首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used ethidium bromide titration for direct measurement of the changes in the negative supercoiling of Escherichia coli chromosome caused by mutations inactivating the cell cycle functions mukB and seqA. The amounts of the intercalative agent required to relax the supercoiled chromosome in mukB and seqA mutants were lower and higher, respectively, than for the wild-type parent, confirming that these cell cycle genes modulate the topology of the E. coli chromosome. Plasmid superhelicity measured in these mutant strains showed similar effects albeit of reduced magnitude. As the effects of mukB and seqA mutations were not restricted to the chromosome alone, MukB and SeqA proteins possibly interact with factors involved in the maintenance of intracellular DNA topology. To our knowledge, this is the first direct demonstration of the influence of mukB and seqA genes on the superhelicity of the E. coli chromosome.  相似文献   

2.
Initiation of DNA replication from oriC in Escherichia coli takes place at a specific time in the cell division cycle, whether the origin is located on a chromosome or a minichromosome, and requires participation of the product of the dnaA gene. The effects of overproduction of DnaA protein on the cell cycle specificity of the initiation event were determined by using minichromosome replication as the assay system. DnaA protein was overproduced by inducing the expression of plasmid-encoded dnaA genes under control of either the ptac or lambda pL promoter. Induction of DnaA protein synthesis caused a burst of minichromosome replication in cells at all ages in the division cycle. The magnitude of the burst was consistent with the initiation of one round of replication per minichromosome in all cells. The replication burst was followed by a period of reduced minichromosome replication, with the reduction being greater at 30 than at 41 degrees C. The results support the idea that the DnaA protein participates in oriC replication at a stage that is limiting for initiation. Excess DnaA protein enabled all cells to achieve the state required for initiation of DNA polymerization by either effecting or overriding the normal limiting process.  相似文献   

3.
The origin of replication of Escherichia coli, oriC, has been labeled by fluorescent in situ hybridization (FISH). The E. coli K12 strain was grown under steady state conditions with a doubling time of 79 min at 28 degrees C. Under these growth conditions DNA replication starts in the previous cell cycle at -33 min. At birth cells possess two origins which are visible as two separated foci in fully labeled cells. The number of foci increased with cell length. The distance of foci from the nearest cell pole has been measured in various length classes. The data suggest: i) that the two most outwardly located foci keep a constant distance to the cell pole and they therefore move apart gradually in line with cell elongation; and ii) that at the initiation of DNA replication the labeled origins occur near the center of prospective daughter cells.  相似文献   

4.
This review summarizes present knowledge of the bacterial cell cycle with particular emphasis on Escherichia coli. We discuss data coming from three different types of approaches to the study of cell extension and division: The search for discrete events occurring once per division cycle. It is generally agreed that the initiation and termination of DNA replication and cell septation are discrete events; there is less agreement on the sudden doubling in rate of cell surface extension, murein biosynthesis and the synthesis of membrane proteins and phospholipids. We discuss what is known about the temporal relationship amongst the various cyclic events studied. The search for discrete growth zones in the cell envelope layers. We discuss conflicting reports on the existence of murein growth zones and protein insertion sites in the inner and outer membranes. Elucidation of the mechanism regulating the initiation of DNA replication. The concept of "critical initiation mass" is examined. We review data suggesting that the DNA is attached to the envelope and discuss the role of the latter in the initiation of DNA replication.  相似文献   

5.
The logic of Escherichia coli's responses to environmental changes gives hope that its cell cycle will be equally well designed. During growth in a constant environment, internal signals trigger cell-cycle events such as replication initiation and cell division. Internal signals must also provide the cell with information about its present state, enabling it to coordinate the synthesis of cytoplasm, DNA and cell wall and maintain proper cell shape and composition. How the cell regulates these aspects of its growth is a fascinating--and as yet unfinished--story.  相似文献   

6.
Chromosomal supercoiling in Escherichia coli   总被引:10,自引:5,他引:5  
The Escherichia coli chromosome is compacted into 40-50 negatively supercoiled domains. It has been proposed that these domains differ in superhelical density. Here, we present evidence that this is probably not the case. A modified Tn10 transposable element was inserted at a number of locations around the E. coli chromosome. This element, mTn10-plac-lacZ+, contains the lac operon promoter, plac, whose activity increases with increasing superhelical density, fused to a lacZ+ reporter gene. Although mTn10-plac-lacZ+ fusion expression varies as much as approximately threefold at different insertion sites, the relative levels of expression from these elements are unaffected by replacing plac with the gyrA promoter, pgyrA, which has a reciprocal response to changes in superhelical density. Importantly, topoisomerase mutations and coumermycin, which inhibits DNA gyrase activity, alter mTn10-plac-lacZ+ and mTn10-pgyrA-lacZ+ fusion expression in expected ways, showing that the elements remain responsive to supercoiling and that topoisomerase activity is required for maintaining superhelical density. Fusion expression is not affected by anaerobic growth or osmotic shock, two physiological conditions thought to alter supercoiling. The approximately threefold difference in mTn10-plac-lacZ- and mTn10-pgyrA-lacZ+ fusion expression observed at different sites may be explained by regional differences in chromosomal copy number that arise from bidirectional replication. Together, these results strongly suggest that the E. coli chromosomal domains do not differ in functional superhelical density.  相似文献   

7.
Chromosomal editing constitutes the direct and specific modification of the genetic information present in the chromosome. In the bacterium Escherichia coli, strategies were originally developed for the production of specific proteins, the genotypic improvement of strains, and the analysis of regulation of gene expression. However, with the emerging field of metabolic engineering and genomics, efficient means of targeting specific genetic mutations into the chromosome are most useful. In this review, a summary of the systems currently available to generate insertions and deletions in the chromosome of E. coli are presented, as well as the current knowledge about the genetic mechanisms responsible for these processes.  相似文献   

8.
The chromosomal DNA replication origins (oriC) from two members of the family Enterobacteriaceae, Enterobacter aerogenes and Klebsiella pneumoniae, have been isolated as functional replication origins in Escherichia coli. The origins in the SalI restriction fragments of 17.5 and 10.2 kilobase pairs, cloned from E. aerogenes and K. pneumoniae, respectively, were found to be between the asnA and uncB genes, as are the origins of the E. coli and Salmonella typhimurium chromosomes. Plasmids containing oriC from E aerogenes, K. pneumoniae, and S. typhimurium replicate in the E. coli cell-free enzyme system (Fuller, et al., Proc. Natl. Acad. Sci. U.S.A. 78:7370--7374, 1981), and this replication is dependent on dnaA protein activity. These SalI fragments from E. aerogenes and K. pneumoniae carry a region which is lethal to E. coli when many copies are present. We show that this region is also carried on the E. coli 9.0-kilobase-pair EcoRI restriction fragment containing oriC. The F0 genes of the atp or unc operon, when linked to the unc operon promoter, are apparently responsible for the lethality.  相似文献   

9.
Summary Plasmid pTSO118 containing the Escherichia coli origin of replication, oriC, initiated replication simultaneously with the chromosome when temperature-sensitive host cells were synchronized by temperature shifts. Replicating intermediates of the plasmid as well as of the chromosome were isolated from the outer membrane fraction of the cell. Plasmid DNA with eye structures was enriched when cytosine-1--arabinofuranoside was introduced into the culture during replication. Electron microscopy of the replicating molecules, after digestion with restriction endonucleases, showed that the replication fork proceeds exclusively counter-clockwise towards the unc operon. We conclude that the replication of the oriC plasmid is unidirectional or, if bidirectional, is highly asymmetric.  相似文献   

10.
11.
The harmonious growth and cell-to-cell uniformity of steady-state bacterial populations indicate the existence of a well-regulated cell cycle, responding to a set of internal signals. In Escherichia coli, the key events of this cycle are the initiation of DNA replication, nucleoid segregation and the initiation of cell division. The replication initiator is the DnaA protein. In nucleoid segregation, the MukB protein, required for proper partitioning, may be a member of the myosin-kinesin superfamily of mechanoenzymes. In cell division, the FtsZ protein has a tubulin motif, is a GTPase and polymerizes in a ring around midcell during septation; the FtsA protein has an actin-like structure. The nature of the internal signals triggering these events is not known but candidates include cell mass, the superhelical density of the chromosome and the concentration of two regulatory nucleotides, cyclic AMP and ppGpp. The involvement of cytoskeletal-like proteins in key cycle events encourages the notion of a fundamental biological unity in cell cycle regulation in all organisms.  相似文献   

12.
13.
Periodic formation of the oriC complex of Escherichia coli.   总被引:4,自引:0,他引:4       下载免费PDF全文
S Gayama  T Kataoka  M Wachi  G Tamura    K Nagai 《The EMBO journal》1990,9(11):3761-3765
We examined formation of an oriC-membrane complex through the chromosome replication cycle by dot-blot hybridization using an oriC plasmid as a probe. In a wild-type culture synchronized for chromosome replication, oriC complex formation was observed periodically and transiently corresponding to the replication initiation event. Prior to initiation of replication the oriC complex was recovered in the outer membrane fraction as well as at the time of initiation of replication. Moreover, periodic formation of the oriC complex was observed even when further initiation of replication was suppressed by culturing an initiation ts mutant at the restrictive temperature. Similar periodic formation of the oriC complex was also observed when DNA elongation was inhibited by addition of nalidixic acid to the culture. However, the second periodic peak did not appear when rifampicin or chloramphenicol was added. Cells which formed the oriC complex at the restrictive temperature could immediately initiate chromosome replication when the cells were transferred to the permissive temperature. We conclude that the oriC region of Escherichia coli forms a specific complex periodically just before and at the time of initiation of chromosome replication and that oriC complex formation is a prerequisite for initiation of chromosome replication.  相似文献   

14.
The oriC unwinding by dam methylation in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
H Yamaki  E Ohtsubo  K Nagai    Y Maeda 《Nucleic acids research》1988,16(11):5067-5073
It has been shown that dam methylation is important in the regulation of initiation of DNA replication in E.coli. The question then arises as to whether dam methylation in the oriC region mediates any structural changes in DNA involved in the regulation of initiation of DNA replication. We demonstrate that the thermal melting temperature of the oriC region is lowered by adenine methylation at GATC sites. The regulation of initiation of DNA replication by dam methylation may be attributed to the ease of unwinding at GATC sites in oriC.  相似文献   

15.
The field of gene regulation underwent a major revolution with the discovery of small non-coding RNAs (sRNAs) and the various roles they play in organisms from bacteria to man. Escherichia coli has more than 60 sRNAs that are transcribed primarily from intergenic regions. They usually target the leader region of mRNAs and prevent their translation. Protein targets are relatively rare. In this issue of Molecular Microbiology, Chant and Summers provide an example of a totally unexpected protein target. They show that dimers of plasmid ColE1 make an sRNA that interacts directly with the enzyme tryptophanase and enhances its affinity for its substrate, tryptophan. A breakdown product, indole, then arrests cell division until the dimers are resolved to monomers. The monomerization helps to prevent plasmid loss. Targeting a catabolic enzyme to buy time for recombination is an amazing example of adaptation, which illustrates the power of a selfish element (a plasmid in this case) to exploit the host cell machinery to its advantage.  相似文献   

16.
Lipid synthesis during the Escherichia coli cell cycle.   总被引:1,自引:6,他引:1       下载免费PDF全文
Lipid synthesis was examined in Escherichia coli cells at different stage of cell division. Exponentially growing cells were pulse-labeled with appropriate isotopes for 0.1 generation time, inactivated, and separated by size on a sucrose gradient. An abrupt increase in the rate of lipid synthesis occurred which was coincident with the initiation of cross walls. In contrast, the rate of protein synthesis during this same interval remained constant, resulting in an increased lipid/protein ratio in dividing cells. No changes in the composition of phospholipid head groups, fatty acids, or phospholipid molecular species were observed in cells at different stages of division. The observed increase in the rate of lipid synthesis may reflect a means by which the activities of membrane-associated enzymes are modulated during cross wall formation.  相似文献   

17.
Phospholipid flip-out controls the cell cycle of Escherichia coli   总被引:2,自引:0,他引:2  
Phospholipids are the principal constituents of biological membranes. In Escherichia coli, phospholipids are involved in the metabolism of other envelope constituents such as lipoprotein, lipopolysaccharide, certain envelope proteins and peptidoglycan. They are also involved in the regulation of the cell cycle. DNAA, the key protein in the initiation of chromosome replication, is activated by acidic phospholipids only when these are in fluid bilayers, whilst interruptions of phospholipid synthesis inhibit both the initiation of chromosome replication and cell division. The transmembrane movement or flip-flop of phospholipids from one monolayer to the other requires the passage of the polar head group through the hydrophobic core of the bilayer. Hence, in many systems, flip-flop is a slow process with half-time of days. Flip-flop accompanies the formation of non-bilayer structure. Such structures form under certain conditions of packing density and composition and have been observed both in vitro and in vivo. In bacteria, flip-flop appears to be extremely rapid, with half-times as fast as 3 min being observed. However, such rapid flip-flop may not be characteristic of all phospholipids. The asymmetrical distribution of phosphatidylethanolamine in the plasma membrane of Bacillus megaterium has been attributed to the existence of two classes of this phospholipid. In E. coli, studies of the metabolic turnover of phosphatidylserine, phosphatidylglycerol and phosphatidic acid also reveal the existence of distinct classes of these phospholipids. In this article I propose that, in E. coli, a class of phospholipids does indeed escape the rapid flip-flop mechanism; this class probably includes a subpopulation of the acidic phospholipids. Therefore during the cell cycle these phospholipids accumulate in the inner monolayer of the cytoplasmic membrane and so cause an increase in its packing density; at a critical density, phospholipids "flip out" from the inner to the outer monolayer. This flip-out occurs once per cycle and initiates cell cycle events.  相似文献   

18.
Cell division and DNA synthesis were measured in synchronous cultures of E. coll B/r growing in glucose minimal medium at 37 °. The kinetic curves were analysed in order to find the variability of replication initiation, termination, and cell division events during the cell cycle. It is inferred that under the conditions used, cells begin to divide 17 min (D0 = minimum D-period) after each termination of chromosome replication with a constant probability per unit of time (half-life = 4·5–6 min). This randomness produces an asymmetric frequency distribution of D-periods, similar but mirror-symmetric frequency distributions of initiation and termination periods, a symmetric, non-Gaussian distribution of interdivision intervals, and complex kinetic changes in the rate of DNA synthesis as a function of cell age. The results suggest that replication and division are precisely controlled with respect to mass accumulation, and the apparent variability of cell cycle events would only result from the use of the time of cell separation as a reference point for the definition of cell age rather than initiation or termination of replication.  相似文献   

19.
SeqA limits DnaA activity in replication from oriC in Escherichia coli   总被引:5,自引:2,他引:3  
A mutant Escherichia coli that transforms minichromosomes with high efficiency in the absence of Dam methylation has been Isolated and the mutation mapped to 16.25 min on the E. coli map. The mutant strain containing seqA2 is defective for growth in rich medium but not in minimal medium. A similar mutation In this gene, named seqA1, has also been isolated. Here we show that the product of the seqA gene, SeqA, normally acts as an inhibitor of chromosomal initiation. In the seqA2-containing mutant, the frequency of initiation increases by a factor of three. Introduction of the wild-type seqA gene on a low-copy plasmid suppresses the cold sensitivity of a dnaAcos mutant known to overinitiate at temperatures below 39°C. In addition, the seqA2 mutation is a suppressor of several dnaA (Ts) alleles. The seqA2 mutant overinitiates replication from oriC and displays the asynchronous initiation phenotype. Also the seqA2 mutant has an elevated level of DnaA protein (twofold). The introduction of minichromosomes or a low-copy-number plasmid carrying five DnaA-boxes from the oriC region increases the growth rate of the seqA2 mutant in rich medium to the wild-type level, reduces overinitiation but does not restore synchrony. We propose that the role of SeqA is to limit the activity level of the E. coli regulator of chromosome initiation, DnaA.  相似文献   

20.
Changes in cell diameter during the division cycle of Escherichia coli   总被引:20,自引:17,他引:3       下载免费PDF全文
Extensive measurements of steady-state populations of several Escherichia coli strains have consistently indicated that cell diameter decreases with increasing cell length. This was observed both after electron microscopy of air-dried cells and after phase-contrast microscopy of living cells. The analysis was made by considering separately the unconstricted cells and three classes (slight, medium, and deep) of constricted cells in the population. During slow growth, cells with the average newborn length were up to 8% thicker than unconstricted cells twice as long. This decrease in diameter is less at higher growth rates. Despite the small changes and the large variation of the diameter in any particular length class, significant negative correlations between diameter and length were obtained. Cell diameter increases again at the end of the cell cycle as indicated by an increase of average diameter in the three consecutive classes of constriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号