首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absorption, circular dichroism, and resonance Raman spectra of horse heart ferricytochromec in the presence of 0.2 M KCl, 0.1 M NaClO4, and 0.2 M KNO3, in thepH region 7 to 0.5, have been investigated to determine the nature and the course of the processes involved. As in the absence of salts (Myer, Y., and Saturno, A. F. (1990)J. Protein Chem.,9, 379–387), the change from neutral to low acidicpH's in the presence of salts is a three-step process: state III s state III s,a state II s state I s , withpK a 's of 3.5±0.2, 2.2±0.2, and 1.1±0.2, and with two, one, and one number of protons, respectively. The addition of salts at neutralpH's has little or no effect on the protein conformation and the heme-iron configuration (i.e., they remain the same, low-spin hexacoordinated heme iron with a Met-80-Fe-His-18 axial coordination), but such addition does cause a slight tightening of the heme crevice and the enlargement of the porphyrin core. State III s,a is a folded state with about the same degree of folding and with a similar spin state and coordination configuration of iron, but the heme crevice is loosened and the porphyrin core is smaller. Both states II s and I s are also essentially folded forms, but with a smaller degree of protein secondary structure. State II s has a high-spin hexacoordinated heme iron with a water molecule and a protonated and/or hydrogen-bonded imidazole of his-18 as the two axial ligates; and state I s has a high-spin pentacoordinated heme iron, which is about 0.49 Å out of the porphyrin plane, with a protonated and/or hydrogen-bonded imidazole nitrogen as the only axial ligate. The addition of anions causes the stabilization of the protein secondary structures and the state III a state II transition. The mode of effectiveness of anions appears to be nonspecific (i.e., because of electrostatic shielding and/or disruption of salt bridges).  相似文献   

2.
Polarized resonance Raman spectra of horse heart ferricytochrome c as a function of pH in the range 1.0–12, in the presence of the extrinsic ligands imidazole, cyanide, and azide, and in 4 M urea, are reported, as are resonance Raman spectra of heme undecapeptide in the presence of imidazole, pH 6.8 and pH 2.0, and with cyanide at pH 6.8. The range of investigation is 140–1700 cm?1, using the 5145-, 4880-, and 4579-Å excitations. The spectra have been analyzed in terms of complexity, sensitivity, and the conformation-heme energetics of the systems. The state of heme in various forms is analyzed with regard to heme energetics, core size, nature of planarity, and coordination configuration. All low-spin forms of heme c systems, cytochrome c, and heme models are concluded to be hexacoordinated, in-plane heme iron systems. The effect of the location of the heme in the protein environment is found to be a slight expansion of the porphyrin core, ~0.01 Å, while the covalent linkage of heme to protein and a mixed nature of axial coordination configuration seem to have little effect on the energetics of the heme group. Complex formation with extrinsic ligand, imidazole, cyanide, or azide, results in a slight contraction of the heme core. The formation of cytochrome c form IV, the alkaline form, is shown to follow a process with apK a of about 8.4, and similarly, acidic form II is created following the prior formation of an intermediate form with apK a of about 3.6. The precursor to form IV is interpreted as containing perturbation of the pyrrol rings, whereas the precursor to the acidic form seems to reflect alteration of the energetics of the CαCm α structures of the heme group. The acidic form of heme undecapeptide is a hexacoordinated high-spin heme with an estimated displacement of 0.25 Å from the heme plane. The pH 2 form of cytochrome c is also a hexacoordinated high-spin form with two weak axial ligands, but iron is in the plane of the porphyrin ring.  相似文献   

3.
Resonance Raman, absorption and circular dichroism spectroscopic studies of the stable forms of horse heart ferricytochromec in thepH range 6–0.8 and at the lowest possible ionic strengths, in water, and at 30°C are reported. The neutralpH form, state III, changes to the acidicpH form, state I, through a three-step process: state III ? state IIIa ? state II ? state I, with pKa's of 3.6±0.3, 2.7±0.2, and 1.2±0.2, depending on the monitoring probe, respectively. State IIIa ferricytochromec is like state III (i.e., with the Met-80-sulfur-iron linkage and a closed heme crevice) but with a higher degree of folding and a slightly larger porphyrin core. State II ferricytochromec is an unfolded form with an open heme crevice and no Met-80-sulfur-iron linkage. The heme iron is high-spin and hexacoordinated with weak ligand-field groups, water, and nitrogen of the protonated/hydrogen-bonded imidazole of the His-18 residue at the axial positions. The state I form also lacks the Met-80-sulfur-iron linkage and has an open heme crevice like the state II form; however, it is less unfolded and has a high-spin pentacoordinated heme iron, with the nitrogen of the imidazole of His-18 as the axial ligate, which is out of the porphyrin plane by about 0.45 Å.  相似文献   

4.
The two products from the reaction of horse heart ferricytochrome c with Chloramine-T, the FIII and FII CT-cytochromes, contain modification of the methionines to methionine sulfoxides, but they are distinct in their physiological functions. Conformational and heme-configurational characterization of the two CT-cytochromes has been carried out by using absorption, circular dichroism, fluorescence, proton magnetic resonance, and resonance Raman spectroscopy. The pH-absorption spectroscopic behavior, thermal stability, and ionization of the phenolic hydroxyls have also been reported. Spectroscopic studies of the heme c fragment, H8, in the presence of dimethylsulfoxide, as a model for CT-cytochrome heme configuration, were also conducted. The ferric and the ferrous CT-cytochromes above pH 7.5 have similar, yet distinct, spectroscopic properties, absorption, CD, resonance Raman, and PMR spectra, typical of low-spin hexacoordinated hemes, but distinct from those of the unmodified protein. The ferric spectrum lacks the 695-nm band, and the reduced spectrum contains an additional inflection at about 400 nm, a feature also observed in the spectra of ferrous H8-DMSO systems. The CD, resonance Raman, and PMR spectra are typical of a cytochrome with a loosened heme crevice and altered coordination configuration. The Methionine-80 proton resonances are absent in the uupfield PMR spectra of both the CT-ferricytochromes. The ferrous spectra, on the other hand, contain all the Met-80 resonances, but with smaller upfield shifts than those of the native protein. Both CT-ferric cytochromes are less stable in the acid region and convert to high-spin forms with a two-step transition and with a distinct set of pK a values. The overall conformation is nearly identical to that of the native protein, but it is less stable to thermal unfolding. All the factors differentiating the modified preparations from the unmodified protein are more pronunced in the case of FII, with FIII being the closest to the unmodified form. The two functionally distinct CT-cytochromes are two conformational isomers; conformationally and heme configurationally, they are spectroscopically very similar, yet distinct. Both contain an altered heme iron coordination configuration. The sulfur of Met-80 is repalced by the oxygen of Met-80 sulfoxide of a different configuration, R or S. Both contain a loosened heme crevice and are conformationally less stable than the native protein, FII CT-cytochrome c being the most deranged.  相似文献   

5.
The reactions of dilute solutions of octaethylporphyrin and its iron (II) and iron (III) complexes with methyl, 2-cyanopropyl, t-butoxy, and benzoyloxy radicals are described. The results are summarized: (i) The reactivity of the porphyrin and its high-spin iron (II) and iron (III) complexes toward alkyl and t-butoxy radicals stands in the order: FeII > FeIII ? free porphyrin. For benzoyloxy radicals the order is FeII > Porp > FeIII. (ii) The exclusive path of reaction of high-spin iron (II) porphyrin with radicals is the rapid reduction of the radical and generation of an iron (III) porphyrin. The dominant path of reaction of high-spin iron (III) porphyrin with alkyl and (presumably) t-butoxy radicals is a rapid axial inner sphere reduction of the porphyrin. An axial ligand of iron is transferred to the radical. (iv) The reaction of benzoyloxy radicals with high or low-spin iron (III) porphyrins occurs primarily at the meso position. With the low-spin dipyridyl complex in pyridine the attendant reduction to iron (II) can be observed spectrally. Methyl radicals also reduce this complex by adding to the meso position. (v) The reaction of a radical with either an iron (II) or an iron (III) porphyrin results in the generation of the other valence state of iron and consequently oxidation and reduction products emanating from both iron species are obtained. (vi) No evidence for an iron (IV) is intermediate is apparent. (vii) Iron (II) porphyrins in solvents that impart either spin state are easily oxidized by diacyl peroxides. The occurrence of both axial and peripheral redox reactions with the iron complexes supports an underlying premise of a recent theory of hemeprotein reactivity. The relevance of the work to bioelectron transfer and heme catabolism is noted.  相似文献   

6.
Resonance Raman, absorption and circular dichroism spectroscopic studies of the stable forms of horse heart ferricytochromec in thepH range 6–0.8 and at the lowest possible ionic strengths, in water, and at 30°C are reported. The neutralpH form, state III, changes to the acidicpH form, state I, through a three-step process: state III state IIIa state II state I, with pKa's of 3.6±0.3, 2.7±0.2, and 1.2±0.2, depending on the monitoring probe, respectively. State IIIa ferricytochromec is like state III (i.e., with the Met-80-sulfur-iron linkage and a closed heme crevice) but with a higher degree of folding and a slightly larger porphyrin core. State II ferricytochromec is an unfolded form with an open heme crevice and no Met-80-sulfur-iron linkage. The heme iron is high-spin and hexacoordinated with weak ligand-field groups, water, and nitrogen of the protonated/hydrogen-bonded imidazole of the His-18 residue at the axial positions. The state I form also lacks the Met-80-sulfur-iron linkage and has an open heme crevice like the state II form; however, it is less unfolded and has a high-spin pentacoordinated heme iron, with the nitrogen of the imidazole of His-18 as the axial ligate, which is out of the porphyrin plane by about 0.45 Å.  相似文献   

7.
The two products from the reaction of horse heart ferricytochrome c with Chloramine-T, the FIII and FII CT-cytochromes, contain modification of the methionines to methionine sulfoxides, but they are distinct in their physiological functions. Conformational and heme-configurational characterization of the two CT-cytochromes has been carried out by using absorption, circular dichroism, fluorescence, proton magnetic resonance, and resonance Raman spectroscopy. The pH-absorption spectroscopic behavior, thermal stability, and ionization of the phenolic hydroxyls have also been reported. Spectroscopic studies of the heme c fragment, H8, in the presence of dimethylsulfoxide, as a model for CT-cytochrome heme configuration, were also conducted. The ferric and the ferrous CT-cytochromes above pH 7.5 have similar, yet distinct, spectroscopic properties, absorption, CD, resonance Raman, and PMR spectra, typical of low-spin hexacoordinated hemes, but distinct from those of the unmodified protein. The ferric spectrum lacks the 695-nm band, and the reduced spectrum contains an additional inflection at about 400 nm, a feature also observed in the spectra of ferrous H8-DMSO systems. The CD, resonance Raman, and PMR spectra are typical of a cytochrome with a loosened heme crevice and altered coordination configuration. The Methionine-80 proton resonances are absent in the uupfield PMR spectra of both the CT-ferricytochromes. The ferrous spectra, on the other hand, contain all the Met-80 resonances, but with smaller upfield shifts than those of the native protein. Both CT-ferric cytochromes are less stable in the acid region and convert to high-spin forms with a two-step transition and with a distinct set of pK a values. The overall conformation is nearly identical to that of the native protein, but it is less stable to thermal unfolding. All the factors differentiating the modified preparations from the unmodified protein are more pronunced in the case of FII, with FIII being the closest to the unmodified form. The two functionally distinct CT-cytochromes are two conformational isomers; conformationally and heme configurationally, they are spectroscopically very similar, yet distinct. Both contain an altered heme iron coordination configuration. The sulfur of Met-80 is repalced by the oxygen of Met-80 sulfoxide of a different configuration, R or S. Both contain a loosened heme crevice and are conformationally less stable than the native protein, FII CT-cytochrome c being the most deranged.  相似文献   

8.
The stability of (all-E)-β-carotene toward dietary iron was studied in a mildly acidic (pH 4) micellar solution as a simple model of the postprandial gastric conditions. The oxidation was initiated by free iron (FeII, FeIII) or by heme iron (metmyoglobin, MbFeIII). FeII and metmyoglobin were much more efficient than FeIII at initiating β-carotene oxidation. Whatever the initiator, hydrogen peroxide did not accumulate. Moreover, β-carotene markedly inhibited the conversion of FeII into FeIII. β-Carotene oxidation induced by FeII or MbFeIII was maximal with 5–10 eq FeII or 0.05–0.1 eq MbFeIII and was inhibited at higher iron concentrations, especially with FeII. UPLC/DAD/MS and GC/MS analyses revealed a complex distribution of β-carotene-derived products including Z-isomers, epoxides, and cleavage products of various chain lengths. Finally, the mechanism of iron-induced β-carotene oxidation is discussed. Altogether, our results suggest that dietary iron, especially free (loosely bound) FeII and heme iron, may efficiently induce β-carotene autoxidation within the upper digestive tract, thereby limiting its supply to tissues (bioavailability) and consequently its biological activity.  相似文献   

9.
β-N-Acetylhexosaminidases were detected in 10 insects including species of Lepidoptera, Coleoptera, Hemiptera, and Orthoptera. Two enzymes were purified from the tobacco hornworm, Manduca sexta (L.). EI was detected in larval and pharate pupal molting fluid, integument, and pupal hemolymph while EII was found in larval and pupal hemolymphs. They are acidic hydrolases with similar molecular weights (6.1 × 104), molar extinction coefficients at 280 nm (1.9 × 105 liters mol?1 cm?1), and pH optima (pH 6). They differ in the number of polypeptide chains per molecule (EI is a single chain and EII consists of two polypeptide chains), amino acid composition, extent of glycosylation (EII is probably a glycoprotein), isoelectric point (pIEI = 5.9 and pIEII ~- 5.1), tissue distribution, and reactivities toward nitrophenylated N-acetylglucosamine (kcat,I = 328 s?1 and kcat,II = 103 s?1) and N,N′-diacetylchitobiose (kcat,I = 307 s?1 and kcat,II = 3 s?1). These results suggest that EI is a chitinase and that EII may function as a hexosaminidase in vivo.  相似文献   

10.
Natural intergeneric hybrids betweenAster ageratoides subsp.ovatus (2n=36) andKalimeris incisa (2n=72) were found. All of the hybrids studied were found to have 2n=72, 18 more chromosomes than a regular F1 hybrid. The hybrids were found to be of two types: one having 18 large chromosomes ofovatus, and the other having 9 large chromosomes of the same subspecies. In meiosis of the PMCs of the hybrid with 18 large chromosomes, a regular chromosome configuration, 36II, was observed. In PMCs of the hybrid with 9 large chromosomes an irregularity of chromosome pairings was observed, showing varied chromosome configurations: 35II+2I, 34II+4I, 33II+6I, IIII+33II+3I, 1IV+32II+4I, 32II+8I, 31II+10I, 29II+14I, 3III+29II+5I. Most univalents were large, but a few were small. The hybrids with 18 large chromosomes were found to be partial amphidiploid and possessing double chromosome complements ofovatus. The hybrids with 9 large chromosomes were found to be the first backcrossed generation between the hybrid with 18 large chromosomes andK. incisa.  相似文献   

11.
The ionization changes during the photolysis of the visual pigment, cattle rhodopsin, have been measured by simultaneous recording of spectral and pH changes. The thermal intermediates of rhodopsin and pH changes were recorded over a pH range of 4.6–8.9.In the normal sequence of intermediate changes at pH values of 5.4–7.7, the proton uptake of rhodopsin during the metarhodopsin I478 to II380 reaction is followed by a proton release in the thermal decay of metarhodopsin II380 to III465. Below pH 5.4, no proton release is observed during the thermal decay of metarhodopsin II380, and the metarhodopsin II380 appears to thermally decay directly to N-retinylidene-opsin440. Above pH 7.7, the major process appears to be a proton release and the final product is N-retinylidene-opsin365.The ionization state of certain groups in rhodopsin appears to control the metarhodopsin I478 to II380 reaction and control the products in the thermal decay of metarhodopsin II380. The pK changes of certain groups in rhodopsin may be the major factor in determining sequence of thermal intermediates and the values of the kinetic activation parameters. The reversing ionization changes may be important to the transduction process.  相似文献   

12.
H.J. Harmon  M. Sharrock 《BBA》1978,503(1):56-66
The kinetics of CO binding by the cytochrome c oxidase of pigeon heart mitochondria were studied as a function of membrane energization at temperatures from 180 to 280°K in an ethylene glycol/water medium. Samples energized by ATP showed acceleration of CO binding compared to those untreated or uncoupled by carbonylcyanide p-trifluoromethoxyphenylhydrazone but only at relatively low temperatures and high CO concentrations. Experiments using samples in a “mixed valency” (partially oxidized) state showed that the acceleration of ligand binding is not due to the formation of a partially oxidized state via reverse electron transport.It is concluded that in the deenergized state one CO molecule can be closely associated with the cytochrome a3 heme site without actually being bound to the heme iron; in the energized state, two or more ligand molecules can occupy this intermediate position.The change in the apparent ligand capacity of a region near the heme iron in response to energization is evidence for an interaction between cytochrome oxidase and the ATPase system. Furthermore, these results suggest a control mechanism for O2 binding.  相似文献   

13.
《Inorganica chimica acta》1988,149(2):259-264
The bis(N-alkylsalicylaldiminato)nickel(II) complexes Ni(R-sal)2 with R = CH(CH2OH)CH(OH)Ph (I), R = CH(CH3)CH(OH)Ph (II) and R = CH2CH2Ph (III; Ph = phenyl) were prepared and characterized. In the solid state I and II are paramagnetic (μ = 3.2 and 3.3 BM at 20 °C, respectively), whereas III is diamagnetic. It follows from the UV-Vis spectra that in acetone solution I is six-coordinate octahedral and III is four-coordinate planar, the spectrum of II showing characteristics of both modes of coordination. Vis spectrophotometry and stopped-flow spectrophotometry were applied to study the kinetics of ligand substitution in I–III by H2salen (= N,N′-disalicylidene-ethylenediamine) in the solvent acetone at different temperatures. The kinetics follow a second-order rate law, rate = k[H2-salen] [complex]. At 20 °C the sequence of rate constants is k(III):k(II):k(I) = 11 850:40.6:1. The activation parameters are ΔH(I) = 112, ΔH(II) = 40.7, ΔH(III) = 35.7 kJ mol−1 and ΔS(I) = 92, ΔS(II) = −103, ΔS(III) = −89 J K−1 mol−1. The enormous difference in rate between complexes I, II and III, which is less pronounced in methanol, is attributed to the existence of a fast equilibrium planar ⇌ octahedral, which is established in the case of I and II by intramolecular octahedral coordination through the hydroxyl groups present in the organic group R. An A-mechanism is suggested to control the substitution in the sense that the entering ligand attacks the four-coordinate planar complex, the octahedral complex being kinetically inert.  相似文献   

14.
The enzyme fructose- 1,6-diphosphatase (FDPase), involved in the reductive cycle of the pentose phosphate pathway, has been purified from spinach leaves by heating (30 min at 60°), “salting out” with ammonium sulphate (between 30–70% of saturation), filtration through Sephadex G-100 and G-200, fractionation on DEAE-52 cellulose and preparative electrophoresis on polyacrylamide gel. Filtration through DEAE-cellulose led to the isolation of two active fractions (fractions I and II) with very close MWs and isoelectric points. By electrophoresis on acrylamide gel, both fractions gave two active fractions (fractions Ia-Ib and IIa-IIb). The fractions with low electrophoretic migration rate—Ib and IIb—are stable in acid and neutral pH, have a MW between 90 000 and 110 000 and constitute the native form of the photosynthetic enzyme. The fractions of faster migration rate—Ia and IIa-originate from the corresponding fractions Ib and IIb under alkaline conditions, show half the MW of the respective fractions, and behave as subunits of the original dimer form. Measured by electrofocusing, the four active fractions have isoclectric points in the range 4·10–4.30.  相似文献   

15.
Nitrite reduction to nitric oxide by heme proteins is drawing increasing attention as a protective mechanism to hypoxic injury in mammalian physiology. Here we probe the nitrite reductase (NiR) activities of manganese(II)- and cobalt(II)-substituted myoglobins, and compare with data obtained previously for the iron(II) analog wt MbII. Both MnIIMb and CoIIMb displayed NiR activity, and it was shown that the kinetics are first order each in [protein], [nitrite], and [H+], as previously determined for the FeII analog wt MbII. The second order rate constants (k2) at pH 7.4 and T = 25 °C, were 0.0066 and 0.015 M− 1 s− 1 for CoIIMb and MnIIMb, respectively, both orders of magnitude slower than the k2 (6 M− 1 s− 1) for wt MbII. The final reaction products for MnIIMb consisted of a mixture of the nitrosyl MnIIMb(NO) and MnIIIMb, similar to the products from the analogous NiR reaction by wt Mb. In contrast, the products of NiR by CoIIMb were found to be the nitrito complex CoIIIMb(ONO) plus roughly an equivalent of free NO. The differences can be attributed in part to the stronger coordination of inorganic nitrite to CoIIIMb as reflected in the respective MIIIMb(ONO) formation constants Knitrite: 2100 M− 1 (CoIII) and <~0.4 M− 1 (MnIII). We also report the formation constants (3.7 and 30 M− 1, respectively) for the nitrite complexes of the mutant metmyoglobins H64V MbIII(NO2) and H64V/V67R MbIII(ONO) and a Knitrite revised value (120 M− 1) for the nitrite complex of wt metMb. The respective Knitrite values for the three ferric proteins emphasize the importance of a H-bonding residue, such as His64 in the MbIII distal pocket or the Arg67 in H64V/V67R MbIII, in stabilizing nitrite coordination. Notably, the NiR activities of the corresponding ferrous Mbs follow a similar sequence suggesting that nitrite binding to these centers are analogously affected by the H-bonding residues.  相似文献   

16.
The crystal structure of the complexes (I)Ni[C11N8N2(OH)2]2SO4, (II) Cu[C11H8N2(OH)2]2Cl2· 4H2O and (III) Cu[C11H8N2(OH)2]2(NO3)2·2H2O have been determined by three-dimensional X-ray analysis methods. Crystal data are: (I), monoclinic, space group C2/c, Z = 4, a = 19.666(4), b = 7.994(2), c = 16.045(6) /rA, /gb = 111.231(9)°, (II), monoclinic, space group C2/c, Z = 4, a = 14.504(4), b = 12.333(8), c = 14.630(3) Å, /gb = 90.92°; and (IIl), monoclinic, space group P21/n, Z = 2, a = 7.601(5), b = 11.977(4), c = 14.463(6) Å, β = 93.10(8)°. These structural investigations clearly demonstrate that in each case hydration occurs across the ketone double bond in the ligand and that the resulting hydroxyl group coordinates to the metal. Two di-2-pyridyl ketone ligands are thus bonded to the metal atom in a tridentate fashion. In the nickel complex (I), all six coordination interactions appear to have approximately the same strength. However, in the copper complexes (II) and (III), the pyridyl nitrogens are strongly coordinating to the metal in the equatorial plane, while the hydroxyl groups are more weakly coordinating in the axial direction. The metal to ligand bond distances are: (I) dNi−O = 2.098(4), dNiN = 2.062(4), 2.087(4) Å, (II) dCuO = 2.465(5), dCuN = 1.994(5), 2.006(5) Å, (III) dCuO = 2.464(5), dCuN = 1.990(5), 2.036(5) Å. The neutral diol that results from hydrolysis of di-2-pyridyl ketone is stabilized by coordination to the metal and such coordination is little affected by changes in the metal, the anion or the extent of hydration.  相似文献   

17.
A new CoII/CoIII hexanuclear complex, [Co4IICo2III(dea)2(Hdea)4)(piv)4](ClO4)2·H2O 1, has been obtained by reacting cobalt(II) perchlorate, diethanolamine, and pivalic acid (H2dea = diethanolamine and piv = pivalato anion). The cobalt ions are held together by four μ3 and four μ2 alkoxo bridges as well as by four syn-syn carboxylato groups. The hexanuclear motif contains four Co(II) and two Co(III) ions. The {CoII4CoIII22-O)43-O)4} core can be described as a four face-sharing monovacant and bivacant distorted heterocubane units. The cobalt(III) ions are hexacoordinated. Two of the cobalt(II) are hexacoordinated, while the two others are pentacoordinated with a bipyramidal stereochemistry. The magnetic properties of 1 have been investigated in the temperature range 1.9-300 K. Compound 1 exhibits an overall antiferromagnetic behaviour with a ground singlet spin state.  相似文献   

18.
The crystal structure of the complex Λ-β2-[Co(R,R-picchxn)(pro-2H)]Cl·ClO4·H2O (I) where R,R-picchxn is N,N′-bis(2-picolyl)-1R,2R-diaminocyclohexane and pro-2H is the 1,2-dehydroprolinate anion) has been determined. The complex crystallises in the orthorhombic space group P212121, with a = 8.063(5),b = 15.320(9),c = 21.043(11)Å and Z and 4. The structure was refined by full-matrix least-squares methods to R = 0.049 for 2501 non-zero reflexions. The coordinated dehydroproline iminoacid is closely planar, and the structure suggest that the CN double bond would be equally accessible to a reacting species approaching from either side of the ring.The crystal structure of the two products obtained after hydrogenation of I,i.e. Λ-β2-[Co(R,R-picchxn)(R-pro)](ClO4)2 (II) and Λ-β2-[CoR,R-picchxn)(S-pro)](ClO4)2·H2O (III), have also been determined by similar means. ComplexII is monoclinic, space group P21 with a = 9.385(3),b = 15.066(5),c = 1.4925(7)Å, β = 110.79°,Z = 2, and was refined to R = 0.029 for 2650 non-zero reflexions. Crystals of III are trigonal, space group P3221 with a = 11.417(2),c = 38.586(7)Å,Z = 6, and was refine to R = 0.039 for 2686 non-zero reflexions.The molecular geometry of the CoIII(R,R-picchxn) fragment is essentially the same in each structure. However, upon hydrogenation of I the iminoacid CN bond increases by 0.22Åin conjunction with the expected lack of planarity of the aminoacid pyrolidine and chelate rings. Short non-bonded H⋯H contacts that are produced in the hydrogenation productsII and III suggest thatIII would be the more sterically hindered. Comparisons are made between these structures and those of models computed for Λ-β1-pro analogues.  相似文献   

19.
The cytochrome (cyt) c′, cyt c556, and cyt c2 genes from Rhodopseudomonas palustris have been cloned; recombinant cyt c′ and cyt c556 have been expressed, purified, and characterized. Unlike mitochondrial cyt c, these two proteins are structurally similar to cyt b562, in which the heme is embedded in a four-helix bundle. The hemes in both recombinant proteins form covalent thioether links to two Cys residues. UV/vis spectra of the FeII and FeIII states of the recombinant cyts are identical with those of the corresponding native proteins. Equilibrium unfolding measurements in guanidine hydrochloride solutions confirm that native FeII-cyt c556 is more stable than the corresponding state of FeIII-cyt c556 (ΔΔGf°=22 kJ/mol).  相似文献   

20.
《Inorganica chimica acta》1988,145(2):247-252
Various palladium salts react with n-propane thiol to form a mixture of the cyclic mercaptides Pd8(S-nPr)16 (I) and the known Pd6(S-nPr)12 (II). I is described as an octagonal toroid, containing a planar ring of palladium atoms, each being bridged by four mercapto groups in approximately square planar geometry. The pendant n-propyl groups radiate outward in approximately axial and equatorial orientations with respect to the ring, which was also observed in solution by 1H and 13C NMR. Crystal data: space group C2/c, a=22.251(15), b=27.623(6), c=14.621(17) Å, β=116.35°(4), V=8053(4) Å3. Least-squares refinement based on 3103 observed reflections led to an R value of 0.078. I and II failed to complex any appropriate guest species, as evidenced by the UV-Vis spectra. I was found to have a reversible oxidation wave at E/2= 0.77 V, and a irreversible oxidation wave of 1.09 V. II displayed two irreversible peak potentials at 0.77 and 1.09 V. In each case, the waves were one electron processes, in which the reversibility was not enhanced at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号