首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jafary H  Albertazzi G  Marcel TC  Niks RE 《Genetics》2008,178(4):2327-2339
Inheritance studies on the nonhost resistance of plants would normally require interspecific crosses that suffer from sterility and abnormal segregation. Therefore, we developed the barley-Puccinia rust model system to study, using forward genetics, the specificity, number, and diversity of genes involved in nonhost resistance. We developed two mapping populations by crossing the line SusPtrit, with exceptional susceptibility to heterologous rust species, with the immune barley cultivars Vada and Cebada Capa. These two mapping populations along with the Oregon Wolfe Barley population, which showed unexpected segregation for resistance to heterologous rusts, were phenotyped with four heterologous rust fungal species. Positions of QTL conferring nonhost resistance in the three mapping populations were compared using an integrated consensus map. The results confirmed that nonhost resistance in barley to heterologous rust species is controlled by QTL with different and overlapping specificities and by an occasional contribution of an R-gene for hypersensitivity. In each population, different sets of loci were implicated in resistance. Few genes were common between the populations, suggesting a high diversity of genes conferring nonhost resistance to heterologous pathogens. These loci were significantly associated with QTL for partial resistance to the pathogen Puccinia hordei and with defense-related genes.  相似文献   

2.
Atienza SG  Jafary H  Niks RE 《Planta》2004,220(1):71-79
Nonhost resistance is the most common type of resistance in plants. Understanding the factors that make plants susceptible or resistant may help to achieve durably effective resistance in crop plants. Screening of 109 barley (Hordeum vulgare L.) accessions in the seedling stage indicated that barley is a complete nonhost to most of the heterologous rust fungi studied, while it showed an intermediate status with respect to Puccinia triticina, P. hordei-murini, P. hordei-secalini, P. graminis f. sp. lolii and P. coronata ff. spp. avenae and holci. Accessions that were susceptible to a heterologous rust in the seedling stage were much more or completely resistant at adult plant stage. Differential interaction between barley accessions and heterologous rust fungi was found, suggesting the existence of rust-species-specific resistance. In particular, many landrace accessions from Ethiopia and Asia, and naked-seeded accessions, tended to be susceptible to several heterologous rusts, suggesting that some resistance genes in barley are effective against more than one heterologous rust fungal species. Some barley accessions had race-specific resistance against P. hordei-murini. We accumulated genes for susceptibility to P. triticina and P. hordei-murini in two genotypes called SusPtrit and SusPmur, respectively. In the seedling stage, these accessions were as susceptible as the host species to the target rusts. They also showed unusual susceptibility to other heterologous rusts. These two lines are a valuable asset to further experimental work on the genetics of resistance to heterologous rust fungi.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00425-004-1319-1Abbreviations ff. spp Formae speciales - RIL Recombinant inbred line - DC Double cross - DC-S Progeny produced by selfing of double-cross plants  相似文献   

3.

Key message

We developed ‘Golden SusPtrit’, i.e., a barley line combining SusPtrit’s high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation.

Abstract

Nonhost and partial resistance to Puccinia rust fungi in barley are polygenically inherited. These types of resistance are principally prehaustorial, show high diversity between accessions of the plant species and are genetically associated. To study nonhost and partial resistance, as well as their association, candidate gene(s) for resistance must be cloned and tested in susceptible material where SusPtrit would be the line of choice. Unfortunately, SusPtrit is not amenable to Agrobacterium-mediated transformation. Therefore, a doubled haploid (DH) mapping population (n = 122) was created by crossing SusPtrit with Golden Promise to develop a ‘Golden SusPtrit’, i.e., a barley line combining SusPtrit’s high susceptibility to non-adapted rust fungi with the high amenability of Golden Promise for transformation. We identified nine genomic regions occupied by resistance quantitative trait loci (QTLs) against four non-adapted rust fungi and P. hordei isolate 1.2.1 (Ph.1.2.1). Four DHs were selected for an Agrobacterium-mediated transformation efficiency test. They were among the 12 DH lines most susceptible to the tested non-adapted rust fungi. The most efficiently transformed DH line was SG062N (11–17 transformants per 100 immature embryos). The level of non-adapted rust infection on SG062N is either similar to or higher than the level of infection on SusPtrit. Against Ph.1.2.1, the latency period conferred by SG062N is as short as that conferred by SusPtrit. SG062N, designated ‘Golden SusPtrit’, will be a valuable experimental line that could replace SusPtrit in nonhost and partial resistance studies, especially for stable transformation using candidate genes that may be involved in rust-resistance mechanisms.  相似文献   

4.
Cultivated barley, Hordeum vulgare L., is considered to be a nonhost or intermediate host species for the wheat leaf rust fungus Puccinia triticina. Here, we have investigated, at the microscopic and molecular levels, the reaction of barley cultivars to wheat leaf rust infection. In the nonhost resistant cultivar Cebada Capa, abortion of fungal growth occurred at both pre- and posthaustorial stages, suggesting that defense genes are expressed throughout the development of the inappropriate fungus during the nonhost resistance reaction. In the two barley lines L94 and Bowman, a low level of prehaustorial resistance to P. triticina was observed and susceptibility was comparable to that of wheat control plants. Suppression subtractive hybridization was used to identify genes that are differentially expressed during the nonhost resistance reaction in Cebada Capa as well as during the successful establishment of the inappropriate wheat leaf rust fungus in L94. Northern analysis indicated that two candidate genes, including a barley ortholog of the rice resistance gene Xa21, are putatively involved in nonhost and non-race-specific resistance reactions. In addition, a new gene that is specifically induced during the successful development of the inappropriate fungus P. triticina in barley has been identified.  相似文献   

5.
6.

Key message

Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form.The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgtSC and SusBgtDC, with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.
  相似文献   

7.
The aims of this investigation have been to map new (quantitative) resistance genes against powdery mildew, caused by Blumeria graminis f.sp. hordei L., and leaf rust, caused by Puccinia hordei L., in a cross between the barley ( Hordeum vulgare ssp. vulgare) cultivar "Vada" and the wild barley ( Hordeum vulgare ssp. spontaneum) line "1B-87" originating from Israel. The population consisted of 121 recombinant inbred lines. Resistance against leaf rust and powdery mildew was tested on detached leaves. The leaf rust isolate "I-80" and the powdery mildew isolate "Va-4", respectively, were used for the infection in this experiment. Moreover, powdery mildew disease severity was observed in the field at two different epidemic stages. In addition to other DNA markers, the map included 13 RGA (resistance gene analog) loci. The structure of the data demanded a non-parametric QTL-analysis. For each of the four observations, two QTLs with very high significance were localised. QTLs for resistance against powdery mildew were detected on chromosome 1H, 2H, 3H, 4H and 7H. QTLs for resistance against leaf rust were localised on 2H and 6H. Only one QTL was common for two of the powdery mildew related traits. Three of the seven QTLs were localised at the positions of the RGA-loci. Three of the five powdery mildew related QTLs are sharing their chromosomal position with known qualitative resistance genes. All detected QTLs behaved additively. Possible sources of the distorted segregation observed, the differences between the results for the different powdery mildew related traits and the relation between qualitative and quantitative resistance are discussed.  相似文献   

8.
Using AFLP markers, a linkage map was constructed based on a recombinant inbred population of barley derived from a cross between a leaf rust susceptible line, L94, and a partially resistant line, 116-5. The constructed map showed a similar marker distribution pattern as the L94 × Vada map. However, it contained more large gaps, and for some chromosome regions no markers were identified. These regions are most likely derived from L94 because 116-5 was selected from the progeny of a cross of L94 × cv. Cebada Capa. Five QTLs for partial resistance to isolate 1.2.1. were mapped on the L94 × 116-5 map. Three QTLs were effective in the seedling stage, jointly contributing 42% to the total phenotypic variance. Three QTLs were effective in the adult plant stage, collectively explaining 35% of the phenotypic variance. Evidence for two additional linked minor-effect QTLs effective in the adult plant stage was also uncovered. The major-effect QTL, Rphq3, was the only one that was effective in both developmental stages. Moreover, Rphq3, was also identified in the L94 × Vada population, being effective to two rust isolates. The other QTLs were detected in either of the two populations, providing evidence for the existence of many loci for partial resistance to leaf rust on the barley genome. To date, 13 QTLs for partial resistance have been mapped, therefore, a strategy of accumulating many resistance genes in a single cultivar, resulting in a high level of partial resistance, is feasible.  相似文献   

9.
10.

Key message

We suggest multi-parental nested association mapping as a valuable innovation in barley genetics, which increases the power to map quantitative trait loci and assists in extending genetic diversity of the elite barley gene pool.

Abstract

Plant genetic resources are a key asset to further improve crop species. The nested association mapping (NAM) approach was introduced to identify favorable genes in multi-parental populations. Here, we report toward the development of the first explorative barley NAM population and demonstrate its usefulness in a study on mapping quantitative trait loci (QTLs) for leaf rust resistance. The NAM population HEB-5 was developed from crossing and backcrossing five exotic barley donors with the elite barley cultivar ‘Barke,’ resulting in 295 NAM lines in generation BC1S1. HEB-5 was genetically characterized with 1,536 barley SNPs. Across HEB-5 and within the NAM families, no deviation from the expected genotype and allele frequencies was detected. Genetic similarity between ‘Barke’ and the NAM families ranged from 78.6 to 83.1 %, confirming the backcrossing step during population development. To explore its usefulness, a screen for leaf rust (Puccinia hordei) seedling resistance was conducted. Resistance QTLs were mapped to six barley chromosomes, applying a mixed model genome-wide association study. In total, four leaf rust QTLs were detected across HEB-5 and four QTLs within family HEB-F23. Favorable exotic QTL alleles reduced leaf rust symptoms on two chromosomes by 33.3 and 36.2 %, respectively. The located QTLs may represent new resistance loci or correspond to new alleles of known resistance genes. We conclude that the exploratory population HEB-5 can be applied to mapping and utilizing exotic QTL alleles of agronomic importance. The NAM concept will foster the evaluation of the genetic diversity, which is present in our primary barley gene pool.  相似文献   

11.
Leaf rust and stripe rust are important diseases of wheat world-wide and deployment of cultivars with genetic resistance is an effective and environmentally sound control method. The use of minor, additive genes conferring adult plant resistance (APR) has been shown to provide resistance that is durable. The wheat cultivar ‘Pastor’ originated from the CIMMYT breeding program that focuses on minor gene-based APR to both diseases by selecting and advancing generations alternately under leaf rust and stripe rust pressures. As a consequence, Pastor has good resistance to both rusts and was used as the resistant parent to develop a mapping population by crossing with the susceptible ‘Avocet’. All 148 F5 recombinant inbred lines were evaluated under artificially inoculated epidemic environments for leaf rust (3 environments) and stripe rust (4 environments, 2 of which represent two evaluation dates in final year due to the late build-up of a new race virulent to Yr31) in Mexico. Map construction and QTL analysis were completed with 223 polymorphic markers on 84 randomly selected lines in the population. Pastor contributed Yr31, a moderately effective race-specific gene for stripe rust resistance, which was overcome during this study, and this was clearly shown in the statistical analysis. Linked or pleiotropic chromosomal regions contributing to resistance against both pathogens included Lr46/Yr29 on 1BL, the Yr31 region on 2BS, and additional minor genes on 5A, 6B and 7BL. Other minor genes for leaf rust resistance were located on 1B, 2A and 2D and for stripe rust on 1AL, 1B, 3A, 3B, 4D, 6A, 7AS and 7AL. The 1AL, 1BS and 7AL QTLs are in regions that were not identified previously as having QTLs for stripe rust resistance. The development of uniform and severe epidemics facilitated excellent phenotyping, and when combined with multi-environment analysis, resulted in the relatively large number of QTLs identified in this study.  相似文献   

12.
Yellow rust, which is a major disease in areas where cool temperatures prevail, can strongly influence grain yield. To control this disease, breeders have extensively used major specific resistance genes. Unfortunately this kind of resistance is rapidly lost due to pathogen adaptation. More-durable resistance against yellow rust can be achieved using quantitative resistance derived from cultivars with well-established durable resistance. The winter wheat Camp Remy has maintained a high level of resistance for over 20 years. In order to map quantitative trait loci (QTLs) for durable yellow rust resistance, we analysed a set of 98 F8 recombinant inbred (RI) lines derived from the cross Camp Remy×Michigan Amber. We also mapped QTLs for adult resistance to yellow rust using the International Triticae Mapping Initiative RI population (114 lines derived from the cross Opata85×synthetic hexaploid). Two and five QTLs, respectively, were identified from these two populations. This work has highlighted the importance of the centromeric region of chromosome 2B and the telomeric regions of chromosomes 2AL and 7DS in durable yellow rust resistance. The same chromosomal regions are also implicated in resistance to other pathogens. Received: 8 December 2000 / Accepted: 17 April 2001  相似文献   

13.
In cereals, rust fungi are among the most harmful pathogens. Breeders usually rely on short-lived hypersensitivity resistance. As an alternative, "avoidance" may be a more durable defence mechanism to protect plants to rust fungi. In Hordeum chilense avoidance is based on extensive wax covering of stomata, which interferes with the induction of appressorium formation by the rust fungi. High avoidance levels are associated with a higher stoma density on the abaxial leaf epidermis. The avoidance level was assessed as the percentage of germ tube/stoma encounters that did not result in appressorium differentiation by Puccinia hordei, the barley leaf rust fungus. One hundred F(2) individuals from the cross between two H. chilense accessions with contrasting levels of avoidance showed a continuous distribution for avoidance of the rust fungus and for stoma density, indicating quantitative inheritance of the traits. No significant correlation was found between avoidance and stoma density in the segregating F(2) population. In order to map quantitative trait loci (QTLs) for both traits, an improved molecular marker linkage map was constructed, based on the F(2) population. The resulting linkage map spanned 620 cM and featured a total of 437 AFLP markers, thirteen RFLPs, four SCARs, nine SSRs, one STS and two seed storage protein markers. It consisted of seven long and two shorter linkage groups, and was estimated to cover 81% of the H. chilense genome. Restricted multiple interval mapping identified two QTLs for avoidance and three QTLs for stoma density in the abaxial leaf surface. The QTLs for avoidance were mapped on chromosome 3 and 5; those for stoma density on chromosomes 1, 3 and 7. Only the two QTLs regions located on chromosome 3 (one for avoidance and the other for stoma density) overlapped. The wild barley H. chilense has a high crossability with other members of the Triticeae tribe. The knowledge on the location of the QTLs responsible for the avoidance trait is a prerequisite to transfer this favourable agronomic trait from H. chilense to cultivated cereal genomes.  相似文献   

14.
Candidate gene analysis of quantitative disease resistance in wheat   总被引:16,自引:0,他引:16  
 Knowledge of the biological significance underlying quantitative trait loci (QTLs) for disease resistance is generally limited. In recent years, advances in plant-microbe interactions and genome mapping have lead to an increased understanding of the genes involved in plant defense and quantitative disease resistance. Here, we report on the application of the candidate-gene approach to the mapping of QTLs for disease resistance in a population of wheat recombinant inbreds. Over 50 loci, representing several classes of defense response (DR) genes, were placed on an existing linkage map and the genome was surveyed for QTLs associated with resistance to several diseases including tan spot, leaf rust, Karnal bunt, and stem rust. Analysis revealed QTLs with large effects in regions of putative resistance (R) genes, as previously reported. Several candidate genes, including oxalate oxidase, peroxidase, superoxide dismutase, chitinase and thaumatin, mapped within previously identified resistance QTLs and explained a greater amount of the phenotypic variation. A cluster of closely linked DR genes on the long arm of chromosome 7B, which included genes for catalase, chitinase, thaumatins and an ion channel regulator, had major effects for resistance to leaf rust of adult plants under conditions of natural infestation. The results of this study indicate that many minor resistance QTLs may be from the action of DR genes, and that the candidate-gene approach can be an efficient method of QTL identification. Received: 12 June 1998 / Accepted: 24 July 1998  相似文献   

15.

Background

Higher plants possess a large multigene family encoding secreted class III peroxidase (Prx) proteins. Peroxidases appear to be associated with plant disease resistance based on observations of induction during disease challenge and the presence or absence of isozymes in resistant vs susceptible varieties. Despite these associations, there is no evidence that allelic variation of peroxidases directly determines levels of disease resistance.

Methodology/Principal Findings

The current study introduces a new strategy called Prx-Profiling. We showed that with this strategy a large number of peroxidase genes can be mapped on the barley genome. In order to obtain an estimate of the total number of Prx clusters we followed a re-sampling procedure, which indicated that the barley genome contains about 40 peroxidase gene clusters. We examined the association between the Prxs mapped and the QTLs for resistance of barley to homologous and heterologous rusts, and to the barley powdery mildew fungus. We report that 61% of the QTLs for partial resistance to P. hordei, 61% of the QTLs for resistance to B. graminis and 47% of the QTLs for non-host resistance to other Puccinia species co-localize with Prx based markers.

Conclusions/Significance

We conclude that Prx-Profiling was effective in finding the genetic location of Prx genes on the barley genome. The finding that QTLs for basal resistance to rusts and powdery mildew fungi tend to co-locate with Prx clusters provides a base for exploring the functional role of Prx-related genes in determining natural differences in levels of basal resistance.  相似文献   

16.
Seventeen accessions of Arabidopsis thaliana inoculated with the cowpea rust fungus Uromyces vignae exhibited a variety of expressions of nonhost resistance, although infection hypha growth typically ceased before the formation of the first haustorium, except in Ws-0. Compared with wild-type plants, there was no increased fungal growth in ndr1 or eds1 mutants defective in two of the signal cascades regulated by the major class of Arabidopsis host resistance genes. However, in the Col-0 background, infection hyphae of U. vignae and two other rust fungi were longer in sid2 mutants defective in an enzyme that synthesizes salicylic acid (SA), in npr1 mutants deficient in a regulator of the expression of SA-dependent pathogenesis related (PR) genes, and in NahG plants containing a bacterial salicylate hydroxylase. Infection hyphae of U. vignae and U. appendiculatus but not of Puccinia helianthi were also longer in jar1 mutants, which are defective in the jasmonic acid defense signaling pathway. Nevertheless, haustorium formation increased only for the Uromyces spp. and only in sid2 mutants or NahG plants. Rather than the hypersensitive cell death that usually accompanies haustorium formation in nonhost plants, Arabidopsis typically encased haustoria in calloselike material. Growing fungal colonies of both Uromyces spp., indicative of a successful biotrophic relationship between plant and fungus, formed in NahG plants, but only U. vignae formed growing colonies in the sid2 mutants and cycloheximide-treated wild-type plants. Growing colonies did not develop in NahG tobacco or tomato plants. These data suggest that nonhost resistance of Arabidopsis to rust fungi primarily involves the restriction of infection hypha growth as a result of defense gene expression. However, there is a subsequent involvement of SA but not SA-dependent PR genes in preventing the Uromyces spp. from forming the first haustorium and establishing a sufficient biotrophic relationship to support further fungal growth. The U. vignae-Arabidopsis combination could allow the application of the powerful genetic capabilities of this model plant to the study of compatibility as well as nonhost resistance to rust fungi.  相似文献   

17.
 The partial resistance to leaf rust in barley is a quantitative resistance that is not based on hypersensitivity. To map the quantitative trait loci (QTLs) for partial resistance to leaf rust, we obtained 103 recombinant inbred lines (RILs) by single-seed descent from a cross between the susceptible parent L94 and the partially resistant parent Vada. These RILs were evaluated at the seedling and adult plant stages in the greenhouse for the latent period (LP) of the rust fungus, and in the field for the level of infection, measured as area under the disease progress curve (AUDPC). A dense genetic map based on 561 AFLP markers had been generated previously for this set of RILs. QTLs for partial resistance to leaf rust were mapped using the “Multiple Interval Mapping” method with the putative QTL markers as cofactors. Six QTLs for partial resistance were identified in this population. Three QTLs, Rphq1, Rphq2 and Rphq3, were effective at the seedling stage and contributed approximately 55% to the phenotypic variance. Five QTLs, Rph2, Rphq3, Rphq4, Rphq5, and/or Rphq6 contributed approximtely. 60% of the phenotypic variance and were effective at the adult plant stage. Therefore, only the QTLs Rphq2 and Rhpq3 were not plant-stage dependent. The identified QTLs showed mainly additive effects and only one significant interaction was detected, i.e. between Rphq1 and Rphq2. The map positions of these QTLs did not coincide with those of the race-specific resistance genes, suggesting that genes for partial resistance and genes for hypersensitive resistance represent entirely different gene families. Also, three QTLs for days to heading, of which two were also involved in plant height, were identified in the present recombinant inbred population. These QTLs had been mapped previously on the same positions in different populations. The perspectives of these results for breeding for durable resistance to leaf rust are discussed. Received: 15 July 1997 / Accepted: 30 December 1997  相似文献   

18.
Ryegrass (Lolium spp.) is among the most important forage crops in Europe and Australia and is also a popular turfgrass in North America. Previous genetic analysis based on a three-generation interspecific (L. perenne x L. multiflorum) ryegrass population identified four quantitative trait loci (QTLs) for resistance to gray leaf spot (Magneporthe grisea) and four QTLs for resistance to crown rust (Puccinia coronata). The current analysis based on the same mapping population detected seven QTLs for resistance to leaf spot (Bipolaris sorokiniana) and one QTL for resistance to stem rust (Puccinia graminis) in ryegrass for the first time. Three QTLs for leaf spot resistance on linkage groups (LGs) 2 and 4 were in regions of conserved synteny to the positions of resistance to net blotch (Drechslera teres) in barley (Hordeum vulgare). One ryegrass genomic region spanning 19 cM on LG 4, which contained three QTLs for resistance to leaf spot, gray leaf spot, and stem rust, had a syntenic relationship with a segment of rice chromosome 3, which contained QTLs for resistance to multiple diseases. However, at the genome-wide comparison based on 72 common RFLP markers between ryegrass and cereals, coincidence of QTLs for disease resistance to similar fungal pathogens was not statistically significant.  相似文献   

19.
Fresh insights into processes of nonhost resistance   总被引:11,自引:0,他引:11  
Nonhost resistance confers robust protection against pathogenic invaders, and has many similarities to host resistance. Through the different steps of pathogen development, plants make use of diverse defence strategies to present obstacles to the invader. These include preformed barriers, innate immunity in response to general elicitors and, as a last option, resistance mediated by independent and simultaneously acting pairs of pathogen avr and plant R genes. Our understanding of the roles played by these obstacles is relatively poor in nonhost resistance compared to host resistance. There is an obvious need to investigate how these roles may depend on the evolutionary distance between the pathogen host and a certain nonhost plant.  相似文献   

20.
Leaf rust is an important disease, threatening wheat production annually. Identification of resistance genes or QTLs for effective field resistance could greatly enhance our ability to breed durably resistant varieties. We applied a genome wide association study (GWAS) approach to identify resistance genes or QTLs in 338 spring wheat breeding lines from public and private sectors that were predominately developed in the Americas. A total of 46 QTLs were identified for field and seedling traits and approximately 20–30 confer field resistance in varying degrees. The 10 QTLs accounting for the most variation in field resistance explained 26–30% of the total variation (depending on traits: percent severity, coefficient of infection or response type). Similarly, the 10 QTLs accounting for most of the variation in seedling resistance to different races explained 24–34% of the variation, after correcting for population structure. Two potentially novel QTLs (QLr.umn-1AL, QLr.umn-4AS) were identified. Identification of novel genes or QTLs and validation of previously identified genes or QTLs for seedling and especially adult plant resistance will enhance understanding of leaf rust resistance and assist breeding for resistant wheat varieties. We also developed computer programs to automate field and seedling rust phenotype data conversions. This is the first GWAS study of leaf rust resistance in elite wheat breeding lines genotyped with high density 90K SNP arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号