首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Barber  Y. J. Shieh 《Planta》1973,111(1):13-22
Summary The rate of Na+/Na+ exchange as measured with 24Na+ in Na+-rich cells of Chlorella pyrenoidosa is governed by a single rate constant and saturates with increasing external Na+ concentration. The K mvalue for this process is 0.8 mM Na+ and the maximum rate of exchange in illuminated cells is about 5 pmoles cm-2 sec-1. These values contrast with a K mof 0.18 mM K+ and maximum rate of about 17 pmoles K+·cm-2·sec-1 for net K+ influx. Although the Na+/Na+ exchange was only slightly sensitive to light it was inhibited by the uncouplers CCCP and DNP and by the energy transfer inhibitor DCCD. This inhibition of the rate of Na+/Na+ exchange was not accompanied by a loss of internal Na+. Both the effect of external K+ on 24Na+ influx into Na+-rich cells and the inhibition of net K+ uptake by the presence of external Na+ indicates that Na+/Na+ and K+/Na+ exchanges share the same carrier and that the external site of this carrier has a three to four times higher affinity for K+ over Na+.  相似文献   

2.
Maureen A. Dewar  J. Barber 《Planta》1974,117(2):163-172
Summary Anacystis nidulans will take up and accumulate chloride ions. When the external concentration was 0.2 mM Cl- the level in the cells was 2.8 mM Cl- and under these conditions the flux across the cell surface was in the region of 10-13equiv Cl-·sec-1·cm-2. It is suggested that this Cl- influx is active and operates against an electrochemical potential gradient estimated to be 117 mV or 2.68 kcal/mole. The uptake of 36Cl was inhibited by low temperatures and there was a net loss of Cl- from the cells with the level decreasing towards the equilibrium value as estimated from K+ distribution. Although the active influx of Cl- was often stimulated by light this was not always the case. Dark storage treatment and regulation of the chlorophyll a/phycocyanin ratios as well as total pigment content of the cells did not clarify the conditions which brought about light stimulation. Moreover, the metabolic inhibitors CCCP and CMU and also the use of anaerobic conditions did not clearly indicate the relationship between the influx mechanism and light-dark metabolism and no firm conclusions could be made about the nature of the energy source. The variation in the degree of light stimulation probably reflects the fact that in this procaryotic organism the photosynthetic and respiratory units are located on the same membrane systems and are in very close proximity to the probable site of the Cl- pump, the plasmalemma.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - CMU 3-(4-chlorophenyl)-1,1-dimethylurea  相似文献   

3.
In carp erythrocytes, noradrenaline (10-6 mol·l-1) induces a 30- to 40-fold activation of Na+/H+ exchange (the ethylisopropylamiloride-inhibited component of the 22Na influx) and a fourfold stimulation of the Na+, K+ pump (ouabain-inhibited component of 86Rb influx). In both cases the effect of noradrenaline is blocked by propranolol but not phentolamine and is imitated by forskolin. An activator of protein kinase C (-phorbol 12-myristate, 13-acetate) increases Na+/H+ exchange by 10 times and decreases the Na+, K+ pump activity by 20–30 percent. In the presence of ethylisopropylamiloride the increment of the Na+, K+ pump activity induced by noradrenaline is reduced by 35–45 percent, indicating the existence of a Na+/H+ exchange-independent mechanism of the Na+, K+ pump regulation by -adrenergic catecholamines. Hypertonic shrinkage of carp erythrocytes results in a 40- to 80-fold activation of Na+/H+ exchange, whereas hypotonic swelling induces an increase in the rate of 86Rb+ efflux which is inhibited by furosemide by about 30–40 percent. The rate of pH0 recovery in response to acidification or alkalinization in rat erythrocytes is approximately 15 times as fast as in carp erythrocytes. Unlike in rat erythrocytes, valinomycin does not cause an alkalinization of incubation medium in carp erythrocytes indicating the absence of conductive pathway in the operation of anion transporter protein. A scheme is suggested which describes the interrelation of Na+/H+ exchange, Na+, K+ pump and a non-identified system providing for K+ efflux in cell swelling, regulation of cell volume and cytoplasmic pH in fish erythrocytes under conditions of deep hypoxia and high activity.Abbreviations cAMP cyclic adenosine monophosphate - CCCP carbonylcyamide m-chlorophenylhydrazone - DMSO dimethylsulphoxide - EIPA ethylisopropylamiloride - NA noradrenaline - PMA -phorbol 12-myristate, 13-acetate - RVD regulatory volume decrease - RVI regulatory volume increase  相似文献   

4.
Summary Na+–H+ exchange activity in renal brush border membrane vesicles isolated from hyperthyroid rats was increased. When examined as a function of [Na+], treatment altered the initial rate of Na+ uptake by increasingV m (hyperthyroid, 18.9±1.1 nmol Na+ · mg–1 · 2 sec–1; normal, 8.9±0.3 nmol Na+ · mg–1 · 2 sec–1), and not the apparent affinityK Na + (hyperthyroid, 7.3±1.7mm; normal, 6.5±0.9mm). When examined as a function of [H+] and at a subsaturating [Na+] (1mm), hyperthyroidism resulted in the proportional increase in Na+ uptake at every intravesicular pH measured. A positive cooperative effect on Na+ uptake was found with increased intravesicular acidity in vesicles from both normal and hyperthyroid rats. When the data were analyzed by the Hill equation, it was found that hyperthyroidism did not change then (hyperthyroid, 1.2±0.06; normal, 1.2±0.07) or the [H+]0.5 (hyperthyroid, 0.39±0.08 m; normal, 0.44±0.07 m) but increased the apparentV m (hyperthyroid, 1.68±0.14 nmol Na+ · mg–1 · 2 sec–1; normal 0.96±0.10 nmol Na+ · mg–1 · 2 sec–1). The uptake of Na+ in exchange for H+ in membrane vesicles from normal and hyperthyroid animals was not influenced by membrane potential. H+ translocation or debinding was rate limiting for Na+–H+ exchange since Na+–Na+ exchange activity was greater than Na+–H+ exchange activity. Hyperthyroidism caused a proportional increase and hypothyroidism caused a proportional decrease in Na+–Na+ and Na+–H+ exchange. We conclude that hyperthyroidism leads to either an increase in the number of functional exchangers in the membrane or exactly proportional increases in the rate-limiting steps for Na+–Na+ and Na+–H+ exchange activity.  相似文献   

5.
Summary Ion flux relations in the unicellular marine algaAcetabularia have been investigated by uptake and washout kinetics of radioactive tracers (22Na+,42K+,36Cl and86Rb+) in normal cells and in cell segments with altered compartmentation (depleted of vacuole or of cytoplasm). Some flux experiments were supplemented by simultaneous electrophysiological recordings. The main results and conclusions about the steady-state relations are: the plasmalemma is the dominating barrier for translocation of K+ with influx and efflux of about 100 nmol·m–2·sec–1×K+ passes three- to sevenfold more easily than Rb+ does. Under normal conditions, Cl (the substrate of the electrogenic pump, which dominates the electrical properties of the plasmalemma in the resting state) shows two efflux components of about 17 and 2 mol·m–2·sec–1, and a cytoplasmic as well as vacuolar [Cl] of about 420mm ([Cl] o =529mm). At 4°C, when the pump is inhibited, both influx and efflux, as well as the cellular [Cl], are significantly reduced. Na+ ([Na+] i : about 70mm, [Na+] o : 461mm), which is of minor electrophysiological relevance compared to K+, exhibits rapid and virtually temperature-insensitive (electroneutral) exchange (two components with about 2 and 0.2 mol·m–2·sec–1 for influx and efflux). Some results with Na+ and Cl are inconsistent with conventional (noncyclic) compartmentation models: (i) equilibration of the vacuole (with the external medium) can be faster than equilibration of the cytoplasm, (ii) absurd concentration values result when calculated by conventional compartmental analysis, and (iii) large amounts of ions can be released from the cell without changes in the electrical potential of the cytoplasm. These observations can be explained by the particular compartmentation of normalAcetabularia cells (as known by electron micrographs) with about 1 part cytoplasm, 5 parts central vacuole, and 5 parts vacuolar vesicles. These vesicles communicate directly with the central vacuole, with the cytoplasm and with the external medium.  相似文献   

6.
Summary To investigate the voltage dependence of the Na/K pump, current-voltage relations were determined in prophasearrested oocytes ofXenopus laevis. All solutions contained 5mm Ba2– and 20mm tetraethylammonium (TEA) to block K channels. If. in addition, the Na+/K+ pump is blocked by ouabain, K+-sensitive currents no larger than 50 nA/cm2 remain. Reductions in steady-state current (on the order of 700 nA/cm2) produced by 50 m ouabain or dihydro-ouabain or by K+ removal, therefore, primarily represent current generated by the Na/K pump. In Na-free solution containing 5mm K+, Na+/K+ pump current is relatively voltage independent over the potential range from –160 to +40 mV. If external [K+] is reduced below 0.5mm, negative slopes are observed over this entire voltage range. Similar results are seen in Na+- and Ca2+-free solutions in the presence of 2mm Ni2+, an experimental condition designed to prevent Na+/Ca2+ exchange. The occurrence of a negative slope can be explained by the voltage dependence of the apparent affinity for activation of the Na+/K+ pump by external K+, consistent with the existence of an external ion well for K binding. In 90mm Na+, 5mm K+ solution, Na+/K+ pump current-voltage curves at negative membrane potentials have a positive slope and can be described by a monotonically increasing sigmoidal function. At an extracellular [K+] of 1.3mm, a negative slope was observed at positive potentials. These findings suggest that in addition to a voltage-dependent step associated with Na+ translocation, a second voltage-dependent step that is dependent on external [K+], possibly external K+ binding, participates in the overall reaction mechanism of the Na+/K+ pump.  相似文献   

7.
Summary The evolution of the volume, the Na+ and K+ contents and the glycerol and ATP contents were investigated after subjectingDunaliella tertiolecta cells to hypertonic shocks. It was found that the variations in the glycerol and the ion contents superimpose as the cell regulates its volume. Hypertonic shock induces a rapid increase (some minutes) in the Na+ influx and Na+ content followed by a decrease until a new steady value is reached after 30 min of cell transfer. The regulatory mechanism extruding Na+ out of the cells was dependent on the presence of K or Rb ions in the external medium. A transient pumping of K+ ions was found after subjecting the cells to a hypertonic shock. This increase in K+ content resulted from the transient increase in the K+ influxes. The K+ pumping mechanism was blocked by the absence of Ca++ and Mg++ ions in the external medium and was inhibited by DCCD, FCCP and DCMU, whereas ouabain, cyanide and PCMBS were ineffective. The increase in K+ content was observed if the hypertonic shock was induced by the addition of NaCl, glycerol or choline chloride. These results are interpreted on the basis of two distinct mechanisms: a Na/K exchange pump and a Na+ independent K+ pump. These ionic transfer mechanisms would participate in the osmoregulation ofDunaliella cells and would be of importance, particularly during the onset of the osmotic shock when glycerol synthesis is incomplete.  相似文献   

8.
Red cells of hibernating species have a higher relative rate of Na+–K+ pump activity at low temperature than the red cells of a mammal with a typical sensitivity to cold. The kinetics of ATP stimulation of the Na+–K+ pump were determined in guinea pig and ground squirrel red cells at different temperatures between 5 and 37°C by measuring ouabain-sensitive K+ influx at different levels of ATP. In guinea pig cells, elevation of intracellular free Mg2+ to 2 mmol·l-1 by use of the divalent cation ionophore A23187 caused the apparent affinity of the pump for ATP to increase with cooling to 20°C, rather than to decrease, as occurs in cells not loaded with Mg2+. In ground squirrel cells raising intracellular free Mg2+ had little effect on apparent affinity of the pump for ATP at 20°C. ATP affinity rose slightly with cooling both in Mg2+-enriched and in control ground squirrel cells. Increased intracellular free Mg2+ in guinea pig cells stimulated Na+–K+ pump activity so that at 20°C the pump rate was the same in the Mg2+-enriched guinea pig and control ground squirrel cells. Pump activity in Mg2+-enriched guinea pig cells at 5°C was significantly improved but still lower than pump activity in control cells from ground squirrel. Thus, loss of affinity of the Na+–K+ pump for ATP that occurs with cooling in cold-sensitive guinea pig red cells can be, at least partially, prevented by elevating cytoplasmic free Mg2+. Conversely, in ground squirrel red cells natural rise of free Mg2+ may in part account for the preservation of the ATP affinity of their Na+–K+ pump with cooling.Abbreviations K m Michaelis-Menten constant for apparent affinity - MOPS 3-(N-morpholino)-propanesulphonic acid - [Mg2+]i intracellular concentration of free Mg2+ - OD optical density - RBC red blood cell(s) - T b body temperature  相似文献   

9.
The effect of TPA (12-O-tetradecanoylphorbol-13-acetate) upon ionic exchanges was investigated in eggs of the sea urchin Arbacia lixula. Ouabain-sensitive 86Rb uptake and amiloride-sensitive 24Na influx were dramatically stimulated after TPA addition, indicating an enhancement of total ionic permeabilities. Stimulation by TPA of both Na+/H+ and Na+/K+ exchanges was canceled by amiloride, suggesting that activation of protein kinase C elicits, via Na+/H+ activity, stimulation of the sodium pump. However, TPA did not stimulate sodium pump activity and Na+/H+ exchange at the same rate as fertilization, probably because of an absence of calcium-dependent events. Further fertilization of TPA-pretreated eggs triggered an enhancement of sodium pump activity when the TPA treatment duration did not exceed 10 min. It is suggested that TPA activates preexisting transporting mechanisms in plasma membranes of unfertilized eggs (Na+ pump, Na+/H+ exchange) without eliciting corresponding regulatory mechanisms (Na+ stat, pH stat).  相似文献   

10.
In this study we prepared sarcolemmal fractions from bovine and rat hearts; their Na+K+ ATPase activities, measured in the presence of saponin to unmask latent Na+K+ ATPase, were 59.4 and 48.8 µ mol Pi/mg protein · h, respectively. The rate of Na+dependent Ca2+ uptake was linear for the first 10 s and a plateau was reached in 3 min. Oxidation by free radical generation either with H2O2, FeSO4 plus DTT or xanthine oxidase plus hypoxanthine stimulated Na+/Ca2+ exchange in a time-dependent manner. The stimulation was abolished by deferoxamine or o-phenanthroline. By contrast, oxidation by HOCI inhibited Na+/Ca2+ exchange in proportion to its concentration, and this inhibition was antagonized by DTT. DTT alone had no effect on the exchange. Insulin stimulated Na+/Ca2+ exchange, its maximal effect was attained after 30min incubation with 100 µ units/ml. N-ethylmaleimide inhibited the exchange both in the presence and in the absence of insulin. Sarcolemmal fractions prepared from hearts of alloxan-treated, acutely diabetic rats showed a significant decrease in Na+/Ca2+ exchange. Addition of insulin in vitro significantly stimulated Na+/Ca2+ exchange of both diabetic and control groups. The results indicate that sarcolemmal Na+/Ca2+ exchange function is modulated by oxidation-reduction states and by the presence of insulin.  相似文献   

11.
Summary The unidirectional Na+, Cl, and urea fluxes across isolated opercular epithelia from seawater-adaptedFundulus heteroclitus were measured under different experimental conditions. The mean Na+, Cl, and urea permeabilities were 9.30×10–6 cm·sec–1, 1.24×10–6 cm·sec–1, and 5.05×10–7 cm·sec–1, respectively. The responses of the unidirectional Na+ fluxes and the Cl influx (mucosa to serosa) to voltage clamping were characteristic of passively moving ions traversing only one rate-limiting barrier. The Na+ conductance varied linearly with, and comprised a mean 54% of, the total tissue ionic conductance. The Cl influx and the urea fluxes were independent of the tissue conductance. Triaminopyrimidine (TAP) reduced the Na+ fluxes and tissue conductance over 70%, while having no effect on the Cl influx or urea fluxes. Mucosal Na+ substitution reduced the Na+ permeability 60% and the tissue conductance 76%, but had no effect on the Cl influx or the urea fluxes. Both the Na+ and Cl influxes were unaffected by respective serosal substitutions, indicating the lack of any Na+/Na+ and Cl/Cl exchange diffusion.The results suggest that the unidirectional Na+ fluxes are simple passive fluxes proceeding extracellularly (i.e., movement through a cation-selective paracellular shunt). This pathway is dependent on mucosal (external) Na+, independent of serosal (internal) Na+, and may be distinct from the transepithelial Cl and urea pathways.  相似文献   

12.
—Microsomal fractions prepared from guinea pig cerebral cortex manifested ADP-ATP exchange activity, 40–99 per cent of which was extractable by dilute salt solutions. All of the (Na+, K+)-ATPase activity remained in the particulate material. The unextracted ADP-ATP exchange activity was stimulated six to seven fold by a non-ionic detergent (Lubrol W). When pre-extracted microsomes were sedimented in a sucrose density gradient, the ADP-ATP exchange activity was more widely distributed than (Na+, K+)-ATPase or adenylate kinase activities. The ADP-ATP exchange activity of microsomes extracted with NaI was stimulated by Na+ ions when the Mg2+ concentration in the reaction mixture was low (0·2 mm ). The Na+ stimulation of exchange activity was more variable than was the stimulation of phosphate formation by Na+ plus K+. The Na+-stimulated ADP-ATP exchange reaction of extracted microsomes may be a component of the (Na+, K+)-ATPase system, which has not been freed from adenylate kinase or possibly other contributing enzyme systems.  相似文献   

13.
Basolateral K+ channels and their regulation during aldosterone- and thyroxine-stimulated Na+ transport were studied in the lower intestinal epithelium (coprodeum) of embryonic chicken in vitro. Isolated tissues of the coprodeum were mounted in Ussing chambers and investigated under voltage-clamped conditions. Simultaneous stimulation with aldosterone (1 mol·l-1) and thyroxine (1 mol·l-1) raised short-circuit current after a 1- to 2-h latent period. Maximal values were reached after 6–7 h of hormonal treatment, at which time transepithelial Na+ absorption was more than tripled (77±11 A·cm-2) compared to control (24±8 A·cm-2). K+ currents across the basolateral membrane with the pore-forming antibiotic amphotericin B and application of a mucosal-to-serosal K+ gradient. This K+ current could be dose dependently depressed by the K+ channel blocker quinidine. Fluctuation analysis of the short-circuit current revealed a spontaneous and a blocker-induced Lorentzian noise component in the power density spectra. The Lorentzian corner frequencies increased linearly with the applied blocker concentration. This enabled the calculation of single K+ channel current and K+ channel density. Single K+ channel current was not affected by stimulation, whereas the number of quinidine-sensitive K+ channels in the basolateral membrane increased from 11 to 26·106·cm-2 in parallel to the hormonal stimulation transepithelial Na+ transport. This suggests that the basolateral membrane is a physiological target during synergistic aldosterone and thyroxine regulation of transepithelial Na+ transport for maintaining intracellular K+ homeostasis.Abbreviations f frequency - f c Lorentzian corner frequency - g K single K+ channel conductance - HEPES N-2-hydroxyethylpiperazin-N'-2-ethansulfonic acid - i K single K+ channel current - IAmpho amphotericin B induced K+ current - I sc short-circuit current - I K quinidine blockable K+ current - I max maximally blocked current by quinidine - IC 50 half-maximal blocker concentration - k on, k off on- and off-rate coefficients of reversible single channel block by quinidine - M K number of conducting K+ channels - [Q] quinidine concentration - R t transepithelial resistance - S spectral density - S o Lorentzian plateau - TBM cells toad urinary bladder cell line Present address: University of California at Berkeley, Dept. of Molecular and Cell Biology Berkeley, CA 94720, USA  相似文献   

14.
Hans-Walter Tromballa 《BBA》1981,636(1):98-103
1. Low concentrations of the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) induced net K+ uptake by Chlorella fusca, optimal concentrations being 3 μM CCCP in the light and 1 μM CCCP in the dark. Higher concentrations increasingly stimulated K+ release. 2. Measurements of the unidirectional K+ fluxes showed that CCCP-induced net K+ uptake in the light was mainly a consequence of an inhibition of efflux. In the dark, influx was slightly stimulated in addition. 3. In conditions of CCCP-induced net K+ uptake, the ATP level was decreased by less than 10%. With higher CCCP concentrations it fell drastically. 4. By means of the 5,5-dimethyloxazolidine-2,4-dione distribution technique, an acidification of the cell interior on the addition of CCCP was found. 5. It is concluded that uncoupler-induced net K+ uptake is due to an enhanced proton leakage into the cell across the plasmalemma. Intracellular acidification by this process stimulates ATP-dependent K+/H+ exchange which, in itself, is not affected at low uncoupler concentrations.  相似文献   

15.
Summary Unidirectional 22Na+ and 36Cl fluxes were determined in short-circuited, stripped rumen mucosa from sheep by using the Ussing chamber technique. In both CO2/HCO 3 -containing and CO2/HCO 3 -free solutions, replacement of gluconate by short-chain fatty acids (SCFA, 39 mM) significantly enhanced mucosal-toserosal Na+ absorption without affecting the Cl transport in the same direction. Short-chain fatty acid stimulation of Na+ transport was at least partly independent of Cl and could almost completely be abolished by 1 mM mucosal amiloride, while stimulation of Na+ transport was enhanced by lowering the mucosal pH from 7.3 to 6.5. Similar to the SCFA action, raising the PCO2 in the mucosal bathing solution led to an increase in the amiloride-sensitive mucosal-to-serosal Na+ flux. Along with its effect on sodium transport, raising the PCO2 also stimulated chloride transport. The results are best explained by a model in which undissociated SCFA and/or CO2 permeate the cell membrane and produce a raise in intracellular H+ concentration. This stimulates an apical Na+/H+ exchange, leading to increased Na+ transport. The stimulatory effect of CO2 on Cl transport is probably mediated by a Cl/HCO 3 exchange mechanism in the apical membrane. Binding of SCFA anions to that exchange as described for the rat distal colon (Binder and Mehta 1989) probably does not play a major role in the rumen.Abbreviations DIDS 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid - G t transepithelial conductance (mS·cm-2) - HSCFA undissociated short-chain fatty acids - J ms mucosal-to-serosal flux (Eq · cm-2 · h-1) - J net net flux (Eq · cm-2 · h-1) - J sm serosal-to-mucosal flux (Eq · cm-2 · h-1) - PD transepithelial potential difference (mV) - SCFA dissociated short-chain fatty acids - SCFA short-chain fatty acids  相似文献   

16.
Summary Barley roots grown on a nutrient solution containing 1 mM Na+ but no K+ are capable of a considerable Na+ transport via the symplasm of the root and the xylem vessels. K+ added to the medium surrounding the root cortex severely inhibits this transport after a lag period at a high rate constant (Fig. 3).It is likely that the fluxes of Na+ are changed drastically during this transition from low to high K+ status. Although originally limited to steady state fluxes, the extended method of efflux analysis for excised roots (Pitman, 1971) has been applied to the non-steady fluxes which occur upon the addition of K+ to the roots. It is shown that besides other changes the efflux of 22Na+ through the cortex of barley roots is stimulated instantaneously (Fig. 5) by the addition of K+ and presumably by an influx of K+ ions. From this a transient, K+-stimulated Na+ efflux at the plasmalemma of the cortical cells can be estimated. It amounts to 10.9 moles/g fw · h compared to the control efflux of 3.3 moles/g fw · h without K+.The stimulated efflux is attributed to a Na+ efflux pump at the plasmalemma and is thus related to the K-Na-selectivity of barley plants. The inhibition of the Na+ transport by K+ is probably a consequence of this increased efflux of Na+ from the symplasm through the root cortex.  相似文献   

17.
Summary The short-circuit current (SCC) across isolated skin from bullfrog larvae in developmental stage XXI was small and insensitive to amiloride. Overnight incubation of this tissue with 10-6 M aldosterone stimulated the SCC from 1.35±0.55 to 14.55±4.12 A·cm-2 with 11.18±4.46 A·cm-2 being blocked by 100 M amiloride. Histologic examination of aldosterone-treated skins revealed a separation of the apical cell layer from the underlying epidermis that was not seen in untreated preparations. The onset of amiloride-sensitive Na+ transport thus coincided with the exposure of the apical surface of newly differentiated epithelial cells. Similar results were obtained with skin from stage XXI larvae whose rate of metamorphosis had been stimulated by 10 g·l-1 thyroxine (T4) but not with skin from T4-treated larvae in stages XIX and XX. Fluctuation analysis of the amiloride-sensitive SCC of the above preparations failed to show a consistent Lorentzian component in the power-density spectrum. Fluctuation analysis was possible on skins from larvae whose development had been accelerated by 7–9 days treatment with 10 g·l-1 triiodothyronine (T3). Aldosterone treatment of these tissues resulted in a significant increase in Na+ channel density.Abbreviations ASCC component of the short-circuit current (A·cm-2) that is blocked by amiloride - fc frequency (Hz) at which the magnitude of the Lorenzian component of the power spectra is reduced by half - i current (pA) through individual amiloride-sensitive Na+ channels - I Na+ amiloride-sensitive short-circuit current (A·cm-2) that remains after treatment with a given amiloride concentration - k 01 the rate constant (s-1·M-1) for the association of amiloride with Na+ channels - k 10 rate constant (s-1) for the dissociation of amiloride from Na+ channels - K b magnitude of the power spectrum (A2·s·cm-2) at a frequency of 1 Hz - KSCC short-circuit (A·cm-2) current with K+ as the primary mucosal cation - M density of amiloride-sensitive Na+ channels in the apical cell membrane - SCC short-circuit current (A·cm-2) - S (f) magnitude of the power spectra (A2·s·cm-2) at a given frequency - S 0 the magnitude of the plateau region of the Lorentzian component of the power spectra (A2·s·cm-2) - T 3 Triiodothyronine - T 4 Thyroxine  相似文献   

18.
Local irradiation of the alga Vaucheria sessilis (Vauch.) D.C. with blue light, which stimulates cortical fiber reticulation and chloroplast aggregation (M.R. Blatt and W.R. Briggs, 1980, Planta 147, 355–362), also induces an outward-directed current from the irradiated region of the cell. This current appears in conjunction with cortical fiber reticulation and precedes chloroplast aggregation. The current is not photosynthetic in origin, as indicated by experiments with 3(3,4-dichlorophenyl)-1,1-dimethyl urea and carbonyl-cyanide-m-chlorophenylhydrazone (CCCP). It shows a wavelength-dependence similar to that of chloroplast aggregation and reaches a maximum of 500 nA cm-2 with saturating light intensities. The current is not dependent upon the presence of Na+, K+, or Cl- in a test medium containing only Na+, K+, Ca2+, and Cl-, but is inhibited, apparently nonspecifically, in the absence of external calcium. Both the light-induced current and chloroplast aggregation are stimulated by increases in the external KCl concentration and are inhibited by sub-micromolar concentrations of CCCP or by external pHs below approximately 5.5. We suggest that blue light stimulates the local extrusion of cations, possibly of protons, at the plasma membrane, an event which may act to destabilize the cortical fibers in Vaucheria, disrupt cytoplasmic streaming, and eventually lead to organelle aggregation in the light.C.I.W.-D.P.B. Publication No. 712  相似文献   

19.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

20.
This study concerns the uptake of inorganic phosphate into brush-border membrane vesicles prepared from jejunal tissues of either control or Ca-and/or P-depleted goats. The brush-border membrane vesicles showed a time-dependent accumulation of inorganic phosphate with a typical overshoot phenomenon in the presence of an inwardly directed Na+ gradient. The Na+-dependent inorganic phosphate uptake was completely inhibited by application of 5 mmol·l-1 sodium arsenate. Half-maximal stimulation of inorganic phosphate uptake into brush-border membrane vesicles was found with Na+ concentrations in the order of 5 mmol·l-1. Inorganic phosphate accumulation was not affected by a K+ diffusion potential (inside negative), suggesting an electroneutral transport process. Stoichiometry suggested an interaction of two or more Na ions with one inorganic phosphate ion at pH 7.4. Na+-dependent inorganic phosphate uptake into jejunal brush-border membrane vesicles from normal goats as a function of inorganic phosphate concentration showed typical Michaelis-Menten kinetic with V max=0.42±0.08 nmol·mg-1 protein per 15 s-1 and K m=0.03±0.01 mmol·l-1 (n=4, x ±SEM). Long-term P depletion had no effect on these kinetic parameters. Increased plasma calcitriol concentrations in Ca-depleted goats, however, were associated with significant increases of V max by 35–80%, irrespective of the level of P intake. In the presence of an inwardly directed Na+ gradient inorganic phosphate uptake was significantly stimulated by almost 60% when the external pH was decreased to 5.4 (pHout/pHin=5.4/7.4). The proton gradient had no effect on inorganic phosphate uptake in absence of Na+. In summary, in goats Na+ and calcitriol-dependent mechanisms are involved in inorganic phosphate transport into jejunal brush-border membrane vesicles which can be stimulated by protons.Abbreviations AP activity of alkaline phosphatase - BBMV brush-border membrane vesicles - EGTA ethyleneglycol-triacetic acid - n app apparent Hill coefficient - P i inorganic phosphate - PTH parathyroid hormone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号