首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change is acting on several aspects of plant life cycles, including the sexual reproductive stage, which is considered amongst the most sensitive life‐cycle phases. In temperate forests, it is expected that climate change will lead to a compositional change in community structure due to changes in the dominance of currently more abundant forest tree species. Increasing our understanding of the effects of climate change on currently secondary tree species recruitment is therefore important to better understand and forecast population and community dynamics in forests. Here, we analyse the interactive effects of rising temperatures and soil moisture reduction on germination, seedling survival and early growth of two important secondary European tree species, Acer pseudoplatanus and A. platanoides. Additionally, we analyse the effect of the temperature experienced by the mother tree during seed production by collecting seeds of both species along a 2200‐km long latitudinal gradient. For most of the responses, A. platanoides showed higher sensitivity to the treatments applied, and especially to its joint manipulation, which for some variables resulted in additive effects while for others only partial compensation. In both species, germination and survival decreased with rising temperatures and/or soil moisture reduction while early growth decreased with declining soil moisture content. We conclude that although A. platanoides germination and survival were more affected after the applied treatments, its initial higher germination and larger seedlings might allow this species to be relatively more successful than A. pseudoplatanus in the face of climate change.  相似文献   

2.
Recruitment of new individuals, through germination and seedling survival, is a key process for short-lived plants. Here, we analyzed intraspecific variation in recruitment across the latitudinal range of Plantago coronopus, a widespread herb that produces both large basal seeds with a mucilaginous coat and small apical seeds without coat. We experimentally tested the effects of seed traits and water availability on recruitment, by using seeds from a wide environmental stress gradient from N Africa to N Europe. Our experiments were carried out in controlled environmental conditions and in dunes where the species naturally occurs. Water shortage decreased seed germination and seedling survival for all populations, showing the importance of water supply for P. coronopus. Basal seeds showed higher and faster germination rates than apical seeds. Since among-population variation in seed mass was not related to potential germination rate, it is the mucilaginous coat rather than size difference that likely drives the differential success between seed morphs. Seed mass positively affected seedling survival instead, but only in controlled conditions with regular water supply. An experiment in a dune showed indeed that the highest survival corresponded to the local population and not the one with the largest seeds. Our results demonstrate that both intrinsic and extrinsic factors drive inter-population variation in the early life stages of this short-lived plant, allowing it to adapt across the environmentally heterogeneous distribution range. Gathering information on intraspecific variation in recruitment-related traits will help us to understand and predict plant responses in a context of climatic change.  相似文献   

3.

Background and Aims

The response of forest herb regeneration from seed to temperature variations across latitudes was experimentally assessed in order to forecast the likely response of understorey community dynamics to climate warming.

Methods

Seeds of two characteristic forest plants (Anemone nemorosa and Milium effusum) were collected in natural populations along a latitudinal gradient from northern France to northern Sweden and exposed to three temperature regimes in growth chambers (first experiment). To test the importance of local adaptation, reciprocal transplants were also made of adult individuals that originated from the same populations in three common gardens located in southern, central and northern sites along the same gradient, and the resulting seeds were germinated (second experiment). Seedling establishment was quantified by measuring the timing and percentage of seedling emergence, and seedling biomass in both experiments.

Key Results

Spring warming increased emergence rates and seedling growth in the early-flowering forb A. nemorosa. Seedlings of the summer-flowering grass M. effusum originating from northern populations responded more strongly in terms of biomass growth to temperature than southern populations. The above-ground biomass of the seedlings of both species decreased with increasing latitude of origin, irrespective of whether seeds were collected from natural populations or from the common gardens. The emergence percentage decreased with increasing home-away distance in seeds from the transplant experiment, suggesting that the maternal plants were locally adapted.

Conclusions

Decreasing seedling emergence and growth were found from the centre to the northern edge of the distribution range for both species. Stronger responses to temperature variation in seedling growth of the grass M. effusum in the north may offer a way to cope with environmental change. The results further suggest that climate warming might differentially affect seedling establishment of understorey plants across their distribution range and thus alter future understorey plant dynamics.  相似文献   

4.
Several theoretical and empirical studies have examined the influence of environmental conditions on seed traits and germination strategies of annual species. A positive relationship between seed mass and dormancy has been described for annuals occupying climatically unpredictable ecosystems. Larger-seeded species tend to have higher seedling survival rates, while dormancy allows a bet-hedging strategy in unpredictable environments. Until now, these ideas have been addressed primarily for only one or a few focal species, without considering differences among populations and communities. The novelty of the present study lies in the population and community-level approach, where a comprehensive seed trait database including 158 annual species occurring along a gradient of rainfall variability and aridity in Israel was used to ask the following question: Does average seed mass and dormancy of annual populations and communities decrease with increasing aridity and rainfall unpredictability?Soil seed bank samples were collected at the end of the summer drought, before the onset of the rains, from four plant communities. Germination was tested under irrigated conditions during three consecutive germination seasons to determine the overall seed germinability in each soil sample. Seed mass was obtained from newly produced seeds collected at the study sites in late spring. The community level results showed that, in contrast to common theoretical knowledge, seed mass and dormancy of the dominant annual species decreased with increasing aridity and rainfall variability. Accordingly, a negative correlation was found between seed mass and seed germination fractions. The present study demonstrates that an analysis of seed traits along climatic gradients is significantly improved by approaches that target both population and community levels simultaneously. A critical evaluation sheds new light upon the selective pressures that act on seed ecology of annuals along a climatic gradient and facilitates formulation of more mechanistic hypotheses about factors governing critical seed traits.  相似文献   

5.
Li Y  Yang H  Xia J  Zhang W  Wan S  Li L 《PloS one》2011,6(12):e28601

Background

The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.

Methodology/Principal Findings

In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.

Conclusion/Significance

The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change.  相似文献   

6.
Germination characteristics and frost tolerance of seedlings are crucial parameters for establishment and invasion success of plants. The characterization of differences between populations in native and invasive ranges may improve our understanding of range expansion and adaptation. Here, we investigated germination characteristics of Ambrosia artemisiifolia L., a successful invader in Europe, under a temperature gradient between 5 and 25 °C. Besides rate and speed of germination we determined optimal, minimal and maximal temperature for germination of ten North American and 17 European populations that were sampled along major latitudinal and longitudinal gradients. We furthermore investigated the frost tolerance of seedlings. Germination rate was highest at 15 °C and germination speed was highest at 25 °C. Germination rate, germination speed, frost tolerance of seedlings, and the temperature niche width for germination were significantly higher and broader, respectively, for European populations. This was partly due to a higher seed mass of these populations. Germination traits lacked evidence for adaptation to climatic variables at the point of origin for both provenances. Instead, in the native range, seedling frost tolerance was positively correlated with the risk of frosts which supports the assumption of local adaptation. The increased frost tolerance of European populations may allow germination earlier in the year which may subsequently lead to higher biomass allocation—due to a longer growing period—and result in higher pollen and seed production. The increase in germination rates, germination speed and seedling frost tolerance might result in a higher fitness of the European populations which may facilitate further successful invasion and enhance the existing public health problems associated with this species.  相似文献   

7.
Knowledge of how germination and seedling establishment respond to soil water condition is crucial for plant conservation under global warming and land-use changes. We tested the flooding and drought tolerance of two plant species with different occurrences along a soil water gradient by assessing seed germination, seedling survival, seedling growth, and root characteristics. In the high Sino-Himalayas, Rheum alexandrae typically occurs in wetlands, R. nobile in scree or open slope with well-drained soils. Seeds and seedlings of the two species were subjected to different soil water conditions in controlled greenhouse experiments. Seed germination in both species was inhibited by high soil water content; however, seeds of R. alexandrae were more tolerant to flooding, especially to submergence. Seedling survival, biomass accumulation, root diameter, and root porosity of R. alexandrae increased significantly with increased soil water content, but submergence was lethal for seedlings. Seedling survival, biomass accumulation, and root length of R. nobile increased significantly in response to reduced soil water content. These results indicate that in the two species, seed germination and seedling establishment in response to different soil water condition are habitat-specific. Because both species are susceptible to moderate changes in soil water condition, their species-specific requirements with respect to this factor should be a consideration when planning their conservation.  相似文献   

8.
The germination and early survival of tree seedlings is a critical process for the understanding of treeline dynamics with ongoing climate change. Here we analyzed the performance of 0–4 year-old seedlings of seven tree species at three sites above and below the current altitudinal treeline in the Swiss Central Alps near Davos. Starting from sown seeds, we monitored the seedling performance as proportions of living seedlings, seedling shoot height growth, and biomass allocation over 4 years to examine changes along an elevational gradient. We evaluated the relative importance of the environmental factors soil temperature, light conditions, water use efficiency, and nitrogen availability on seedling performance. During the 4 years, the proportions of living seedlings differed only slightly along the elevational gradient even in species currently occurring at lower elevations. Microsite-specific soil temperature and light availability had only little effect on the proportion of living seedlings and seedling biomass across the elevational gradient. Conversely, seedling biomass and biomass allocation correlated well with the foliar stable nitrogen isotope abundance (δ 15N) that was used as an indicator for nitrogen availability. Collectively, our results suggested that the early establishment of seedlings of a variety of tree species in the treeline ecotone was not limited by current climatic conditions even beyond the species’ actual upper distribution limit. Nitrogen dynamics appeared to be an important environmental co-driver for biomass production and allocation in very young tree seedlings.  相似文献   

9.
The spatial and temporal fluctuations of water availability can be an obstacle for recruitment of many species in the restinga and might restrict seed germination and seedling growth in specific regeneration safe-sites. Clusia hilariana is one of the most dominant species of Restinga de Jurubatiba. This species has a high proportion of seedling establishment occurring inside the tanks of soil bromeliads underneath vegetation patches. Given the thin seed coats, the fast germination time and seed dispersal of C. hilariana during the dry season, we hypothesized that their major regeneration niche (the tanks of soil bromeliads) is related to susceptibility of seed germination and also seedling growth to low water availability. To test this hypothesis, seeds were germinated under decreasing water potentials using PEG 6000 solutions and seedlings were grown under varying water regimes. The percentage of seed germination progressively decreased at lower water potentials. After 38 days in ?1.0 MPa no seeds germinated. However, approximately 90% of seeds germinated when transferred to Ψ = 0 MPa. The relative growth rates of seedlings of C. hilariana did not differ between water treatments. Thus, the major regeneration niche of C. hilariana is not a consequence of a high sensitivity of seeds and seedlings to water shortage. Nonetheless, C. hilariana showed an array of seed and seedling traits that may help to overcome establishment constraints of the harsh environment of restingas.  相似文献   

10.
Petrů M  Tielbörger K 《Oecologia》2008,155(4):717-728
The role of local adaptation and factors other than climate in determining extinction probabilities of species under climate change has not been yet explicitly studied. Here we performed a field experiment with annual plants growing along a steep climatic gradient in Israel to isolate climatic effects for local trait expression. The focus trait was seed dormancy, for which many theoretical predictions exist regarding climate-driven optimal germination behaviour. We evaluated how germination is consistent with theory, indicating local adaptation to current and changing climatic conditions, and how it varies among species and between natural and standardised soil conditions. We reciprocally sowed seeds from three or four origins for each of three annual species, Biscutella didyma, Bromus fasciculatus and Hymenocarpos circinnatus, in their home and neighbouring sowing locations along an aridity gradient. Our predictions were: lower germination fraction for seeds from more arid origins, and higher germination at wetter sowing locations for all seed origins. By sowing seeds in both local and standard soil, we separated climatic effects from local conditions. At the arid sowing location, two species supported the prediction of low germination of drier seed origins, but differences between seed origins at the other sites were not substantial. There were no clear rainfall effects on germination. Germination fractions were consistently lower on local soil than on standard soil, indicating the important role of soil type and neighbour conditions for trait expression. Local environmental conditions may override effects of climate and so should be carefully addressed in future studies testing for the potential of species to adapt or plastically respond to climate change.  相似文献   

11.
Global warming and enhanced nitrogen (N) inputs are two key global-change drivers affecting temperate forest ecosystems simultaneously. Interactive effects of multiple drivers might cause species responses to differ from those in single-factor experiments; therefore, there is an urgent need for more multi-factor studies. Here, we assessed the growth and reproductive performance of multiple populations of a widespread grass of deciduous forests (Milium effusum) sampled along a latitudinal gradient and subjected to experimental manipulations of temperature and nitrogen availability. Common garden transplant experiments along the latitudinal gradient were used to manipulate temperatures and combined with experimental N addition to assess intraspecific responses of the study species to global-change drivers as well as to determine local adaptation. The total biomass, number of seeds and seedling emergence time of M. effusum increased when transplanted in the southern common garden. Apart from effects on the seed mass, the species did not respond to N addition alone. Yet, interactive effects between warming and N addition were found: N addition led to increased biomass growth but only in the northern common garden. Significant home-site advantages were apparent, most likely because of increased mycorrhizal colonization of roots of local transplants. We show that multiple global-change drivers may alter dynamics in understorey communities of temperate forests. Our study reinforces the need to increase our understanding of plant responses to future environmental changes by expanding the multi-factor research framework.  相似文献   

12.
Background and Aims Diaspores of heteromorphic species may germinate at different times due to distinct dormancy-breaking and germination requirements, and this difference can influence life history traits. The primary aim of this study was to determine the effect of germination time of the two seed morphs of Suaeda corniculata subsp. mongolica on life history traits of the offspring.Methods Germinated brown and black seeds were sown on the 20th of each month from April to September in a simulated but near-natural habitat of the species. Phenological and vegetative traits of the maternal plants, and number, size and germination percentage of the offspring were determined.Key Results Germinated seeds sown late in the year produced smaller plants that had a higher proportion of non-dormant brown than dormant black seeds, and these brown seeds were larger than those produced by germinated seeds sown early in the year. The length of the seedling stage for brown seeds was shorter than that for black seeds, and the root/shoot ratio and reproductive allocation of plants from brown seeds were more variable than they were for plants from black seeds. Late-germinating brown seeds produced larger plants than late-germinating black seeds.Conclusions Altering the proportion of the two seed types in response to germination timing can help alleviate the adverse effects of delayed germination. The flexible strategy of a species, such as S. corniculata, that produces different proportions of dimorphic seeds in response to variation in germination timing may favour the maintenance and regeneration of the population in its unpredictable environment.  相似文献   

13.
Flow cytometric analyses of nuclear DNA levels were carriedout during development, stratification and germination of dormantseeds from three tree species with contrasting characteristics.Norway maple (Acer platanoides) and sycamore (Acer pseudoplatanus)have orthodox (desiccation-tolerant) and recalcitrant (desiccation-sensitive)storage behaviours, respectively, and require only a periodof cold to break dormancy, whereas, orthodox cherry (Prunusavium) seeds require an initial warm period before cold stratificationto fully stimulate germination. Whole embryos and radicle tipsof both Norway maple and sycamore were found to have stablehigh levels of 4C DNA during the latter stages of developmentand both contained nuclei arrested at the 2C and 4C levels atmaturity. Mature cherry embryos had nuclei predominantly arrestedat the 2C level. This suggests that the acquisition of desiccationtolerance is not correlated with the arrest of the cell cycleat any particular nuclear DNA level. Neither DNA replicationin radicle cells nor germination occurred when seeds were maintainedmoist at a constant 20 °C. However, in the late stages ofcold treatment during stratification, nuclear DNA levels inradicle cells changed in advance of radicle emergence in theorthodox Norway maple and cherry, whereas in the recalcitrantsycamore, change was not recorded until after radicle emergence.These results show that DNA replication has potential use asan indicator of the progress of tree seeds through stratificationtreatments used to break some types of dormancy. The ways inwhich this indicator could be exploited for seed quality andperformance testing are discussed.Copyright 1998 Annals of BotanyCompany Norway maple,Acer platanoidesL., sycamore,Acer pseudoplatanusL., cherry,Prunus aviumL., DNA replication, flow cytometry, seed dormancy, stratification  相似文献   

14.
Seedling recruitment allows genetic recombination and production of dispersal units. Both the climate experienced by the source populations (seed source effect) and the weather experienced by the seeds during germination and seedling emergence (recruitment site effects) are important for seedling recruitment. Separating these effects in the field is essential to assess potential climate change impacts on plant population. We combine experimental seed transplant and gradient analyses to separate the effects of seed source and recruitment site temperature and precipitation for the seedling emergence of two alpine/lowland species pairs (Viola biflora/Viola palustris, Veronica alpina/Veronica officinalis). Combining these approaches allows us to compare local responses versus responses along environmental gradients, but also tests for local adaptation and/or pre-conditioning effects (adaptive seedling emergence responses). Veronica officinalis emergence increased with increasing seed source temperature in both the experimental and the gradient approaches, and showed adaptive seedling emergence. Viola biflora, Viola palustris and Veronica alpina emergence decreased with recruitment site temperature in both approaches. Both Violas emergences increased with recruitment site precipitation, in both approaches for the alpine violet, and in the gradient approach for lowland one. Emergence was primarily affected by the environment of the recruitment site, whereas seed source climate and adaptive seedling emergence impacted recruitment in only one of our species. The responses to recruitment site temperatures were negative, whereas the response to seed source temperature was positive. Ignoring the distinctions between these different mechanisms can lead to erroneous conclusions regarding potential climate change impacts on plant recruitment.  相似文献   

15.
In this study the effects of seed size variation on germinationand seedling vigour have been investigated within and betweenploidy levels of diploid and related autotetraploid Dactylixglomerata. Rates of seed germination and seedling growth werecompared in two contrasting environments using diploid and tetraploidseeds of equal and also different biomass. Within each ploidylevel, seed biomass had no effect on either the overall percentagenor the rate of germination. In contrast, the comparison ofseeds of equal biomass but differing in ploidy level showedthat seeds from tetraploid plants germinated faster and to ahigher percentage than those from diploid plants. With respectto seedling growth, heavier seeds from the tetraploid genotypesgave seedlings of significantly higher biomass than those fromlighter tetraploid and diploid seeds throughout the 2 monthsof study. Interestingly, seeds of equal biomass but from differentploidy levels produced seedlings more similar than those fromthe extreme seed weight categories. These differences were maintainedin two different environmental conditions. These results suggestthat there is a complex interdependance of seed size and ploidyon seed germination and seedling growth but is not a simpleconsequence of differences in seed size between diploids andtheir related tetraploids.Copyright 1995, 1999 Academic Press Dactylis glomerata, polyploidy, seed size, germination, seedling  相似文献   

16.
Climate change induced alterations to rainfall patterns have the potential to affect the regeneration dynamics of plant species, especially in historically everwet tropical rainforest. Differential species response to infrequent rainfall may influence seed germination and seedling establishment in turn affecting species distributions. We tested the role of watering frequency intervals (from daily to six-day watering) on the germination and the early growth of Dipterocarpaceae seedlings in Borneo. We used seeds that ranged in size from 500 to 20,000 mg in order to test the role of seed mass in mediating the effects of infrequent watering. With frequent rainfall, germination and seedling development traits bore no relationship to seed mass, but all metrics of seedling growth increased with increasing seed mass. Cumulative germination declined by 39.4% on average for all species when plants were watered at six-day intervals, and days to germination increased by 76.5% on average for all species from daily to six-day intervals. Final height and biomass declined on average in the six-day interval by 16% and 30%, respectively, but the percentage decrease in final size was greater for large-seeded species. Rooting depth per leaf area also significantly declined with seed mass indicating large-seeded species allocate relatively more biomass for leaf production. This difference in allocation provided an establishment advantage to large-seeded species when water was non-limiting but inhibited their growth under infrequent rainfall. The observed reduction in the growth of large-seeded species under infrequent rainfall would likely restrict their establishment in drier microsites associated with coarse sandy soils and ridge tops. In total, these species differences in germination and initial seedling growth indicates a possible niche axis that may help explain both current species distributions and future responses to climate change.  相似文献   

17.
18.
《Acta Oecologica》2000,21(4-5):245-256
Fire is selectively shaping most of the traits of plants growing in fire-prone environments. However, seed size and other features related to seed production have not been studied in the light of the evolutionary role of fire. Our research tests the hypothesis that larger seeds have a higher chance of surviving wildfires and produce more vigorous seedlings with a lower death rate. To test this hypothesis the germination and early seedling growth of five Spanish pine species were studied. Weight, length and width of all seeds were measured. The biomass (fresh and dry weight) and length (root and total) of subsequent seedlings were also measured after 30 d from emergence. Seeds were submitted to elevated temperatures for periods in which the chance of survival was 50 % (calculated by means of a logistic model for each pine species). The differences observed among species suggests that fire may be adaptively shaping seed size in pines with larger seeds (Pinus canariensis and P. pinaster), because larger seeds are more likely to survive after heat shocks. Furthermore, in P. canariensis, seedlings after heat treatment are even larger than those submitted to control. In P. halepensis, despite being well adapted to fire, our results indicated no relationships between fire and seed characteristics. Finally, although heat treatment has a general adverse effect on seedling growth in the case of the two subalpine pines, we have detected a positive relationship between seed size and seedling growth but only in the largest seeds. This might also suggest the relevance of fire as a selective force for these pines which is outperformed by the relevance of dispersal and emergence time as adaptive traits in the post-fire scenario.  相似文献   

19.
Changes in species composition during succession are driven by biotic and abiotic factors leading to a multitude of niches occupied by distinct species. Gradient analyses of plant communities provide opportunities to approximate the niche position of species along a successional gradient. Several plant traits have been used to explain mechanisms governing successional sequences, but generalising changes in species traits during primary succession is still controversial. This study examined whether the seed mass and the optimum temperature for germination could explain the niche position of several glacier foreland species along a primary successional gradient in the Austrian Central Alps. We hypothesised that pioneer species should possess lighter seeds and a lower optimum temperature for germination than late successional species. We found significant differences in the seed mass between species, but the seed mass did not correspond with the assigned niche position on the successional gradient. Germination responses to temperature also differed significantly between species. Pioneer species performed better at lower temperatures than late successional species, suggesting that the optimum temperature for germination is a driver of niche separation. We discuss the interactions between seed traits and environmental conditions along the primary successional gradient emphasising the importance of temperature requirements for the germination. Differences in the regeneration characteristics are a major cue governing species turnover in glacier foreland succession.  相似文献   

20.
Fleshy-fruited plants rely on animal frugivores to disperse their seeds, and seed removal by frugivores may leave an imprint on seedling recruitment. However, to what extent plant–frugivore interactions are related to seedling recruitment has rarely been quantified at the community level, especially in species-rich tropical forests. In this study, we tested the effect of different plant traits on fruit removal by frugivores and tested the relative importance of fruit removal, plant traits and abiotic factors for seedling recruitment. We quantified plant–frugivore interactions of 22 fleshy-fruited plant species consumed by 56 diurnal frugivore species, and counted the number of seedlings that emerged along an elevational gradient in the Colombian Andes. We measured a set of plant traits (i.e., crop size; fruit size; seed load and mass; fruit nutritional contents), estimated the density of adult plants and recorded relevant abiotic factors (light, temperature and humidity). We found that fruit removal by frugivores was positively associated with crop size, but negatively associated with fruit length and unrelated to seed load and fruit nutritional content. Seedling densities were positively related to the density of adult plants, seed mass and fruit removal by animals. We found no relationship between abiotic factors and seedling recruitment. Our results indicate that fruit abundance and morphology are important determinants of fruit removal and that fruit removal is positively associated with seedling recruitment accounting for effects of species abundance and plant traits. We conclude that plant traits shape fruit removal and seedling recruitment at the community level, while these two crucial processes of forest regeneration are directly linked by seed dispersal of animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号