首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
以弹性填料和流化床填料为硝化反应的生物挂膜材料, 聚羟基丁酸/戊酸共聚酯(PHBV)为反硝化反应的碳源和生物膜载体, 通过微生物自然挂膜处理低C/N比水产养殖废水, 去除水体中的氨氮、亚硝酸盐氮及总氮。应用Miseq高通量测序技术对生物膜的微生物群落组成和结构进行分析。结果表明: 温度25—30℃, 该处理系统首次挂膜成功需要4周, 启动后运行稳定, 对2种不同来源和氮污染程度的养殖废水均有较好的脱氮效果, 氨氮、亚硝酸盐氮及总氮的去除率均在90%以上。硝化生物膜(a)的优势菌分别归属变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)。反硝化生物膜(b)微生物群落的多样性指数和丰度指数均远大于前者, 主要为变形菌门、厚壁菌门、拟杆菌门、螺旋体门(Spirochaetae)及绿菌门(Chlorobi)。其中, 归属于变形菌门β-变形菌纲(Betaproteobacteria)的丛毛单胞菌科(Comamonadaceae)和红环菌科(Rhodocyclaceae)在2种生物膜中占比均较高。由于所处环境(载体, 碳源、溶氧等)不同, 在属分类水平上, 2种生物膜的细菌群落结构表现出明显差异。生物膜a中属的种类仅为b的三分之二, 相对丰度>0.5%的优势菌属, a为8个, b为18个。其中, 隶属丛毛单胞菌科和红环菌科未知属的优势种群分别占到a、b总序列数的56.67%和45.51%。磁螺菌属(Magnetospirillum)和硝化螺菌属(Nitrospira)是a中特有的优势功能菌群, 梭菌属(Clostridium)、动胶菌属(Zoogloea)、管道杆菌属(Cloacibacterium)、脱硫弧菌属(Desulfovibrio)等具有反硝化功能的菌群为b的优势菌属。  相似文献   

2.
固相反硝化系统中微生物群落结构的研究进展   总被引:2,自引:0,他引:2  
固相反硝化是一种新型的异养反硝化工艺,采用固体有机物同时作为反硝化微生物的碳源和生物膜载体,可用于地下水和低C/N比污水的脱氮处理。固相反硝化系统生物膜的微生物群落结构决定固体碳源的降解效率,进而决定反硝化脱氮的速率和系统的稳定运行。因此,微生物群落结构的研究对于固相反硝化工艺的优化以及反应机理的解析具有重要意义。对不同固相反硝化系统微生物群落结构的研究现状和进展进行了综述,并探讨了当前研究中存在的问题和发展趋势。  相似文献   

3.
【目的】为揭示工厂化循环水青石斑鱼养殖水体的细菌群落特征,比较患病养殖池与健康养殖池的细菌群落结构差异,探讨细菌群落结构与青石斑鱼病害相关的相关性。【方法】采用Illumina Miseq高通量测序方法,分析比较了患病和健康养殖水体细菌群落结构、α-多样性指数(包括多度、均一度和系统发育多样性);并结合传统方法从患病青石斑鱼病灶部位分离疑似病原菌。【结果】患病和健康养殖水体中细菌群落的α-多样性并无太大差异,但主坐标分析与热图样本聚类分析表明细菌群落结构明显不同。二者的优势细菌门均为Proteobacteria、Verrucomicrobia和Bacteroidetes,但它们的相对丰度差异显著。患病养殖水体中α-Proteobacteria(25.07%)和γ-Protebacteria(22.74%)丰度相当,而健康养殖水体中γ-Protebacteria(40.49%)显著高于α-Proteobacteria(10.87%)。患病水体的Verrucomicrobia丰度(26.4%)远高于健康水体(10.9%);而Bacteroidetes的相对丰度则相反(12.3%vs 20.9%)。主要的差异类群包括α-Proteobacteria的Rhodobacteraceae和Rhodospirillaceae,γ-Proteobacteria的Alteromonadaceae、HTCC2188和Oceanospirillaceae,Verrucomicrobia的Verrucomicrobiaceae和Bacteroidetes的Cryomorphaceae。更表现在核心微生物类群的差异,健康养殖池水体以Glaciecola、HTCC、Sediminicola、Prevotella等对于养殖动物有益或无害的属为核心微生物;而患病养殖池水体则以Vibrio、Rubritalea、Oleibacter等病原菌或对养殖动物不利的属为核心微生物。从患病青石斑鱼的皮肤、肝脏和脾脏共分离得到弧菌20株,Acinetobacter haemolyticus 1株。【结论】患病的青石斑鱼循环水养殖水体中的细菌群落明显不同于健康养殖水体,特别是核心微生物的差异,其以Vibrio等病原菌或对养殖动物不利的属为主。该结果为青石斑鱼循环水养殖系统的管理、病害的诊断和监测提供理论与实验基础。  相似文献   

4.
PCR-DGGE法用于活性污泥系统中微生物群落结构变化的解析   总被引:39,自引:0,他引:39  
应用PCR- DGGE方法,对在相同的操作条件下分别用低温菌和常温菌接种的两套活性污泥系统中的微生物群落结构的动态变化进行了追踪。研究结果表明:由于工艺和操作条件相同,两系统的微生物群落结构的相似性随着运行时间的增加而增加。PCR- DGGE方法可以在一定程度上反应出系统以及操作条件对微生物群落结构变化的影响  相似文献   

5.
虾-贝-红树林耦合循环水养殖系统中微生物群落分析   总被引:1,自引:0,他引:1  
海水循环水养殖系统是重要的生态养殖模式发展趋势之一, 为了深入了解循环水养殖生态系统, 通过对系统各功能区水体中细菌16S rRNA基因V4V5区进行高通量测序和生物信息学分析, 从微生物生态学角度分析了循环水养殖系统不同功能区的细菌群落结构动态。测序分析结果显示, 海水循环水养殖系统中优势细菌种群分别属于变形菌门(Proteobacteria)、蓝藻门(Cyanobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和浮霉菌门(Planctomycetes)。红树林湿地水体中变形菌门和厚壁菌门丰度较高, 而对虾养殖池的拟杆菌门和浮霉菌门丰度较高。在不同优势类群中, 变形菌门多样性指数平均值最高, 其次是拟杆菌门, 厚壁菌门最低。在各功能区中, 红树林细菌多样性最高, 虾池最低。MDS分析结果显示虾池、贝池和红树林湿地水体中细菌群落结构有明显差异, 虾池与其他功能区差异最大。研究表明, 高密度对虾养殖对虾池水体中细菌群落有显著影响, 但其影响在循环水养殖系统后续功能区中逐渐减弱。  相似文献   

6.
为了阐明南美白对虾高位池养殖尾水处理系统中不同水处理阶段微生物群落演替机制, 利用16S rRNA基因高通量测序技术分析了水体和生物膜的微生物群落结构。结果显示, 在水处理系统中主要是变形菌门(Proteobacteria)、浮霉菌门(Planctomycetes)、拟杆菌门(Bacteroidetes)、蓝细菌门(Cyanobacteria)、放线菌门(Actinobacteria)及酸杆菌门(Acidobacteria), 平均占细菌总OTU的88.61%。生物膜中生物多样性指数普遍高于水样, 与水体的共有菌为320种, 载体不同是造成群落结构差异的主要原因, 黏土陶粒和北美海蓬子(Salicornia bigelovii)根系是硝化作用的主要反应场所。在属水平上筛选出160种微生物, 主要属于变形菌门、拟杆菌门、浮霉菌门、蓝细菌门、厚壁菌门(Firmicutes)及放线菌门, 它们能够较好地区分菌群的来源及水处理的反应阶段。研究揭示了不同水处理阶段以及不同生物填料中微生物动态变化情况, 为今后的海水养殖尾水处理提供理论依据和技术参考。  相似文献   

7.
分别探究了4种光照周期(12L﹕12D、15L﹕9D、18L﹕6D和21L﹕3D)和4种光照强度(1200 lx、1500 lx、1800 lx和自然光)对循环水养殖系统中墨瑞鳕的生长、肌肉营养成分及养殖收益的影响。结果表明:(1)15L﹕9D组墨瑞鳕的终重、日增重及特定生长率均显著高于其他三组(P<0.05),饵料系数显著低于12L﹕12D和21L﹕3D组(P<0.05); 1500 lx组墨瑞鳕的终重、日增重及特定生长率均显著高于其他三组(P<0.05),饵料系数显著低于其他三组(P<0.05)。(2)15L﹕9D组墨瑞鳕肌肉中粗脂肪含量、氨基酸总量及必须氨基酸总量均达到最大值; 1500 lx组墨瑞鳕肌肉中粗脂肪和灰分含量最高,而水分和粗蛋白含量最低;相反,自然光照组中水分和粗蛋白含量最高,而粗脂肪和灰分含量最低(P<0.05)。(3)尽管15L﹕9D组和1500 lx组都投入了较高的成本,但由于这两组中墨瑞鳕的生长快,产量高,其总收益、总净收益和效益成本比均显著高于其他实验组(P<0.05)。综合各项实验数据, 15L﹕9D和1500 lx分...  相似文献   

8.
干湿交替对生物滞留系统中氮素功能微生物群落的影响   总被引:1,自引:0,他引:1  
【目的】为探究生物滞留系统干湿交替下环境因子对氮素功能微生物群落的影响。【方法】应用高通量测序技术(Illumina MiSeq PE300),并以amoA和nirS功能基因为分子标记,对无植物型和植物型生物滞留系统在干湿交替下不同土壤空间位置(种植层、淹没层)的硝化和反硝化细菌的多样性和群落结构进行研究,并对微生物群落与环境因子的相互关系进行相关性分析。【结果】微生物种群的功能基因存在显著的空间差异,相比淹没层,种植层的功能细菌更丰富。种植层的OTUs高于淹没层,而进水再湿润促使两种功能基因在种植层和淹没层的OTUs占比差异性增大。群落组成分析表明,amoA型硝化细菌和nirS型反硝化细菌的优势细菌门均为变形菌门(Proteobacteria)。虽然植物根系对氮素功能微生物的多样性指数影响不显著,但在属水平上,植物系统种植层的反硝化菌群种类高于淹没层,而无植物系统则刚好相反。CCA/RDA分析表明,土壤空间位置是影响硝化和反硝化菌群结构的最重要环境因子。【结论】本研究证实干湿交替运行下生物滞留系统中的氮素功能微生物群落受土壤空间位置、水分含量和植物根系的共同调控,其机制有待进一步研究。  相似文献   

9.
The columnar denitrification method of nitrate-nitrogen removal from high-density, closed system, salmonid aquaculture was investigated and found to be feasible. However, adequate chemical monitoring was found to be necessary for the optimization and quality control of this method. When methanol-carbon was not balanced with inlet nitrate-nitrogen, the column effluent became unsatisfactory for closed-system fish culture due to the presence of excess amounts of nitrite, ammonia, sulfide, and dissolved organic carbon. Sulfide production was also influenced by column maturity and residence time. Methane-carbon was found to be unsatisfactory as an exogenous carbon source. Endogenous carbon could not support high removal efficiencies. Freshwater columns adpated readily to an artificial seawater with a salinity of 18% without observable inhibition. Scanning electron microscopy revealed that the bacterial flora was mainly rod forms with the Peritricha (protozoa) dominating as the primary consumers. Denitrifying bacteria isolated from freshwater columns were tentatively identified as species of Pseudomonas and Alcaligenes. A pilot plant column was found to behave in a manner similar to the laboratory columns except that nitrite production was never observed.  相似文献   

10.
A solid-phase denitrification (SPD) reactor packed with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) as a carbon source was incorporated into a recirculating aquaculture system (RAS) to remove accumulated nitrate. Bacterial community structures in different parts of the RAS, including biofilter unit, SPD reactor, and culture water, were analyzed using Illumina MiSeq sequencing technology. The data showed that nitrate levels decreased remarkably in the RAS connected with SPD reactor (RAS-DR). In contrast, nitrate levels increased continuously in the conventional RAS without SPD reactor (RAS-CK). Biofilter unit and culture water in RAS-DR developed lower species richness and higher bacterial community diversity than that in RAS-CK. The bacterial community structure of RAS was significantly affected by the SPD process and the changes included an increase in the proportion of Proteobacteria and Firmicutes and a decrease in Nitrospira abundance in RAS-DR. Firmicutes was the most abundant phylum (56.9 %) and mainly consisted of Clostridium sensu stricto (48.3 %) in SPD reactor.  相似文献   

11.
以纸为碳源去除地下水硝酸盐的研究   总被引:13,自引:0,他引:13  
研究了以纸为碳源和反应介质的生物反应器对水中硝酸盐的去除。结果表明,以纸为碳源的反应器启动快.反硝化反应受温度及水力停留时间影响大。25℃的反硝化速率是14℃的1.7倍。在室温25±1℃,进水硝酸盐氮浓度为45.2mg·L^-1、水力停留时间8.6h时,反应器对硝酸盐氮的去除率在99.6%以上,当水力停留时间为7.2h,氮去除率只有50%。反硝化反应受pH值和溶解氧的影响小,反应进行过程中,纸表面形成了生物膜,纸也被消耗了.采用反应器出水再经活性炭吸附的工艺流程处理高硝酸盐氮地下水,<33.9mg·L^-1的硝酸盐氮完全去除,没有出现NC2-N,最终出水水质DOC<11mg·L^-1。  相似文献   

12.
Intensive prawn aquaculture in tropical regions is associated with high concentrations of total ammoniacal nitrogen (TAN) as a result of high rates of prawn excretion and feed loading. Excessive TAN can adversely effect productivity and result in adverse impacts on coastal waters. Cultures of indigenous nitrifying bacteria were enriched from intensive prawn aquaculture pond water using continuous and batch enrichment techniques. Cultures were capable of TAN removal over a wide range of initial TAN concentrations - up to 200 mg/l. Cultures were immobilized onto porous clay pellets to enhance cell density and applied to culture medium and TAN-augmented pond water under aerobic conditions to determine TAN removal proficiency. Immobilized cultures were able to achieve a high TAN removal proficiency in pond water--even at a low density of 0.1 pellet per liter. A concentration of less than 0.5 mg TAN/l could be maintained under a fed-batch condition of 3.2 mg TAN/l per day, after an initial 2-day lag phase. A simplified and effective culture enrichment process was developed for culture immobilization onto pellets using TAN-augmented pond water. Overall, pellet immobilization of indigenous nitrifying bacteria represents a potentially effective TAN control system for prawn aquaculture in low-cost, but intensive tropical prawn farms.  相似文献   

13.
Simple technologies that remove nitrate from effluents and other point discharges need to be developed to reduce pollution of receiving waters. Denitrification beds are lined containers filled with organic carbon (typically wood chip or coarse sawdust) and are a technology that is proving promising. Water containing NO3? (treated effluent or agricultural drainage) is passed through the bed and the wood chips act as an energy source for denitrifying bacteria that convert NO3? to N gases. There are few data on the efficiency of NO3 removal in large-scale beds. We report here NO3? removal results from three large denitrification beds with volumes of 83, 294, and 1320 m3 treating dairy shed effluent, treated domestic effluent and glasshouse effluent, respectively. Nitrate was nearly completely removed from the dairy shed effluent (annual load of 31 kg N) and domestic effluent (annual load 365 kg N). In these beds, NO3? removal, presumably by denitrification, was limited by NO3? concentration. However, the bed treating glasshouse effluent was overwhelmed by very high NO3? concentration (about 250 g N m?3) and high flow rates (about 150 m3 d?1) but still reduced NO3? concentration to about 150 g N m?3. For this bed, long-term NO3? removal was between 5 and 10 g N m?3 of bed material when NO3? was non-limiting and was similar to rates reported for other smaller denitrification beds. As expected, organic N, ammonium and phosphorus were not removed from any of the effluents following passage through the beds. Our results suggest that denitrification beds are a relatively inexpensive system to construct and operate, and are suitable for final treatment of a range of NO3?-laden effluents.  相似文献   

14.
Nitrate removal from drinking water using a membrane-fixed biofilm reactor   总被引:4,自引:0,他引:4  
Biological treatment of drinking water is a cost-effective alternative to conventional physico/chemical processes. A new concept was tested to overcome the main disadvantage of biological denitrification, the intensive post-treatment process to remove microorganisms and remnant carbon source. The biological reaction zone and carbon supply were separated from the raw water stream by a nitrate-permeable membrane. Denitrification takes place in a biofilm, which is immobilized at the membrane. In a series of bench-scale runs, different types of membranes and reactor configurations were investigated. The best denitrification rates achieved were 1230 mg NO3 -N m−2 day−1. In one run, raw water containing 100 mg NO3 l−1 was completely freed from nitrate. The membrane and the attached biofilm also represent a barrier against the passage of the C source and nutrients into the raw water. At concentrations of 20 mg l−1 ethanol and 15 mg l−1 phosphate in the bioreactor no diffusion through the membrane into the treated water was observed. Without any post-treatment, the effluent met nearly all the relevant criteria for drinking water; only the colony count was slightly increased. Received: 18 December 1996 / Received last revision: 14 April 1997 / Accepted: 19 April 1997  相似文献   

15.
An enhanced biological phosphorus removal (EBPR) system was developed in a sequencing batch reactor (SBR) using propionate as the sole carbon source. The microbial community was followed using fluorescence in situ hybridization (FISH) techniques and Candidatus 'Accumulibacter phosphatis' were quantified from the start up of the reactor until steady state. A series of SBR cycle studies was performed when 55% of the SBR biomass was Accumulibacter, a confirmed polyphosphate accumulating organism (PAO) and when Candidatus 'Competibacter phosphatis', a confirmed glycogen-accumulating organism (GAO), was essentially undetectable. These experiments evaluated two different carbon sources (propionate and acetate), and in every case, two different P-release rates were detected. The highest rate took place while there was volatile fatty acid (VFA) in the mixed liquor, and after the VFA was depleted a second P-release rate was observed. This second rate was very similar to the one detected in experiments performed without added VFA.A kinetic and stoichiometric model developed as a modification of Activated Sludge Model 2 (ASM2) including glycogen economy, was fitted to the experimental profiles. The validation and calibration of this model was carried out with the cycle study experiments performed using both VFAs. The effect of pH from 6.5 to 8.0 on anaerobic P-release and VFA-uptake and aerobic P-uptake was also studied using propionate. The optimal overall working pH was around 7.5. This is the first study of the microbial community involved in EBPR developed with propionate as a sole carbon source along with detailed process performance investigations of the propionate-utilizing PAOs.  相似文献   

16.
Phosphorus (P) accumulation in a closed recirculating aquaculture system (RAS) was studied using a goldfish tank as a model. It was found that the accumulated P in this system was soluble inorganic phosphates (Pi) and the highest concentration was up to 8 mg P/L after 40 days of fish cultivation. Phosphorus in the water was increased linearly with the rate of 0.19 mg P/L/day. A mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 (ΔSphU) that lacks the SphU regulator of the Pho regulon could decrease Pi in the wastewater of RAS to the concentration below the P detection limit of 0.01 mg P/L at the rate of 2.07 ± 0.33 mg P/h g DW. This was corroborated by the increase of cellular polyphosphate and P content in the ΔSphU strain as revealed by fluorescence microscopy. After the first cycle of P removal, the cyanobacterial cells were recovered from wastewater by cell flocculation using chitosan. The flocculated cells could be reused for efficient P removal for the next 3 cycles.  相似文献   

17.
Quan ZX  Jin YS  Yin CR  Lee JJ  Lee ST 《Bioresource technology》2005,96(15):1690-1695
Hydrolyzed molasses was evaluated as an alternative carbon source in a biological nitrogen removal process. To increase biodegradability, molasses was acidified before thermohydrolyzation. The denitrification rate was 2.9-3.6 mg N/g VSSh with hydrolyzed molasses, in which the percentage of readily biodegradable substrate was 47.5%. To consider the hydrolysate as a carbon source, a sequencing batch reactor (SBR) was chosen to treat artificial municipal wastewater. During the 14 days (28 cycles) of operation, the SBR using hydrolyzed molasses as a carbon source showed 91.6 +/- 1.6% nitrogen removal, which was higher than that using methanol (85.3 +/- 2.0%). The results show that hydrolyzed molasses can be an economical and effective external carbon source for the nitrogen removal process.  相似文献   

18.
Shan H  Obbard JP 《Biotechnology letters》2003,25(17):1469-1471
Intensively cultured fish stock when fed protein-rich feeds typically excrete high concentrations of total ammoniacal-nitrogen (TAN) into the water column which can have adverse effects on productivity, and upon the environment when aquaculture water is discharged. An immobilized culture of nitrifying bacteria isolated from prawn pond water and known to effectively remove TAN from saline water was tested for its ability to remove TAN from freshwater. The culture was readily adaptable to non-saline conditions and maintained TAN at less than 0.25 mg l–1, even with a daily addition of 3.2 to 4.2 mg TAN l–1 per d. The use of the immobilized culture of nitrifying bacteria represents an innovative and economical in situ treatment technology for removal of TAN in both saline and freshwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号