首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) biogeochemistry of a mature Scots pine (Pinus sylvestris L.) stand subjected to an average total atmospheric N deposition of 48 kg ha?1 year?1 was studied during the period 1992–2007. The annual amount of dissolved inorganic nitrogen (DIN) in throughfall (TF) averaged 34 kg ha?1 year?1 over the 16-year monitoring period. The throughfall fluxes contained also considerable amounts of dissolved organic nitrogen (DON) (5–8.5 kg N ha?1 year?1), which should be incorporated in the estimate of N flux using throughfall collectors. Throughfall DIN fluxes declined at a rate of ?0.9 kg N ha?1 year?1, mainly due to the decreasing TF fluxes of ammonium (NH4), which accounted for 70% to TF DIN. The decrease in TF DIN was accompanied by a decrease in DIN leaching in the seepage water (?1.6 kg N ha?1 year?1), which occurred exclusively as nitrate (NO3 ?). Nitrate losses in the leachate of the forest floor (LFH) equalled the TF NO3 ? delivered to the LFH-layer. On the contrary, about half of the TF NH4 + was retained within the LFH-layer. Approximately 60% of the TF DIN fluxes were leached indicating that N inputs were far in excess of the N requirements of the forest. For DON, losses were only substantial from the LFH-layer, but no DON was leached in the seepage water. Despite the high N losses through nitrate leaching and NO x emission, the forest was still accumulating N, especially in the aggrading LFH-layer. The forest stand, on the contrary, was found to be a poor N sink.  相似文献   

2.
In a mosaic landscape in N‐Belgium (W‐Europe), consisting of forest, grassland, and wooded pasture on former agricultural land, we assessed nitrogen redistribution by free‐ranging cattle (±0.2 animal units ha?1 yr?1). We examined if the spatial redistribution of nitrogen among habitats by cattle could restore nutrient‐poor conditions in preferred foraging habitats, and conversely whether such translocation could lead to extreme eutrophication in preferred resting habitats. We used nitrogen content of different diet classes, habitat use, foraging and defecation behavior, weight gain, and nitrogen losses in the actual situation to explore four different habitat proportion scenarios and two different foraging strategies to calculate a net nitrogen balance per habitat. An atmospheric deposition of 30 kg N ha?1 yr?1 with varying interception factors according to the habitat types was included in an integrated nitrogen balance. All scenarios showed a net nitrogen transport from grassland and wooded pasture to forest habitat. We found that nitrogen redistribution strongly depends on habitat proportion. Nitrogen losses from preferred grassland habitat can be high, given its proportion is small. Depletion is only to be expected at excretion‐free areas and probably is of minor importance to trigger the establishment of woody species. In general, nitrogen transported by cattle was much lower than input by atmospheric deposition, but grazing can compensate for high N inputs in excretion‐free areas and maintain grassland types that support critical loads of 20–25 kg N ha?1 yr?1. In none of the scenarios, N transport by cattle resulted in the exceeding of critical nitrogen loads to vulnerable forest ground vegetation.  相似文献   

3.
Wood ants (Formica rufa group) are regarded as keystone species in boreal and mountain forests of Europe and Asia by their effect on ecosystem carbon (C) and nutrient pools and fluxes. To quantify the impact of their activity on boreal forest ecosystems, C, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) pools and fluxes in wood ant nests (WAN), and soil were assessed along a 5-, 30-, 60-, and 100-year-old Norway spruce (Picea abies L. Karsten) dominated successional gradient in eastern Finland. Amounts of C and nutrients in WAN increased with stand age, but contained less than 1% of total C and nutrient pools in these stands. The CO2-efflux from nests was also insignificant, as compared to CO2-efflux from the forest floor. Annually, the amount of C brought by wood ants into their nests as honeydew, prey and nest-building materials ranged from 2.7 to 49.3 kg ha?1 C, but this is only 0.1–0.7% of the combined net primary production of trees and understorey in boreal forests. The difference between wood ant nest C inputs and outputs was very small in the younger-aged stands, and increased in the older stands. Carbon accumulation rates in nests over a 100 year period are estimated to be less than 10 kg ha?1 a?1. In contrast to C, annual inputs of N, P, and K are larger compared to wood ant nest nutrient pool size, ranging from 3 to 6% of the annual tree stand and understorey uptake. This indicates a more rapid turnover and transport of N, P, and K out of WAN, and suggests that wood ants increase the cycling rate of these nutrients in boreal forests.  相似文献   

4.
Most forests in Europe are patchily distributed within the agricultural landscape. Therefore, forest biogeochemistry in Europe cannot be understood without considering the connectivity of nutrient cycles between forest patches and fertilized cropland. In this paper, we quantified the role of roe deer, the most widespread wild ungulate in Europe, as a vector of nitrogen and phosphorus from fertilized fields to forest patches, in a typical agricultural landscape of southwestern Europe. We derived a model of nutrient transfer from a data set on deer density, landscape‐use by individual deer, and nutrient content in feces. The model shows that the magnitude of nutrient transfer is highly sensitive to the proportion of forest patches within the landscape, and to the way deer use the landscape to feed and defecate. Hence, the magnitude of nutrient transfer varies substantially across the landscape. Locally, deer may significantly fertilize the forest, transferring the equivalent of almost 20% of the atmospheric deposition of nitrogen, and the equivalent of 0.13% of the total stock of phosphorus from cropland to forest patches each year. These inputs may markedly influence the biogeochemistry of forests in the long run, and the nitrogen to phosphorus ratio available to trees and forest plants. These results highlight the significant, but, heterogeneous, role of wild ungulates in forest biogeochemistry across Europe.  相似文献   

5.
The present study aimed to assess abundance indices and habitat associations of four sympatric ungulate species (alpine musk deer Moschus chrysogaster, tufted deer Elaphodus cephalophus, Chinese serow Capricornis milneedwardsii, and Chinese goral Naemorhedus griseus) in Baima Xueshan Nature Reserve of southwest China, using camera trapping and dung counts data. Camera traps were set along six dung transects in different habitats and explored habitat use of the sympatric ungulates using trapping rates. The results obtained revealed that Chinese serow showed a negative association with open canopy cover and low canopy cover. Alpine musk deer were associated with oak shrubs, oak forests and open canopy cover, while tufted deer avoided oak shrubs. Goral showed no significant associations with habitat variables. Alpine musk deer and tufted deer had considerable habitat overlap with Chinese serow. By finding a high correlation between indices, the study indicates that camera trapping may represent a valid index of relative abundance, matching results from other studies.  相似文献   

6.
Green alder (Alnus viridis ssp. fruticosa) is a dominant understory shrub during secondary successional development of upland forests throughout interior Alaska, where it contributes substantially to the nitrogen (N) economy through atmospheric N2 fixation. Across a replicated 200+ year old vegetation chronosequence, we tested the hypotheses that green alder has strong effects on soil chemical properties, and that ecosystem-level N inputs via N2 fixation decrease with secondary successional stand development. Across early-, mid-, and late-successional stands, alder created islands of elevated soil N and carbon (C), depleted soil phosphorus (P), and more acidic soils. These effects translated to the stand-level in response to alder stem density. Although neither N2 fixation nor nodule biomass differed among stand types, increases in alder densities with successional time translated to increasing N inputs. Estimates of annual N inputs by A. viridis averaged across the upland chronosequence (6.6 ± 1.2 kg N ha?1 year?1) are substantially less than inputs during early succession by Alnus tenuifolia growing along Alaskan floodplains. However, late-succession upland forests, where densities of A. viridis are highest, may persist for centuries, depending on fire return interval. This pattern of prolonged N inputs to late successional forests contradicts established theory predicting declines in N2-fixation rates and N2-fixer abundance as stands age.  相似文献   

7.
Steven W Seagle 《Oikos》2003,103(1):230-234
Ungulates alter nutrient dynamics within many of Earth's ecosystems. However, whether foraging ungulates transfer nutrients among ecosystems at a magnitude sufficient to alter nutrient budgets and associated ecological processes is unknown. I suggest that within eastern North American landscapes dominated by agriculture and forest, the juxtaposition of high nitrogen crops for foraging and forest used for diurnal concealment promotes a net transfer of nitrogen from cropland to forests by overabundant white-tailed deer ( Odocoileus virginianus ). To estimate the magnitude of this nutrient transfer I apply allometric relationships of deer nitrogen consumption and excretion to populations within a hypothetical landscape in which deer use forest and cropland in equal proportions daily and are not limited in habitat use by landscape spatial pattern. Results indicate a non-linear relationship between deer nitrogen deposition to forest and percent forest cover, with deposition rising toward estimated atmospheric nitrogen deposition when forest covers less than 40% of the landscape. This "spatial subsidy" of nitrogen to the forest-floor represents a previously unrecognized input to the forest nitrogen budget with equally unknown impacts on forest-floor ecosystem processes.  相似文献   

8.
Symbiotic cyanobacteria??bryophyte associations on the forest floor are shown to contribute significantly to stand-level nitrogen budgets through the process of biological nitrogen fixation (BNF), but few studies have considered the role of canopy bryophytes. Given the high biomass of epiphytic bryophytes in many tree species of the North American temperate rain forest, we suggest that canopy bryophytes may contribute substantially to stand-level N dynamics. We confirm the presence of cyanobacteria and measure rates of BNF at three heights (0, 15 and 30 m) in Sitka spruce trees across three watershed estuaries of Clayoquot Sound, British Columbia, Canada. This study is the first to report BNF by cyanobacteria associated with epiphytic and forest floor bryophytes in the coastal temperate rain forest of North America. Cyanobacteria density was significantly greater in epiphytic bryophytes compared to mosses on the forest floor, and rates of BNF were highest at 30 m in the canopy. The majority of total stand-level BNF (0.76 kg N · ha-1 · yr-1) occurs in the canopy, rather than on the forest floor (0.26 kg N · ha-1 · yr-1). We suggest that BNF by cyanobacterial-bryophyte associations in the canopy of coastal temperate rain forests is a unique source of ecosystem N, which is dependent on large, old trees with high epiphytic bryophyte biomass.  相似文献   

9.
The effects of nitrogen (N) deposition and management practices on leaf litterfall and N and P return in Moso bamboo forest are not yet known. In this study, we investigated the effects of four levels of simulated N deposition, including low-N (N30, 30 kg ha?1 year?1), medium-N (N60, 60 kg ha?1 year?1), and high-N (N90, 90 kg ha?1 year?1), and a control with no N (N-free addition). The experiment was performed in a Moso bamboo forest under conventional management (CM) and intensive management (IM). The results showed that leaf litterfall and N and P return occurred mainly from March to June and accounted for 78.2–82.2, 78.5–82.1, and 85.6–94.6% of annual leaf litterfall, N return, and P return, respectively. Unlike CM, IM significantly increased leaf litterfall and N and P return. The positive effects were further amplified by low- and medium-N deposition, but not high-N deposition. The combination of low- and medium-N deposition and IM significantly increased N and P return, but not litterfall. Our results indicated that the interaction of anthropogenic management practices and N deposition need to be considered when estimating the effects of N deposition on the biogeochemical cycle of a forest ecosystem.  相似文献   

10.
Tigers are globally threatened and their conservation relies on intact habitat that supports key large prey. The Churia habitat is relatively unknown even though it occupies a significant portion of the forested landscape of the Terai Arc, which stretches over 1000 km in a narrow band across Nepal and India, parallel to the Himalayas. To address this lack of detailed information relevant to tiger conservation, we used sign surveys to estimate occupancy probability for 5 focal prey species of tigers (gaur, sambar, chital, wild pig, and barking deer), and assess tiger habitat use within 537 km2 of the understudied Churia habitat in Chitwan National Park (CNP), Nepal. Multi-season occupancy models allowed us to make seasonal (winter vs. summer) inferences regarding changes in occupancy or habitat use based on covariates influencing occupancy and detection. We found that sambar had the largest spatial distribution occupying 431–437 km2, while chital had the smallest at 100–158 km2 across both seasons. The gaur population showed the most seasonal variation occupying from 413 to 318 km2, suggesting their migration out of the Churia in summer and moving in during winter. Wild pigs showed the opposite trend occupying from 444 to 383 km2; suggesting moving into Churia in summer and out in winter. Barking deer were widespread in both seasons (329–349 km2). Tiger habitat use (\({{\hat{\varPsi } }}({\text{SE}})\)) was higher in winter 0.63 (0.11) than in summer 0.54 (0.21), but confidence intervals overlapped and area used was similar across seasons, 337 km2 (winter) to 291 km2 (summer). Available habitat, distribution of water sources, and human disturbance were the most common variables influencing spatial distribution of prey and habitat use of tigers at different spatial scales. Overall, we found high prey occupancy and tiger habitat use, suggesting the Churia is valuable habitat for ungulates and tigers. Given that this habitat accounts for 639 km2 within CNP and 7642 km2 across the entire Terai Arc, the Churia should no longer be neglected in global tiger conservation planning.  相似文献   

11.
Primary tropical rainforests are generally considered to be relatively nitrogen (N) rich, with characteristically large hydrologic and gaseous losses of inorganic N. However, emerging evidence suggests that some tropical ecosystems can exhibit tight N cycling, with low biologically available losses. In this study, we combined isotopic data with a well-characterized watershed N mass balance to close the N budget and characterize gaseous N losses at the ecosystem scale in a lowland tropical rainforest on the Osa Peninsula in southwestern Costa Rica. We measured δ15N and δ18O of nitrate (NO3 ?) in precipitation, surface, shallow and deep soil lysimeters and stream water biweekly for 1 year. Enrichment of both isotopes indicates that denitrification occurs predominantly as NO3 ? moves from surface soil down to 15 cm depth or laterally to stream water, with little further processing in deeper soil. Two different isotopic modeling approaches suggested that the gaseous fraction comprises 14 or 32% of total N loss (2.7 or 7.5 kg N ha?1 y?1), though estimates are sensitive to selection of isotopic fractionation values. Gas loss estimates using the mass balance approach (3.2 kg N ha?1 y?1) fall within this range and include N2O losses of 0.9 kg N ha?1 y?1. Overall, gaseous and soluble hydrologic N losses comprise a modest proportion (~ 25%) of the total N inputs to this ecosystem. By contrast, relatively large, episodic hydrologic losses of non-biologically available particulate N balance the majority of N inputs and may contribute to maintaining conservative N cycling in this lowland tropical forest. Similar patterns of N cycling may occur in other tropical forests with similar state factor combinations—high rainfall, steep topography, relatively fertile soils—such as the western arc of the Amazon Basin and much of IndoMalaysia, but this hypothesis remains untested.  相似文献   

12.
The carbon (C) and nitrogen (N) storage capabilities of Pinus densiflora in six different stand ages (10, 27, 30, 32, 44, and 71 years old) were investigated in Korea. Thirty sample trees were destructively harvested and 12 were excavated. Samples from the above and belowground tree components, coarse woody debris (CWD), forest floor, and mineral soil (0–30 cm) were collected. Tree biomass was highest in the 71-year-old stand (202.8 t ha−1) and lowest in the 10-year-old stand (18.4 t ha−1). C and N storage in the mineral soil was higher in the 71-year-old stand than in the other stands, mainly due to higher soil C and N concentrations. Consequently, the total ecosystem C and N storage (tree+forest floor+CWD+soil) was positively correlated with stand age: increasing from a minimum in the 10 year old stand (18.8 t C ha−1 and 1.3 t N ha−1) to a maximum in the 71-year-old stand (201.4 t C ha−1 and 8.5 t N ha−1). The total ecosystem C storage showed a similar sigmoidal pattern to that of tree C storage as a function of the age-sequence, while N storage in the CWD, forest floor and mineral soil showed no significant temporal trends. Our results provide important insights that will increase our understanding of C and N storage in P. densiflora stands and our ability to predict changes according to stand age in the region.  相似文献   

13.
The production of reactive nitrogen worldwide has more than doubled in the last century because of human activities and population growth. Advances in our understanding of the nitrogen cycle and the impacts of anthropogenic activities on regional to global scales is largely hindered by the paucity of information about nitrogen inputs from human activities in fast-developing regions of the world such as the tropics. In this paper, we estimate nitrogen inputs and outputs in Brazil, which is the world’s largest tropical country. We determined that the N cycle is increasingly controlled by human activities rather than natural processes. Nitrogen inputs to Brazil from human activities practically doubled from 1995 to 2002, mostly because of nitrogen production through biological fixation in agricultural systems. This is in contrast to industrialized countries of the temperate zone, where fertilizer application and atmospheric deposition are the main sources of anthropogenic nitrogen. In Brazil, the production of soybean crops over an area of less than 20 million ha, was responsible for about 3.2 Tg N or close to one-third of the N inputs from anthropogenic sources in 2002. Moreover, cattle pastures account for almost 70% of the estimated 280×106 ha of agricultural land in Brazil and potentially fix significant amounts of N when well managed, further increasing the importance of biological nitrogen fixation in the nitrogen budget. Much of these anthropogenic inputs occur in the Brazilian savannah region (Cerrado), while more urbanized regions such as the state of São Paulo also have high rates of nitrogenous fertilizer inputs. In the Amazon, rates of anthropogenic nitrogen inputs are relatively low, but continuing conversion of natural forests into cattle pasture or secondary forests potentially add a significant amount of new nitrogen to Brazil given the vast area of the region. Better measurements of biological fixation rates in Brazil are necessary for improving the nitrogen budgets, especially at a more refined spatial scale.  相似文献   

14.
Aerial photographs, maps and optically stimulated luminescence dates were combined with existing soil data to construct high resolution chronosequences of soil development over 140 years at a temperate Atlantic UK dune system. Since soil formation had progressed for varying duration under different climate and nitrogen deposition regimes, it was possible to infer their relative influence on soil development compared with location-specific variables such as soil pH, slope and distance to the sea. Results suggest that soil development followed a sigmoid curve. Soil development was faster in wet than in dry dune habitats. In dry dunes, rates were greater than in the literature: they increased with increasing temperature and nitrogen deposition and decreased with increasing summer gales. The combination explained 62% of the variation. Co-correlation meant that effects of nitrogen deposition could not be differentiated from temperature. In wet dune habitats rates increased with temperature and decreased with gales. The combination explained only 23% of the variation; surprisingly, rainfall was not significant. Effects of location-specific variables were not significant in either habitat type. Nitrogen accumulation was faster in wet than dry dune habitats, averaging 43 kg N ha?1 per year overall. Nitrogen accumulation greatly exceeded inputs from atmospheric deposition, suggesting rates of input for biological N fixation are 10–60 kg N ha?1 per year. Recent climate and/or nitrogen deposition regimes may have accelerated soil development compared with past rates. These data suggest the importance of changing climate on soil development rates and highlight the contribution of biological N fixation in early successional systems.  相似文献   

15.

Background and aims

Tropical and subtropical forests are experiencing high levels of atmospheric nitrogen (N) deposition, but the responses of such forests ecosystems to N deposition remain poorly understood.

Methods

We conducted an 8-year field experiment examining the effect of experimental N deposition on plant growth, soil carbon dioxide efflux, and net ecosystem production (NEP) in a subtropical Chinese fir forest. The quantities of N added were 0 (control), 60, 120, and 240 kg ha?1 year?1.

Results

NEP was lowest under ambient conditions and highest with 240 kg of N ha?1 year?1 treatment. The net increase in ecosystem carbon (C) storage ranged from 9.2 to 16.4 kg C per kg N added in comparison with control. In addition, N deposition treatments significantly decreased heterotrophic respiration (by 0.69–1.85 t C ha?1 year?1) and did not affect plant biomass. The nitrogen concentrations were higher in needles than that in fine roots.

Conclusions

Our findings suggest that the young Chinese fir forest is carbon source and N deposition would sequester additional atmospheric CO2 at high levels N input, mainly due to reduced soil CO2 emission rather than increased plant growth, and the amount of sequestered C depended on the rate of N deposition.  相似文献   

16.
The Gallery forests of the Cerrado biome play a critical role in controlling stream chemistry but little information about biogeochemical processes in these ecosystems is available. This work describes the fluxes of N and P in solutions along a topographic gradient in a gallery forest. Three distinct floristic communities were identified along the gradient: a wet community nearest the stream, an upland dry community adjacent to the woodland savanna and an intermediate community between the two. Transects were marked in the three communities for sampling. Fluxes of N from bulk precipitation to these forests resulted in deposition of 12.6 kg ha?1 y?1 of total N of which 8.8 kg ha?1 was as inorganic N. The throughfall flux of total N was generally <8.4 kg ha?1 year?1. Throughfall NO3?CN fluxes were higher (7?C32%) while NH4?CN and organic N fluxes were lower (54?C69% and 5?C46%) than those in bulk precipitation. The throughfall flux was slightly lower for the wet forest community compared to other communities. Litter leachate fluxes differed among floristic communities with higher NH4?CN in the wet community. The total N flux was greater in the wet forest than in the dry forest (13.5 vs. 9.4 kg ha?1 year?1, respectively). The stream water had total N flux of 0.3 kg ha?1 year?1. The flux of total P through bulk precipitation was 0.7 kg ha?1 year?1 while the mean fluxes of total P in throughfall (0.6 kg ha?1 year?1) and litter leachate (0.5 kg ha?1 year?1) declined but did not differ between communities. The low concentrations presented in soil solution and low fluxes in stream water (0.3 and 0.1 kg ha?1 year?1 for N and P, respectively) relative to other flowpaths emphasize the conservative nutrient cycling of these forests and the importance of internal recycling processes for the maintenance and conservation of riparian and stream ecosystems in the Cerrado.  相似文献   

17.
Losses of nitrogen (N) often follow severe disturbance of forest ecosystems. In tropical forests, losses of N associated with the disturbance of clearing may be particularly important because rates of soil N cycling are high and forest clearing now occurs on a large scale. We measured soil solution inorganic N concentrations and fluxes for 1 year in an intact forest in the Brazilian Amazon state of Rondônia and in an adjacent 3-ha forest plot that was cleared for pasture by cutting, burning and planting pasture grass and in established cattle pastures on the same soils that were 5 and 22 years old. The cleared forest had higher soil solution NO 3 ? concentrations than the intact forest, but the difference between the cleared and control forests declined with time after the start of the first post-clearing rainy season. Established pastures had much lower solution NH 4 + and NO 3 ? concentrations than forest or cleared forest. Estimated annual dissolved inorganic solution N fluxes to below 1 m during the first year after clearing were 2.5 kg ha?1 in forest and 24.4 kg ha?1 in newly cleared forest compared with only 0.5–1.2 kg ha?1 in established pastures. The solution fluxes from cleared forest during the first year after clearing were approximately 7 times greater than gaseous N oxide (N2O+NO) losses estimated for the same time. These results were consistent with the characterization of moist tropical forests on weathered soils as N-rich and likely to respond to disturbances that elevate soil N availability with increased loss to both soil solution and the atmosphere. These results also suggest that the relative increase in N oxide loss is substantially less than the increase solution inorganic N loss.  相似文献   

18.
We constructed nitrogen (N) budgets for the lawns of three simulated residences built to test the environmental impacts of three different residential landscape designs in southern California. The three designs included: a “Typical” lawn planted with cool season tall fescue (Schedonorus phoenix), fertilized at the recommended rate for this species (192 kg?1 ha?1 year?1) and irrigated with an automatic timer; a design intended to lower N and water requirements (“Low Input”) with the warm season seashore paspalum (Paspalum vaginatum) fertilized at 123 kg?1 ha?1 year?1 and irrigated with a soil moisture-based system; and a design incorporating local best practices (“Low Impact” lawn) that included the native sedge species Carex, fertilized at 48 kg?1 ha?1 year?1 and irrigated by a weather station-based system. Plant N uptake accounted for 33.2 ± 0.5 (tall fescue), 53.7 ± 0.7 (seashore paspalum), and 12.2 ± 1.3 % (Carex) of annual N inputs, while estimated N retention in soil was relatively large and similar in the three lawns (41–46 %). At lower N and water inputs than Typical, Low Input showed the highest annual clipping yield and N uptake, although it also had higher denitrification rates. Leaching inorganic N losses remained low even from the Typical lawn (2 %), while gaseous N losses were highly variable. The Low Input lawn was most efficient in retaining N with relatively low water and N costs, although its fertilization rates could be further reduced to lower gaseous N losses. Our results suggest that the choice of a warm-season, C4 turf species with reduced rates of irrigation and fertilization is effective in this semi-arid region to maintain high productivity and N retention in plants and soils at low N and water inputs.  相似文献   

19.
Using mass budget and hydrological models, we quantified the contribution of major diffuse nitrogen (N) sources to surface water loading in a large heterogeneous catchment (upper Vltava river, Czech Republic, about 13,000 km2) over the last 52 years. The catchment reflects the typical development in central and eastern European countries, which witnessed socio-economic shifts from a market to a planned economy in the 1950s and back to a market economy in the 1990s. The former shift was accompanied by increasing N inputs to agricultural and forest areas with ranges for the 1950–1980s of 60–160 and 14–30 kg ha?1 year?1, respectively, and with intensive draining of waterlogged farmland. The shift in the 1990s resulted in ~40 and ~50 % reduction of N inputs to agricultural areas and forests, respectively, and farmland draining ceased. The N exports from agricultural land (E AL ) and from forests (E FO ) varied within 3–45 and 1.6–7.1 kg ha?1 year?1, respectively (with maxima in the 1980s). The E AL and E FO fluxes exhibited several similar patterns, being dominated by NO3-N, increasing with N inputs, and having similar inter-annual variability related to hydrology. The N losses from forests were stable (19 % of N input on average), while those from agricultural land increased from ~10 % in the 1960s up to 32 % in the 2000s, due probably to the previous extensive drainage and tillage of waterlogged fields and pastures. These land use changes reduced the water residence time in agricultural land and induced mineralization of soil organic matter. Continuing mineralization of soil organic N pools thus was the most probable reason for the remaining high E AL fluxes despite a ~40 % reduction in N inputs to agricultural land, while the E FO fluxes decreased proportionally to the decreasing N deposition during 1990–2010.  相似文献   

20.
On a heavily karstified site in the Northern Limestone Alps (Austria), nutrient budgets and leaching in Norway spruce stands were investigated along a chronosequence (clearcut, 10-year-old plantation (25% cover of planted and naturally regenerated spruce and larch, 75% weed cover) and mature stand). The soils were Lithic Leptosols on very pure limestone. Nutrient fluxes were studied during three growth periods (4–5 months each). Despite of inorganic nitrogen inputs from precipitation between 5 and 10 kg ha–1, inorganic nitrogen output with seepage water from the mature stand and the regeneration plot was only 0.5–1.2 kg ha–1 during these periods. In the first and second growth periods after clearcut, inorganic N fluxes with seepage increased to 20 and 30 kg ha–1, respectively, declining in the third growth period to 8 kg ha–1. DON output during the growth period was between 3 and 6 kg ha–1 in the mature stand and 7 and 11 kg ha–1 in the clearcut as well as in the regeneration plot. K output rates achieved 30 kg ha–1 in the first, 20 kg ha–1 in the second and 9 kg ha–1 in the third growth period after clear-cutting while output rates during the growth periods were less than 2 kg ha–1 in the mature stand and in the regeneration plot. K pools in the humus layer were only 150–210 kg ha–1, total K pools including above and below ground biomass in the mature stand were 360 kg ha–1. Thus, post-harvest hydrological losses comprise a substantial depletion of K for this specific ecosystem. Since precipitation is high in this area (1400 mm a–1), forest growth is limited by nutrient rather than by water supply. Needle analyses already indicate a deficient potassium supply. Harvesting and post-harvesting losses of K in combination with elevated nitrogen deposition may have negative influences on the stability of forest stands on the studied sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号