Washington state to Southern California. To investigate whether high thermal tolerance contributes to the ability of S. muscatinei to inhabit anemones from northern and southern regions, the upper thermal tolerance limit for photosynthesis of symbionts in northern (48°24′ N) populations of A. elegantissima was determined by subjecting anemones to a gradual increase in temperature from 12°C to 30°C over a 10‐week period. Light‐saturated photosynthetic rates of isolated zooxanthellae were the same over the range of 12°C–24°C and declined significantly at 26°C, which is 14°C and 5°C above average summertime seawater temperatures in northern Puget Sound and Southern California, respectively. At 28°C, zooxanthellae isolated from the anemones, and those expelled by their hosts, exhibited extremely low rates of photosynthesis and highly reduced chl content. The photosynthetic rates and chl content of expelled zooxanthellae were lower than those of retained zooxanthellae. The high thermal tolerance of S. muscatinei isolated from northern populations of anemones supports the broad latitudinal distribution of this symbiont, allowing it to coexist with S. californium (#383, Banaszak et al. 1993 ) in southern populations of anemones.  相似文献   

8.
Chen CS  Lin HP  Yeh CC  Fang LS 《Protoplasma》2005,226(3-4):175-179
Summary. Preparation of homogeneous endoderm cells and culture is a prerequisite to understanding the cellular and molecular mechanism of endosymbiosis in the cnidarian-dinoflagellate association. During the cell isolation from the stony coral Euphyllia glabrescens, various amounts of symbiotic endoderm cells were found to release their symbionts (Symbiodinium spp., or zooxanthellae in generic usage) into the culture. Due to the bulky occupation by zooxanthellae inside the endoderm cell, the symbiotic endoderm cells, or zooxanthellae in hospite, are difficult to be distinguished from released zooxanthellae by microscopic examination. We now report a method for this identification using a fluorescent analogue of sphingomyelin, N-[5-(5,7-dimethyl boron dipyrromethene difluoride)-1-pentanoyl]-D-erythro-sphingosylphosphorylcholine (C5-DMB-SM). Incubation of symbiotic endoderm cells with C5-DMB-SM–defatted bovine serum albumin (DF-BSA) complex results in bright fluorescent membrane staining. Nevertheless, the membrane staining of free-living or released zooxanthellae by this complex is significantly decreased or even diminished. This method has provided a fast and reliable assay to identify symbiotic endoderm cells and will greatly accelerate the progress of endosymbiosis research. Correspondence and reprints: National Museum of Marine Biology and Aquarium, 2 Houwan Road, Checheng, Pingtung, 944, Taiwan, R.O.C.  相似文献   

9.
Global climate change is leading to the rise of ocean temperatures and is triggering mass coral bleaching events on reefs around the world. The expulsion of the symbiotic dinoflagellate algae is believed to occur as a result of damage to the photosynthetic apparatus of these symbionts, although the specific site of initial impact is yet to be conclusively resolved. Here, the sensitivity of the oxygen evolving complex (OEC) to bleaching stress was studied as well as its natural variation between seasons. The artificial electron donor, diphenyl carbazide (DPC), was added to cultured, freshly isolated and expelled (bleaching treatments only) zooxanthellae suspensions. Chl a fluorescence and oxygen production measurements showed that upon addition of DPC, no restoration of diminished photochemical efficiency occurred under control or bleaching conditions. This result was consistent between 12 h and 5 d bleaching treatments on Pocilloporadamicornis, indicating that the OEC is not the primary site of damage, and that zooxanthellae expulsion from the host is a nonselective process with respect to the functioning of the OEC. Further experiments measuring fast induction curves (FICs) revealed that in both summer and winter, the temperature when OEC function was lost occurred between 7°C and 14°C above the sea surface temperature. FIC and oxygen production measurements of P. damicornis during exposure to bleaching stress demonstrated that the thermotolerance of the OEC increased above the temperature of the bleaching treatment over a 4 h period. This finding indicates that the OEC has the capacity to acclimate between seasons and remains functional at temperatures well above bleaching thresholds.  相似文献   

10.
Symbiotic cnidarians are marine invertebrates harboring photosynthesizing microalgae (named zooxanthellae), which produce great amounts of oxygen and free radicals upon illumination. Studying antioxidative balance is then crucial to understanding how symbiotic cnidarians cope with ROS production. In particular, it is suspected that oxidative stress triggers cnidarian bleaching, i.e., the expulsion of zooxanthellae from the animal host, responsible for symbiotic cnidarian mass mortality worldwide. This study therefore investigates catalase antioxidant enzymes and their role in bleaching of the temperate symbiotic sea anemone Anemonia viridis. Using specific separation of animal tissues (ectoderm and endoderm) from the symbionts (zooxanthellae), spectrophotometric assays and native PAGE revealed both tissue-specific and activity pattern distribution of two catalase electrophoretypes, E1 and E2. E1, expressed in all three tissues, presents high sensitivity to the catalase inhibitor aminotriazole (ATZ) and elevated temperatures. The ectodermal E1 form is responsible for 67% of total catalase activity. The E2 form, expressed only within zooxanthellae and their host endodermal cells, displays low sensitivity to ATZ and relative thermostability. We further cloned an ectodermal catalase, which shares 68% identity with mammalian monofunctional catalases. Last, 6 days of exposure of whole sea anemones to ATZ (0.5 mM) led to effective catalase inhibition and initiated symbiont expulsion. This demonstrates the crucial role of this enzyme in cnidarian bleaching, a phenomenon responsible for worldwide climate-change-induced mass mortalities, with catastrophic consequences for marine biodiversity.  相似文献   

11.
We examined the morphology and pigment composition of zooxanthellae in corals subjected to normal temperature (27°C) and thermal stress (32°C). We observed several normal and abnormal morphological types of zooxanthellar cells. Normal cells were intact and their chloroplasts were unbroken (healthy); abnormal cells were shrunken and had partially degraded or broken chloroplasts, or they were bleached and without chloroplasts. At 27°C, most healthy zooxanthellar cells were retained in the coral tissue, whereas shrunken zooxanthellae were expelled. Under thermal stress, the abundance of healthy zooxanthellae declined and the proportion of shrunken/abnormal cells increased in coral tissues. The rate of algal cell expulsion was reduced under thermal stress. Within the shrunken cells, we detected the presence of a chl‐like pigment that is not ordinarily found in healthy zooxanthellae. Analysis of the absorption spectrum, absorption maxima, and retention time (by HPLC) indicated that this pigment was 132, 173‐cyclopheophorbide a enol (cPPB‐aE), which is frequently found in marine and lacustrine sediments, and in protozoans that graze on phytoplankton. The production of cPPB‐aE in shrunken zooxanthellae suggests that the chls have been degraded to cPPB‐aE, a compound that is not fluorescent. The lack of a fluorescence function precludes the formation of reactive oxygen species. We therefore consider the formation of cPPB‐aE in shrunken zooxanthellae to be a mechanism for avoiding oxidative stress.  相似文献   

12.
1. Carbon budget parameters were measured for young-of-the-year Monoporeia affinis in a combined field and laboratory (microcosm) study, designed to quantify the role of sediment bacteria as a carbon source for juvenile amphipods. Special emphasis was placed on the stimulative effects of amphipod activity (foraging, feeding, bioturbation) on sediment bacterial production and abundance by including the carbon thus generated in carbon budget calculations. 2. Amphipod production was clearly higher at lower densities, suggesting strong intraspecific interactions. Negative production was recorded at amphipod densities of 10000 and 20000 ind. m?2. Negative production was not accompanied by a decrease in amphipod total lipid content, however, probably due to the lack of easily mobilized lipids in juvenile amphipods. Amphipod respiration rate was 0.45 μg O2 ind.?1 h?1, or O.15 μg C ind.?1 h?1. Sediment bacterial carbon content averaged 1.31 and 0.90 mg g?1 DW under field and laboratory conditions, respectively. 3. Bacterial carbon was not quantitatively important for Monoporeia. Due to higher bacterial abundance and production in natural, stratified sediment, assimilation of bacterial carbon was highest for the field population, providing 6.3% of the amphipods' carbon requirement. In microcosm populations, bacterial carbon accounted for between 1.7 and 5.2% of overall amphipod carbon demand, increasing with amphipod density and bioturbation. 4. Ingestion rate, rather than the quantity of bacterial carbon in the sediment, was found to limit absorption of bacterial carbon from the sediment.  相似文献   

13.
This study focused on the association between corals of the genus Pocillopora, a major constituent of Pacific reefs, and their zooxanthellae. Samples of P. meandrina, P. verrucosa, P. damicornis, P. eydouxi, P. ligulata and P. molokensis were collected from French Polynesia, Tonga, Okinawa and Hawaii. Symbiodinium diversity was explored by looking at the 28S and ITS1 regions of the ribosomal DNA. Most zooxanthellae were found to belong to clade C, sub-clade C1, with little differentiation between populations. Interestingly, individuals of P. damicornis harbored sub-clade C1, clade D and clade A, depending on location. The symbiotic association of P. damicornis with its zooxanthellae may be somewhat more flexible than those of other Pocillopora species.  相似文献   

14.
Abstract. In this review, we seek to develop new insights about the nature of algal‐sea anemone symbioses by comparing such associations in temperate and tropical seas. Temperate seas undergo pronounced seasonal cycles in irradiance, temperature, and nutrients, while high irradiance, high temperature, and low nutrients are seasonally far less variable in tropical seas. We compare the nature of symbiosis between sea anemones (= actinians) and zooxanthellae (Symbiodinium spp.) in both regions to test tropical paradigms against temperate examples and to identify directions for future research. Although fewer anemone species are symbiotic in temperate regions, they are locally dominant and ecologically important members of the benthic community compared to the tropics. Zooxanthella densities tend to be lower in temperate anemones, but data are limited to a few species in both temperate and tropical seas. Zooxanthella densities are far more stable over time in temperate anemones than in tropical anemones, suggesting that temperate symbioses are more resistant to fluctuations in environmental parameters such as irradiance and temperature. Light‐saturated photosynthetic rates of temperate and tropical zooxanthellae are similar, but temperate anemone hosts receive severely reduced carbon supplies from zooxanthellae during winter months when light is reduced. Symbiont transmission modes and specificity do not show any trends among anemones in tropical vs. temperate seas. Our review indicates the need for the following: (1) Investigations of other temperate and tropical symbiotic anemone species to assess the generality of trends seen in a few “model’ anemones. (2) Attention to the field ecology of temperate and tropical algal‐anemone symbioses, for example, how symbioses function under seasonally variable environmental factors and how zooxanthellae persist at high densities in darkness and winter. The greater stability of zooxanthella populations in temperate hosts may be useful to understanding tropical symbioses in which bleaching (loss of zooxanthellae) is of major concern. (3) Study of the evolutionary history of symbiosis in both temperate and tropical seas. Continued exploration of the phylogenetic relationships between host anemones and zooxanthella strains may show how and why zooxanthellae differ in anemone hosts in both environments.  相似文献   

15.
The present work highlights the ability of wild and cultured Monaco shrimp Lysmata seticaudata to control the glass anemone Aiptasia pallida. Starved shrimp ingested the highest percentages of glass anemones [85.7% and 89.3% for wild (W) and cultured (C) shrimp, respectively]. The absence of symbiotic zooxanthellae in glass anemones did not influence the shrimps feeding rate, with shrimp offered aposymbiotic anemones displaying the same feeding percentages (67.3% and 70.7% for W and C shrimp, respectively) as those offered sea anemones with symbiotic zooxanthellae (70.0% and 74.4% for W and C shrimp, respectively). Shrimp offered larger sea anemones had the lowest feeding percentages (33.0% and 36.3% for W and C shrimp, respectively), along with shrimp offered an alternative food (27.3% and 36.0% for W and C shrimp, respectively). There were no significant differences in the percentage of glass anemones ingested by cultured and wild Monaco shrimp in the same feeding trial.  相似文献   

16.
Genetic stability in rhizobia in the field   总被引:2,自引:0,他引:2  
Genetic instability within strains of rhizobia maintained on laboratory media is well recognized, although rarely has the mutation been characterized. Variability within a strain introduced into the field is very difficult to recognise due to poor understanding of naturally-occurring populations of rhizobia. We have examined populations of Rhizobium leguminosarum bv. trifolii from both laboratory cultures and field populations and found significant variation in symbiotic effectiveness within both. In Australia, the only significant introduction of Bradyrhizobium japonicum has been strain CB1809 (=USDA136b). Symbiotic tests on field reisolates obtained by plant entrapment indicate little or no change in symbiotic effectiveness up to nine years after introduction. The RFLP pattern, using the RS probe (Hahn and Hennecke, 1987a) was unchanged but marked differences in serological characters were observed.  相似文献   

17.
The presence of the “symbiotic” red alga Hypneocolax stellaris Borgesen was found to substantially reduce the growth rate of Hypnea musciformis (Wulfen) Lamouroux. The growth rate of injected field material was 40% less than unifected thalli. Likewise, the growth rate of host thalli infected in the laboratory was reduced 70% compared to uninfected thalli. Neither the quantity nor quality of carrageenan extracted from Hypnea musciformis was directly affected by the presence of Hypneocolax stellaris. In a mariculture system the presence of a symbiotic alga on its host would be expected to reduce the host's growth rate and thereby lower its economic potential.  相似文献   

18.
Cotylorhiza tuberculata is a common symbiotic scyphozoan in the Mediterranean Sea. The medusae occur in extremely high abundances in enclosed coastal areas in the Mediterranean Sea. Previous laboratory experiments identified thermal control on its early life stages as the driver of medusa blooms. In the present study, new ecological aspects were tested in laboratory experiments that support the pelagic population success of this zooxanthellate jellyfish. We hypothesized that planulae larvae would have no settlement preference among substrates and that temperature would affect ephyra development, ingestion rates and daily ration. The polyp budding rate and the onset of symbiosis with zooxanthellae also were investigated. Transmission electron microscopy revealed that zooxanthella infection occurred by the polyp stage. Our results showing no substrate selectivity by planulae and high polyp budding rates in high temperatures suggest increased benthic polyp populations, which would lead to higher medusa abundances. Rates of transition from ephyrae to medusae and the feeding of early medusa stages also increased with temperature. Continuing changes in coastal ecosystems such as future climate warming and marine construction may lead to increased populations of jellyfish to the detriment of fish globally.  相似文献   

19.
Coral bleaching involves the loss of symbiotic algae (zooxanthellae) from reef corals and other cnidarians during periods of environmental stress, particularly elevated temperature. In this study we compared the thermal bleaching responses of the zoanthid Palythoa caribaeorum from three populations along the southeast coast of Florida. Winter (2002-2003) and summer (2003) samples from three geographically separate sites were experimentally exposed to increased temperatures and the loss of zooxanthellae was measured. Population densities of zooxanthellae were analyzed and their genetic identity determined using PCR-DGGE analysis of the internal transcribed spacer region 2. The results showed that samples of P. caribaeorum from reefs that experienced the smallest range in annual seawater temperature released the most zooxanthellae. Seasonal comparisons revealed that winter samples lost more zooxanthellae than summer samples. P. caribaeorum harbored two genetic types of zooxanthellae, C1 and D1a. Individual colonies contained populations of only C1 or D1a, or combinations of C1 and D1a. However, these genotypic patterns did not relate latitudinal distribution nor to differences in experimental thermal tolerance.  相似文献   

20.
The sea anemone Anthopleura aureoradiata (Carlgren), which harbours symbiotic dinoflagellates (zooxanthellae), is abundant on mudflats and rocky shores around New Zealand. We measured the potential for particulate nitrogen uptake from sediment by A. aureoradiata and the subsequent consequences of this uptake on the nitrogen status of its zooxanthellae. Sediment was rinsed, labelled with (15NH4)2SO4, and provided to anemones at low (0.23 g ml− 1) and high (1.33 g ml− 1) sediment loads for 6 h. Both anemone tissues and zooxanthellae became enriched with 15N. Enrichment of anemone tissues was similar at both high and low sediment loads, but the zooxanthellae became more enriched at the lower load. This was presumably because the uptake of ammonium, arising from host catabolism, by zooxanthellae is light driven and because the anemones at the lower load were able to extend their tentacles into the light while those at the higher load were not. The influence of sediment uptake on the nitrogen status of the zooxanthellae was determined by measuring the extent to which 20 μM NH4+ enhanced the rate of zooxanthellar dark carbon fixation above that seen in filtered seawater (FSW) alone; the ammonium enhancement ratio (AER) was expressed as [dark NH4+ rate/dark FSW rate], where ‘rate’ refers to C fixation and a ratio of 1.0 or less indicates nitrogen sufficiency. When anemones were starved with and without rinsed sediment in nitrogen-free artificial seawater for 8 weeks, zooxanthellar nitrogen deficiency became apparent at 2-4 weeks and reached similar levels in both treatments (AER = ~ 2). In contrast, anemones fed 5 times per week for 8 weeks with Artemia nauplii were nitrogen sufficient (AER = 1.03). In the field, zooxanthellae from mudflat anemones were largely nitrogen sufficient (AER = 1.26), while nitrogen deficient zooxanthellae were present in anemones from a rocky intertidal site (AER = 2.93). These results suggest that, while there was evidence for particulate nitrogen uptake, dissolved inorganic nitrogen (especially ammonium) in interstitial pore water may be a more important source of nitrogen for the zooxanthellae in mudflat anemones, and may explain the marked difference in nitrogen status between the mudflat and rocky shore populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号