首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
THERE is increasing evidence that receptors for polypeptide hormones are localized on the cell membrane. Hormone-receptor interactions have been studied primarily by measuring the bmding of 125I-labelled hormones to intact1 or broken-cell preparations2–6. Peptide hormones, however, are often inactivated after exposure to the cell extract and numerous enzymes reported as specific hormone-degrading have been described. With some hormones, such as insulin1,6,7, biologically significant receptor interactions have been demonstrated in the absence of hormone degradation, but with other hormones, such as glucagon, it has not been possible to dissociate the processes of specific receptor binding and of hormone inactivation3, which suggests that these two processes may be functionally or structurally related. Until this question is resolved, it will not be possible to characterize properly the kinetics of the hormone-receptor interaction or to isolate and purify the receptor.  相似文献   

2.
G-protein-coupled receptors (GPCRs) are prime drug targets and targeted by approximately 60% of current therapeutic drugs such as β-blockers, antipsychotics and analgesics. However, no biophysical methods are available to quantify their interactions with ligand binding in a native environment. Here, we use ellipsometry to quantify specific interactions of receptors within native cell membranes. As a model system, the GPCR-ligand CXCL12α and its receptor CXCR4 are used. Human-derived Ishikawa cells were deposited onto gold coated slides via Langmuir-Schaefer film deposition and interactions between the receptor CXCR4 on these cells and its ligand CXCL12α were detected via total internal reflection ellipsometry (TIRE). This interaction could be inhibited by application of the CXCR4-binding drug AMD3100. Advantages of this approach are that it allows measurement of interactions in a lipid environment without the need for labelling, protein purification or reconstitution of membrane proteins. This technique is potentially applicable to a wide variety of cell types and their membrane receptors, providing a novel method to determine ligand or drug interactions targeting GPCRs and other membrane proteins.  相似文献   

3.
The development of novel antibiotic drugs is one of the most pressing biomedical problems due to the increasing number of antibiotic-resistant pathogens. Antimicrobial peptides and lipopeptides are a promising category of candidates, but the molecular origins of their antimembrane activity is unclear. Here we explore a series of recently developed antimicrobial lipopeptides, using coarse-grained molecular-dynamics simulations and free energy methods to uncover the thermodynamics governing their binding to membranes. Specifically, we quantify C16-KGGK’s binding affinity to the two types of membrane by umbrella sampling. We also examined the origin of C16-KGGK’s selectivity for bacterial versus mammalian membranes by systematically varying the peptide sequence and salt concentration. Our data showed that the C16 hydrophobic tail is the main contributor to its affinity to lipid membrane, whereas the peptide portion is mainly responsible for its selectivity. Furthermore, the electrostatic interaction between the cationic peptide and anionic bacterial membrane plays a significant role in the selectivity.  相似文献   

4.
The development of novel antibiotic drugs is one of the most pressing biomedical problems due to the increasing number of antibiotic-resistant pathogens. Antimicrobial peptides and lipopeptides are a promising category of candidates, but the molecular origins of their antimembrane activity is unclear. Here we explore a series of recently developed antimicrobial lipopeptides, using coarse-grained molecular-dynamics simulations and free energy methods to uncover the thermodynamics governing their binding to membranes. Specifically, we quantify C16-KGGK’s binding affinity to the two types of membrane by umbrella sampling. We also examined the origin of C16-KGGK’s selectivity for bacterial versus mammalian membranes by systematically varying the peptide sequence and salt concentration. Our data showed that the C16 hydrophobic tail is the main contributor to its affinity to lipid membrane, whereas the peptide portion is mainly responsible for its selectivity. Furthermore, the electrostatic interaction between the cationic peptide and anionic bacterial membrane plays a significant role in the selectivity.  相似文献   

5.
Abstract: The benzodiazepine receptor from rat brain was solubilised and purified 5200-fold by affinity chromatography. The affinity column contained an immobilized benzodiazepine (delorazepam) and biospecific elution with 6 m m -chlorazepate was achieved. The purified receptor is apparently homogeneous in SDS-polyacrylamide gel electrophoresis. The native protein had a molecular weight of 240,000, and the subunit one of 60,000. The dissociation constant ( K D) is 8 n m for [3H]diazepam. A correlation exists between the value of affinity obtained for benzodiazepine derivatives and their known pharmacological effectiveness.  相似文献   

6.
7.
Secretin, a gut-brain peptide, elicited cyclic AMP production in a clone of neuroblastoma cells derived from the C1300 mouse tumor. Adenylate cyclase (EC 4.6.1.1) in plasma membranes from these cells was stimulated by secretin greater than vasoactive intestinal peptide greater than peptide histidine isoleucine amide, but not by the related peptides glucagon, gastric inhibitory polypeptide, or human growth hormone releasing factor. Hill coefficients for stimulation approximated one and the response to submaximal peptide concentrations was additive, as expected for hormones competing for a single receptor associated with the enzyme. Binding of 125I-labeled secretin to the neuroblastoma plasma membranes was saturable, time-dependent, and reversible. The KD determined from kinetic and equilibrium binding studies approximated 1 nM. The binding site displayed marked ligand specificity that paralleled that for stimulation of adenylate cyclase. The secretin receptor was regulated by guanine nucleotides, with guanosine 5'-(beta, gamma-imino)-triphosphate being the most potent to accelerate the rate of dissociation of bound secretin. These findings demonstrate the functional association of the secretin receptor with adenylate cyclase in neuronally derived cells.  相似文献   

8.
Identification of Glucagon Receptors in Rat Retina   总被引:2,自引:1,他引:1  
In this study, we characterize the glucagon receptors on rat retinal particulate preparations. The specific binding of 125I-glucagon was saturable and reversible. Apparent equilibrium conditions were established within 30-45 min. Analysis of binding data is compatible with the existence of two classes of binding sites: a high-affinity class with a KD of 7 +/- 0.8 nM and a Bmax of 2.3 +/- 0.2 pmol/mg of protein and a low-affinity class with a KD of 84.4 +/- 2.5 nM and a Bmax of 16.5 +/- 2.3 pmol/mg of protein. The 125I-glucagon binding to retinal particulate preparation was not inhibited by 1 microM concentrations of insulin, atrial natriuretic factor, angiotensin II, somatostatin, and vasoactive intestinal peptide. However, synthetic human pancreatic growth hormone-releasing factor, hGRF-44, inhibited binding, although the concentration required for half-maximal displacement was 10-fold higher than that for native glucagon. Glucagon binding was GTP sensitive. Inclusion of 0.1 mM GTP in the binding assay produced an increase in the concentration of unlabeled glucagon required for half-maximal displacement of 125I-glucagon, from 23 to 220 nM. Glucagon stimulated adenylate cyclase formation in retinal particulate preparations. The concentration of glucagon required for half-maximal activation of retinal adenylate cyclase was 16.2 nM. These results suggest that glucagon may play a role as a neurosignal transmitter in rat retina.  相似文献   

9.
Direct studies of the binding of oestradiol and testosterone to male and female membranes in vitro show that there are sex specific binding sites which have a high affinity for steroid hormones.  相似文献   

10.
We investigated effect of aldehydic products of lipid peroxidation, malondialdehyde (MDA) and 4-hydrox-ynonenal (HNE) on prostaglandin (PG) E2 receptors of liver plasma membranes. The modification of the membranes by MDA diminished PGE2 binding, decreasing receptor affinity for PGE2 and receptor density whereas HNE increased PGE2 binding, enhanced receptor density but did not changed receptor affinity. ESR study showed the decrease of the whole membrane fluidity after modification by MDA whereas HNE lowered membrane fluidity only in the internal zone of lipid bilayer and increased it in the surface area. The possible effects of membrane changes caused by MDA and HNE on PGE2 receptor parameters are discussed.  相似文献   

11.
Abstract: This study was undertaken to characterize further the central cannabinoid receptors in rat primary neuronal cell cultures from selected brain structures. By using [3H]SR 141716A, the specific CB1 receptor antagonist, we demonstrate in cortical neurons the presence of a high density of specific binding sites ( B max = 139 ± 9 fmol/mg of protein) displaying a high affinity ( K D = 0.76 ± 0.09 n M ). The two cannabinoid receptor agonists, CP 55940 and WIN 55212-2, inhibited in a concentration-dependent manner cyclic AMP production induced by either 1 µ M forskolin or isoproterenol with EC50 values in the nanomolar range (4.6 and 65 n M with forskolin and 1.0 and 5.1 n M with isoproterenol for CP 55940 and WIN 55212-2, respectively). Moreover, in striatal neurons and cerebellar granule cells, CP 55940 was also able to reduce the cyclic AMP accumulation induced by 1 µ M forskolin with a potency similar to that observed in cortical neurons (EC50 values of 3.5 and 1.9 n M in striatum and cerebellum, respectively). SR 141716A antagonized the CP 55940- and WIN 55212-2-induced inhibition of cyclic AMP accumulation, suggesting CB1 receptor-specific mediation of these effects on all primary cultures tested. Furthermore, CP 55940 was unable to induce mitogen-activated protein kinase activation in either cortical or striatal neurons. In conclusion, our results show nanomolar efficiencies for CP 55940 and WIN 55212-2 on adenylyl cyclase activity and no effect on any other signal transduction pathway investigated in primary neuronal cultures.  相似文献   

12.
高胆固醇饲料喂养造成的动脉粥样硬化(As)模型家兔通过静脉注射人血浆HDL制剂,观察HDL对As家兔肝细胞膜LDL受体活性的影响.结果发现,摄取高胆固醇饲料的As家兔,其肝细胞膜LDL受体Kd值虽无明显变化但Bmax值显著减小(P<0.01,与正常对照组比较);注射HDL制剂后,As家兔肝细胞膜LDL受体Kd值仍无明显改变,但Bmax值却显著回升(P<0.01,与高脂组比较).表明人血浆HDL具有增加As家兔肝细胞膜LDL受体活性的作用.  相似文献   

13.
Angiogenesis is a highly regulated process orchestrated by the VEGF system. Heparin/heparan sulfate proteoglycans and neuropilin-1 (NRP-1) have been identified as co-receptors, yet the mechanisms of action have not been fully defined. In the present study, we characterized molecular interactions between receptors and co-receptors, using surface plasmon resonance and in vitro binding assays. Additionally, we demonstrate that these binding events are relevant to VEGF activity within endothelial cells. We defined interactions and structural requirements for heparin/HS interactions with VEGF receptor (VEGFR)-1, NRP-1, and VEGF165 in complex with VEGFR-2 and NRP-1. We demonstrate that these structural requirements are distinct for each interaction. We further show that VEGF165, VEGFR-2, and monomeric NRP-1 bind weakly to heparin alone yet show synergistic binding to heparin when presented together in various combinations. This synergistic binding appears to translate to alterations in VEGF signaling in endothelial cells. We found that soluble NRP-1 increases VEGF binding and activation of VEGFR-2 and ERK1/2 in endothelial cells and that these effects require sulfated HS. These data suggest that the presence of HS/heparin and NRP-1 may dictate the specific receptor type activated by VEGF and ultimately determine the biological output of the system. The ability of co-receptors to fine-tune VEGF responsiveness suggests the possibility that VEGF-mediated angiogenesis can be selectively stimulated or inhibited by targeting HS/heparin and NRP-1.  相似文献   

14.
The Plant Oncogene rolB Alters Binding of Auxin to Plant Cell Membranes   总被引:1,自引:0,他引:1  
We measured auxin-binding capacity of the membrane preparationsfrom tobacco cells transformed by rolB as compared to untransformedcontrols. In the transformed cells, the overall auxin-bindingactivity is severalfold enhanced through an increase in a bindingactivity removable from the membranes at 0.5 M salt, while thebinding activity still attached to the membranes after saltwashes remains unchanged. Antibodies against the 22 kDa maizeauxin binding protein (ABP) depress most of the membrane-attachedbinding activity in both normal and rolB-transformed cells,while they do not affect the salt-washable binding activity.In contrast, antibodies against the RolB protein prevent completelybinding of auxin to the latter activity in both normal and transformedcells, while substantially unaffecting the membrane-associatedbinding. These results point to the presence, in untransformedmembranes, of an auxin-binding activity associated with a proteinimmunologically related to RolB. This activity is much increasedin rolB cells. In contrast, the auxin-binding protein analogousto maize ABP present in tobacco membranes does not increasein the rolB-transformed cells. (Received October 1, 1993; Accepted April 22, 1993)  相似文献   

15.
《Biophysical journal》2020,118(8):1850-1860
Thermal motions enable a particle to probe the optimal interaction state when binding to a cell membrane. However, especially on the scale of microseconds and nanometers, position and orientation fluctuations are difficult to observe with common measurement technologies. Here, we show that it is possible to detect single binding events of immunoglobulin-G-coated polystyrene beads, which are held in an optical trap near the cell membrane of a macrophage. Changes in the spatial and temporal thermal fluctuations of the particle were measured interferometrically, and no fluorophore labeling was required. We demonstrate both by Brownian dynamic simulations and by experiments that sequential stepwise increases in the force constant of the bond between a bead and a cell of typically 20 pN/μm are clearly detectable. In addition, this technique provides estimates about binding rates and diffusion constants of membrane receptors. The simple approach of thermal noise tracking points out new strategies in understanding interactions between cells and particles, which are relevant for a large variety of processes, including phagocytosis, drug delivery, and the effects of small microplastics and particulates on cells.  相似文献   

16.
高胆固醇饲料喂养造成的动脉粥样硬化(As) 模型家兔通过静脉注射人血浆HDL 制剂, 观察HDL 对As家兔肝细胞膜LDL受体活性的影响. 结果发现, 摄取高胆固醇饲料的As 家兔, 其肝细胞膜LDL 受体 Kd 值虽无明显变化但Bmax 值显著减小( P< 0-01 , 与正常对照组比较) ; 注射HDL 制剂后, As 家兔肝细胞膜LDL受体Kd 值仍无明显改变, 但Bmax 值却显著回升( P< 0-01 , 与高脂组比较) . 表明人血浆HDL 具有增加As 家兔肝细胞膜LDL 受体活性的作用.  相似文献   

17.
Abstract: The effects of exogenous phospholipase A2 on the binding of α-[3H]amino-3-hydroxy-5-methylisoxazole-4-propionate ([3H]AMPA) to rat cortical membranes in the presence of the chaotrope potassium thiocyanate were assessed. Pretreatment of membranes with secretory phospholipase A2 (sPLA2) elicited a concentration-dependent decrease in specific [3H]AMPA binding due mainly to a decrease in affinity (KD). This observation, together with protease inhibitor and western blot evidence, suggest that the sPLA2 effect is not due to proteolysis. The sPLA2-evoked decrease was temperature and calcium dependent. Inclusion of the specific inhibitor oleoyloxyethyl phosphocholine or preincubation of the enzyme with reducing agents to degrade its secondary structure significantly reduced the sPLA2 inhibition. These results suggest that the effects of sPLA2 arise from an enzymatic action rather than a competitive interaction at the AMPA binding site. However, arachidonic acid, a major metabolite of sPLA2 action, did not cause a similar decrease in the affinity of [3H]AMPA binding. In contrast to the effects on [3H]AMPA binding, sPLA2 caused an increase in [3H]CNQX binding, which is in accordance with the functionality of the AMPA receptor complex. These results suggest that sPLA2 may play a role in the physiological and pathophysiological regulation of AMPA receptors.  相似文献   

18.
Abstract

In rat liver membranes three types of ligand binding were seen using [3H]-dihydroalprenolol (DHA) and [125I]-hydroxybenzylpindolol (HYP): binding stereospecifically displaced by β-adrenergic agonists and antagonists, binding nonstereospecifically displaced by β-adrenergic antagonists, and binding which was not displaced by β-adrenergic agonists or antagonists.

The magnitude of the nonstereospecific displaceable binding varied with the physiological state of the animal. It was sufficient to prevent the quantitation of the stereospecific displaceable binding in some preparations from young rats but in all preparations of rats greater than 150 g or more than about 6 weeks of age. In adrenalectomized weanling rats 10–30% of the total binding was of nonstereospecific displaceable type while in control rats it comprised up to 60% of the total binding. Addition of 5 X 10-6 M phentolamine to the assay eliminated a large proportion of the nonstereospecific displaceable binding. When phentolamine was included in the assay, liver membranes from weanling rats stereo-specifically bound 30–35% of total binding; membranes from adrenalectomized rats showed stereospecific binding of up to 50 to 80%.

Because the amount of displaceable, nonstereospecific binding varied greatly depending on the physiologic state of the animals, stereospecific displacement should be monitored for every type of liver membrane preparation. Furthermore, animal age is an important variable. Using the published antagonist binding methodology (DHA or HYP) in liver membranes, it is not presently possible to quantitate liver β-adrenergic receptors in normal rats that have reached maturity.  相似文献   

19.
20.
Zinc is an essential trace element that participates in a wide range of biological functions, including wound healing. Although Zn2+ deficiency has been linked to compromised wound healing and tissue repair in human diseases, the molecular mechanisms underlying Zn2+-mediated tissue repair remain unknown. Our previous studies established that MG53, a TRIM (tripartite motif) family protein, is an essential component of the cell membrane repair machinery. Domain homology analysis revealed that MG53 contains two Zn2+-binding motifs. Here, we show that Zn2+ binding to MG53 is indispensable to assembly of the cell membrane repair machinery. Live cell imaging illustrated that Zn2+ entry from extracellular space is essential for translocation of MG53-containing vesicles to the acute membrane injury sites for formation of a repair patch. The effect of Zn2+ on membrane repair is abolished in mg53−/− muscle fibers, suggesting that MG53 functions as a potential target for Zn2+ during membrane repair. Mutagenesis studies suggested that both RING and B-box motifs of MG53 constitute Zn2+-binding domains that contribute to MG53-mediated membrane repair. Overall, this study establishes a base for Zn2+ interaction with MG53 in protection against injury to the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号