首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular adenosine is transported into chromaffin cells by a high-affinity transport system. The action of adenosine receptor ligands was studied in this cellular model. 5'-(N-Ethylcarboxamido)adenosine (NECA), an agonist of A2 receptors, activated adenosine transport. Km values for adenosine were 4.6 +/- 1.0 (n = 5) and 10.2 +/- 3.0 microM (n = 5) for controls and 100 nM NECA, respectively. The Vmax values were 66.7 +/- 23.5 and 170.2 +/- 30 pmol/10(6) cells/min for controls and 100 nM NECA, respectively. The A1 agonist N6-cyclohexyladenosine, the A1 antagonist 8-cyclopentyl-1, 3-dipropylxanthine, and the A1-A2 antagonist 1,3-dipropyl-8-(4-[(2-aminoethyl)amino]-carbonylmethyloxyphenyl)- xanthine did not significantly modify the adenosine transport in this system. Binding studies done with [3H]dipyridamole, a nucleoside transporter ligand, did not show changes in either the number or affinity of transporter sites after NECA treatment. This ligand can enter cells and quantifies the total number of transporters. The binding studies with [3H]-nitrobenzylthioinosine, which quantifies the plasma membrane transporters, showed a Bmax of 19,200 +/- 800 and 23,200 +/- 700 transporters/cell for controls and 100 nM NECA, respectively. No changes in the KD were obtained. The effects of NECA were not mediated through adenylate cyclase activation, because its action was not imitated by forskolin.  相似文献   

2.
The properties of the glucose-transport systems in rat adipocytes and hepatocytes were compared in cells prepared from the same animals. Hormones and other agents which cause a large stimulation of 3-O-methylglucose transport in adipocytes were without acute effect in hepatocytes. Hepatocytes displayed a lower affinity for 3-O-methylglucose (20 mM) and alternative substrates than adipocytes (6 mM), whereas inhibitor affinities were similar in both cell types. The concentration and distribution of glucose transporters were determined by Scatchard analysis of D-glucose-inhibitable [3H]cytochalasin B binding to subcellular fractions. In liver, most of the transporters were located in the plasma membrane (42 +/- 5 pmol/mg of protein) with a small amount (4 +/- 3 pmol/mg) in the low-density microsomal fraction ('microsomes'), the reverse of the situation in adipocytes. Glucose transporters were covalently labelled with [3H]cytochalasin B by using the photochemical cross-linking agent hydroxysuccinimidyl-4-azidobenzoate and analysed by SDS/polyacrylamide-gel electrophoresis. A single D-glucose-inhibitable peak with a molecular mass of 40-50 kDa was seen in both plasma membrane and low-density microsomes. This peak was further characterized by isoelectric focusing and revealed a single peak of specific [3H]cytochalasin B binding at pI 6.05 in both low-density microsomes and plasma membrane, compared with peaks at pI 6.4 and 5.6 in adipocyte membranes. In summary: the glucose-transport system in hepatocytes has a lower affinity and higher capacity than that in adipocytes, and is also not accurately modulated by insulin; the subcellular distribution of glucose transporters in the liver suggests that few intracellular transporters would be available for translocation; the liver transporter has a molecular mass similar to that of the adipocyte transporter; the liver glucose transporter exists as a single charged form (pI 6.05), compared with the multiple forms in adipocytes. This difference in charge could reflect a functionally important difference in molecular structure between the two cell types.  相似文献   

3.
Kinetic characteristics of glucose transport and glucose phosphorylation were studied in the islet cell line beta TC-1 to explore the roles of these processes in determining the dependence of glucose metabolism and insulin secretion on external glucose. The predominant glucose transporter present was the rat brain/erythrocyte type (Glut1), as determined by RNA and immunoblot analysis. The liver/islet glucose transporter (Glut2) RNA was not detected. The functional parameters of zero-trans glucose entry were Km = 9.5 +/- 2 mM and Vmax = 15.2 +/- 2 nmol min-1 (microL of cell water)-1. Phosphorylation kinetics of two hexokinase activities were characterized in situ. A low-Km (0.036 mM) hexokinase with a Vmax of 0.40 nmol min-1 (microL of cell water)-1 was present along with a high-Km (10 mM) hexokinase, which appeared to conform to a cooperative model with a Hill coefficient of about 1.4 and a Vmax of 0.3 nmol min-1 (microL of cell water)-1. Intracellular glucose at steady state was about 80% of the extracellular glucose from 3 to 15 mM, and transport did not limit metabolism in this range. In this static (nonperifusion) system, 2-3 times more immunoreactive insulin was secreted into the medium at 15 mM glucose than at 3 mM. The dependence of insulin secretion on external glucose roughly paralleled the dependence of glucose metabolism on external glucose. Simulations with a model demonstrated the degree to which changes in transport activity would affect intracellular glucose levels and the rate of the high-Km hexokinase (with the potential to affect insulin release).  相似文献   

4.
The yeast glucose transporters Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 and Gal2, individually expressed in an hxt1-7 null mutant strain, demonstrate the phenomenon of countertransport. Thus, these transporters, which are the most important glucose transporters in Saccharomyces cerevisiae, are facilitated diffusion transporters. Apparent K(m)-values from high to low affinity, determined from countertransport and initial-uptake experiments, respectively, are: Hxt6 0.9+/-0.2 and 1.4+/-0.1 mM, Hxt7 1.3+/-0.3 and 1.9+/-0.1 mM, Gal2 1.5 and 1.6+/-0.1 mM, Hxt2 2.9+/-0.3 and 4.6+/-0.3 mM, Hxt4 6.2+/-0.5 and 6.2+/-0.3 mM, Hxt3 28.6+/-6.8 and 34.2+/-3.2 mM, and Hxt1 107+/-49 and 129+/-9 mM. From both independent methods, countertransport and initial uptake, the same range of apparent K(m)-values was obtained for each transporter. In contrast to that in human erythrocytes, the facilitated diffusion transport mechanism of glucose in yeast was symmetric. Besides facilitated diffusion there existed in all single glucose transport mutants, except for the HXT1 strain, significant first-order behaviour.  相似文献   

5.
Rabbit kidney proximal convoluted tubule (RPCT) and proximal straight tubule (RPST) cells were independently isolated and cultured. The kinetics of the sodium-dependent glucose transport was characterized by determining the uptake of the glucose analog alpha-methylglucopyranoside. Cell culture and assay conditions used in these experiments were based on previous experiments conducted on the renal cell line derived from the whole kidney of the Yorkshire pig (LLC-PK1). Results indicated the presence of two distinct sodium-dependent glucose transporters in rabbit renal cells: a relatively high-capacity, low-affinity transporter (V(max) = 2.28 +/- 0.099 nmoles/mg protein min, Km = 4.1 +/- 0.27 mM) in RPCT cells and a low-capacity, high-affinity transporter (V(max) = 0.45 +/- 0.076 nmoles/mg protein min, K(m) = 1.7 +/- 0.43 mM) in RPST cells. A relatively high-capacity, low-affinity transporter (V(max) = 1.68 +/- 0.215 nmoles/mg protein min, Km = 4.9 +/- 0.23 mM) was characterized in LLC-PK1 cells. Phlorizin inhibited the uptake of alpha-methylglucopyranoside in proximal convoluted, proximal straight, and LLC-PK1 cells by 90, 50, and 90%, respectively. Sodium-dependent glucose transport in all three cell types was specific for hexoses. These data are consistent with the kinetic heterogeneity of sodium-dependent glucose transport in the S1-S2 and S3 segments of the mammalian renal proximal tubule. The RPCT-RPST cultured cell model is novel, and this is the first report of sodium-dependent glucose transport characterization in primary cultures of proximal straight tubule cells. Our results support the use of cultured monolayers of RPCT and RPST cells as a model system to evaluate segment-specific differences in these renal cell types.  相似文献   

6.
The effects of Mg2+ or ethylenediaminetetraacetic acid (EDTA) on 125I-glucagon binding to rat liver plasma membranes have been characterized. In the absence of guanosine 5'-triphosphate (GTP), maximal binding of 125I-glucagon occurs in the absence of added Mg2+. Addition of EDTA or Mg2+ diminishes binding in a dose-dependent manner. In the presence of GTP, maximal binding occurs in the presence of 2.5 mM Mg2+ (EC50 = 0.3 mM) while EDTA or higher concentrations of Mg2+ diminish binding. Response to exogenous Mg2+ or EDTA depends on the concentration of Mg2+ in the membranes and may vary with the method used for membrane isolation. Solubilized 125I-glucagon-receptor complexes fractionate on gel filtration columns as high molecular weight, GTP-sensitive complexes in which receptors are coupled to regulatory proteins and lower molecular weight, GTP-insensitive complexes in which receptors are not coupled to other components of the adenylyl cyclase system. In the absence of GTP, 40 mM Mg2+ or 5 mM EDTA diminishes receptor affinity for hormone (from KD = 1.2 +/- 0.1 nM to KD = 2.6 +/- 0.3 nM) and the fraction of 125I-glucagon in high molecular weight receptor-Ns complexes without affecting site number (Bmax = 1.8 +/- 0.1 pmol/mg of protein). Thus, while GTP promotes disaggregation of receptor-Ns complexes, Mg2+ or EDTA diminishes the affinity with which these species bind hormone. In the presence of GTP, hormone binds to lower affinity (KD = 9.0 +/- 3.0 nM), low molecular weight receptors uncoupled from Ns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have documented a single, specific binding site for [3H]pyrilamine on normal human T helper, T suppressor, B cells, and monocytes. The binding of the radioligand to its receptor is reversible with cold H1 antagonist, saturates at 40 to 60 nM, and binding equilibrium is achieved in 2 to 4 min. Using a computer program (Ligand), we calculated the dissociation constants, binding capacities, and numbers of receptors per cell for each of the different cell types. Monocytes were found to have the highest affinity (mean KD +/- SD; 3.8 +/- 4.8 nM) for [3H]pyrilamine, followed by T helper cells (KD = 5.0 +/- 6.6 nM), B cells (KD = 14.2 +/- 2.0 nM), and T suppressor cells (KD = 44.6 +/- 49.4 nM). T suppressor cells were found to express the higher number of H1 receptors per cell (35,697 +/- 15,468), followed by B cells (10,732 +/- 9060), T helper cells (6838 +/- 8167), and monocytes (5589 +/- 2266). The kinetics of binding for this radioligand was carried out in resting and mitogen-stimulated T cells over a 48-hr period. We found that the binding affinity for [3H]pyrilamine increased over the 48-hr period, whereas the number of receptors per T cell was essentially unchanged. In contrast, T cells stimulated with Con A or PHA were shown to have a greater than fourfold increase in the number of receptors per cell, whereas the binding affinity for [3H]pyrilamine decreased over the 48-hr period. Preincubation of T cells with unlabeled histamine before carrying out the radioligand binding assay resulted in a decrease in the binding affinity of the receptors to [3H]pyrilamine, but the number of receptors per cell did not change significantly. Although the function of H1 receptors on T cells, B cells, and monocytes has not been completely defined, this receptor has the potential of playing an important role in modulating the immune response.  相似文献   

8.
Methodology was developed to measure osmotic water permeability in monolayer cultured cells and applied to examine the proposed role of glucose transporters in the water pathway (1989. Proc. Natl. Acad. Sci. USA. 86:8397-8401). J774 macrophages were grown on glass coverslips and mounted in a channel-type perfusion chamber for rapid fluid exchange without cell detachment. Relative cell volume was measured by 45 degrees light scattering using an inverted microscope; measurement accuracy was validated by confocal imaging microscopy. The time required for greater than 90% fluid exchange was less than 1 s. In response to a decrease in perfusate osmolality from 300 to 210 mosM, cells swelled without lag at an initial rate of 4.5%/s, corresponding to a water permeability coefficient of (6.3 +/- 0.4) x 10(-3) cm/s (SE, n = 20, 23 degrees C), assuming a cell surface-to-volume ratio of 4,400 cm-1. The initial rate of cell swelling was proportional to osmotic gradient size, independent of perfusate viscosity, and increased by amphotericin B (25 micrograms/ml), and had an activation energy of 10.0 +/- 1 kcal/mol (12-39 degrees C). The compounds phloretin (20 microM) and cytochalasin B (2.5 micrograms/ml) inhibited glucose transport by greater than 85% but did not influence Pf in paired experiments in which Pf was measured before and after inhibitor addition. The mercurials HgCl2 (0.1 mM) and p-chloromercuribenzoate (1 mM) did not inhibit Pf. A stopped-flow light scattering technique was used to measure Pf independently in J774 macrophages grown in suspension culture. Pf in suspended cells was (4.4 +/- 0.3) x 10(-3) cm/s (assuming a surface-to-volume ratio of 8,800 cm-1), increased more than threefold by amphotericin B, and not inhibited by phloretin and cytochalasin B under conditions of strong inhibition of glucose transport. The glucose reflection coefficient was 0.98 +/- 0.03 as measured by induced osmosis, assuming a unity reflection coefficient for sucrose. These results establish a quantitative method for measurement of osmotic water transport in adherent cultured cells and provide evidence that glucose transporters are not involved in the water transporting pathway.  相似文献   

9.
10.
Transtrophectodermal 3-0-methyl glucose (3-0MG) transport in the rabbit blastocyst at Days 6 and 7 post coitum was investigated to understand better how the trophectoderm can regulate inner cell mass growth by controlling substrate availability. 3-0MG rapidly traversed the trophectoderm and displayed saturation kinetics (Km = 4.3 +/- 0.5 mM, Vmax = 79 +/- 3.8 nmol.cm-2). The flux of 3-0MG was inhibited nearly 95% by 10(-4) M-phloretin, and only 15% by 10(-4) M-phlorizin. Furthermore, 3-0MG influx was inhibited by cytochalasin B (5 microM) and was unaffected by removal of sodium. The transport system had a high specificity for 2-deoxy-D-glucose and glucose, and a very low specificity for fructose and 4-alpha-methyl glucoside. Western blots probed with a polyclonal antibody to the human erythrocyte glucose transport protein and also with a polyclonal antibody to the C-terminus of the glucose transport protein of the rat brain revealed a broad band with a molecular weight of 55,000. Using immuno-gold labelling techniques, Na(+)-independent glucose transporters were localized to both the apical and basolateral borders of the trophectodermal cell. These results suggest that the mechanism in the trophectoderm responsible for transport of glucose is similar to other sodium-independent glucose transport systems. In addition, 3-0MG influx was unaffected by short-term incubation with progesterone, the progesterone antagonist mifepristone (RU-486), PGF-2 alpha, PGE-2, insulin, or cAMP. Day-7 p.c. embryos also transported hexoses by a similar system because the influx rate and the phlorizin/phloretin sensitivity were the same as in the Day-6 p.c. embryo.  相似文献   

11.
C F Burant  G I Bell 《Biochemistry》1992,31(42):10414-10420
Four facilitative glucose transporters isoforms, GLUT1/erythrocyte, GLUT2/liver, GLUT3/brain, and GLUT4/muscle-fat, as well as chimeric transporter proteins were expressed in Xenopus oocytes, and their properties were studied. The relative Km's of the transporters for 2-deoxyglucose were GLUT3 (Km = 1.8 mM) > GLUT4 (Km = 4.6 mM) > GLUT1 (Km = 6.9 mM) > GLUT2 (Km = 17.1 mM). In a similar fashion, the uptake of 2-deoxyglucose by GLUT1-, GLUT2-, and GLUT3-expressing oocytes was inhibited by a series of unlabeled hexoses and pentoses and by cytochalasin B in a similar hierarchical order. To determine if the functional unit of the glucose transporter was a monomer or higher-order multimer, the high-affinity transporter GLUT3 was coexpressed with either the low-affinity GLUT2 or a GLUT3 mutant which contained a transport inactivating Trp410-->Leu substitution. In oocytes expressing both GLUT2 and GLUT3, the transport activity associated with each transporter isoform could be distinguished kinetically. Similarly, there was no alteration in the kinetic parameters of GLUT3, or the ability of glucose or cytochalasin B to inhibit 2-deoxyglucose uptake, when coexpressed with up to a 3-fold greater amount of functionally inactive mutant of GLUT3. These studies suggest that the family of glucose transporters have similar binding sites which may be in the form of a functional monomeric unit when expressed in Xenopus oocytes.  相似文献   

12.
The mechanism of modulation of insulin-stimulated glucose transport activity in isolated rat adipose cells by lipolytic and antilipolytic agents has been examined. We have measured glucose transport activity in intact cells with 3-O-methylglucose and in plasma membranes with D-glucose, and the concentration of glucose transporters in plasma membranes using a cytochalasin B binding assay. In intact cells, isoproterenol reduced insulin-stimulated transport activity by 60%. This effect was lost after cooling and washing the cells with homogenization buffer, and neither the concentration of glucose transporters nor transport activity in the plasma membranes differed from control. However, treatment of cells with KCN prior to homogenization preserved the isoproterenol effect through the fractionation procedure. Plasma membranes from these cells contained an unchanged number of transporters (31 +/- 7, mean +/- S.E., versus 31 +/- 4 pmol/mg of protein in controls) but transported glucose at a reduced rate (19 +/- 6 versus 48 +/- 9 pmol/mg of protein/s). Conversely, incubation of intact cells in the presence of adenosine stimulated plasma membrane glucose transport activity compared to that in the absence of adenosine (44 +/- 6 versus 36 +/- 6 pmol/mg of protein/s). Kinetic studies of isoproterenol-inhibited glucose transport in plasma membranes revealed a 60% decrease in Vmax (2900 +/- 350 versus 7200 +/- 1000 pmol/mg of protein/s) and a small increase in Km (15.1 +/- 1 versus 13.0 +/- 0.6 mM). These data indicate that modifications of glucose transport activity produced by lipolytic and antilipolytic agents in intact adipose cells can be fully retained in plasma membranes isolated under appropriate conditions. Furthermore, the effects of these agents occur through a modification of the glucose transporter intrinsic activity.  相似文献   

13.
Tegumental hexose transporters have been kinetically characterized in mated and separated male and female Schistosoma mansoni 8-12 wk postinfection. Significant gender-specific differences in Km and Vmax were observed. In mated males, the estimated constants (mean +/- SE) were: Km = 0.63 +/- 0.31 mM, Vmax = 0.93 +/- 0.44 nmol/mg worm water/min, and the Kd = 0.25 +/- 0.09 microliter/mg worm water/min. In mated females the kinetics were: Km = 0.99 +/- 0.40 mM, Vmax = 1.22 +/- 0.42 nmol/mg worm water/min, and Kd = 0.60 +/- 0.14 microliter/mg worm water/min. The influx of 2-deoxy-D-glucose and 3-O-methylglucose has been similarly characterized; these analogs share the same glucose transporter in male and female schistosomes. 2-Deoxy-D-glucose has a higher affinity, and 3-O-methylglucose a lower affinity, than does glucose. Because mated male schistosomes supply glucose to female partners, similarities between the free glucose concentration of the male and the affinity of the transporter determined for mated female schistosomes suggest that male-to-female transfer may be a potentially rate-limiting step in glucose utilization by the female. Permeability x surface are (PS) products and Vmax/Km ratios were significantly elevated in mated schistosomes, suggesting that the transporter is primarily localized to the dorsal surface of the male. Gender- and mating-specific analyses of PS products indicate that tegumental permeability to glucose is significantly increased in mated schistosomes, and compares very favorably to that of the host liver.  相似文献   

14.
The effects of insulin therapy in streptozotocin diabetic rats on the glucose transport response to insulin in adipose cells have been examined. At sequential intervals during subcutaneous insulin infusion, isolated cells were prepared and incubated with or without insulin, and 3-O-methylglucose transport was measured. Insulin treatment not only reversed the insulin-resistant glucose transport associated with diabetes, but resulted in a progressive hyperresponsiveness, peaking with a 3-fold overshoot at 7-8 days (12.1 +/- 0.3 versus 3.4 +/- 0.1 fmol/cell/min, mean +/- S.E.) and remaining elevated for more than 3 weeks. During the peak overshoot, glucose transporters in subcellular membrane fractions were assessed by cytochalasin B binding. Insulin therapy restored glucose transporter concentration in the plasma membranes of insulin-stimulated cells from a 40% depleted level previously reported in the diabetic state to approximately 35% greater than control (38 +/- 4 versus 28 +/- 2 pmol/mg of membrane protein). Glucose transporter concentration in the low-density microsomes from basal cells was also restored from an approximately 45% depleted level back to normal (50 +/- 4 versus 50 +/- 6 pmol/mg of membrane protein), whereas total intracellular glucose transporters were further increased due to an approximately 2-fold increase in low-density microsomal membrane protein. However, these increases remained markedly less than the enhancement of insulin-stimulated glucose transport activity in the intact cell. Thus, insulin treatment of diabetic rats produces a marked and sustained hyperresponsive insulin-stimulated glucose transport activity in the adipose cell with little more than a restoration to the non-diabetic control level of glucose transporter translocation. Because this enhanced glucose transport activity occurs through an increase in Vmax, insulin therapy appears to be associated with a marked increase in glucose transporter intrinsic activity.  相似文献   

15.
Two receptor sites for [3H]piretanide, a sulfamoylbenzoic acid loop diuretic, have been identified in intact Madin-Darby canine kidney cells, an epithelial cell line derived from dog kidney. The two receptor sites differed in their affinity for piretanide (KD1 = 2.1 +/- 1.4 nM and KD2 = 264 +/- 88 nM) and the maximal number of sites (Bmax1 = 11 +/- 4 and Bmax2 = 120 +/- 80 fmol/mg of protein). Madin-Darby canine kidney cells are known to possess a tightly coupled and highly cooperative Na+,K+,Cl- cotransporter which is sensitive to loop diuretics. Under ionic conditions identical to those used to study piretanide binding (30 mM Na+, 30 mM K+, 30 mM Cl-), the Ki for inhibition of the initial rate of 86Rb+ uptake by piretanide was 333 +/- 92 nM, a value not significantly different from the KD of the low affinity receptor site. [3H]Piretanide binding to three low K+-resistant mutants derived from this cell line was also studied. These mutants had been previously characterized as being partially or completely defective in Na+,K+,Cl- cotransport activity (McRoberts, J. A., Tran, C. T., and Saier, M. H., Jr. (1983) J. Biol. Chem. 258, 12320-12326). One of these mutants had undetectable levels of Na+,K+,Cl- cotransport activity and low to undetectable levels of specific piretanide binding. The second mutant had low but measurable levels of cotransport activity (11% of the wild-type levels) and displayed very low affinity (KD approximately 8000 nM) specific piretanide binding. In the third mutant, expression of Na+,K+,Cl- cotransport activity and both piretanide receptors was cell density-dependent. Subconfluent to just-confluent cultures of this mutant lacked detectable cotransport activity as well as specific piretanide binding, whereas very dense cultures displayed both piretanide receptors and had intermediate to nearly normal levels of cotransport activity. These results demonstrate that the Na+,K+,Cl- cotransporter is a receptor for loop diuretics, but they also raise questions about the functional significance of the two piretanide receptor sites.  相似文献   

16.
Differentiating (3T3-L1) and nondifferentiating (3T3-C2) fibroblastic cell lines possess two classes of insulin receptors, high affinity (KD = 1.0 to 3.7 X 10(-9) M) and low affinity (KD = 2.0 to 3.6 X 10(-8) M). Confluent cultures of 3T3-L1 cells induced to differentiate by insulin (1.74 x 10(-6) M) or indomethacin (1.25 x 10(-4) M) exhibit a 3-fold increase in the number of high affinity and low affinity receptors per cell or a 1.5- to 1.8-fold increase in the number of receptors per micron2 of surface area. In contrast, nondifferentiating 3T3-C2 cells treated with insulin or indomethacin lose almost completely the high affinity insulin receptors while retaining the same levels of low affinity receptors. The loss of high affinity receptors of the 3T3-C2 cells is accompanied by the disappearance of the stimulatory effect of insulin on the production of CO2 from glucose and on the uptake of aminoisobutyrate. The levels of high affinity insulin receptors appear to be regulated by different mechanisms in the differentiating (3T3-L1) and nondifferentiating (3T3-C2) cell lines. The mode of this regulation may have a bearing on the ability of a particular cell line to differentiate.  相似文献   

17.
Nucleoside and nucleobase transporters are important for salvage of purines and pyrimidines and for transport of their analog drugs into cells. However, the pathways for nucleobase translocation in mammalian cells are not well characterized. We identified an Na-independent purine-selective nucleobase/nucleoside transport system in the nucleoside transporter-deficient PK15NTD cells. This transport system has 1,000-fold higher affinity for nucleobases than nucleosides with K(m) values of 2.5 +/- 0.7 microM for [(3)H]adenine, 6.4 +/- 0.5 microM for [(3)H]guanine, 1.1 +/- 0.1 mM for [(3)H]guanosine, and 4.2 +/- 0.5 mM [(3)H]adenosine. The uptake of [(3)H]guanine (0.05 microM) was inhibited by other nucleobases and nucleobase analog drugs (at 0.5-1 mM in the order of potency): 6-mercaptopurine = thioguanine = guanine > adenine > thymine = fluorouracil = uracil. Cytosine and methylcytosine had no effect. Nucleoside analog drugs with modification at 2' and/or 5 positions (all at 1 mM) were more potent than adenosine in competing the uptake of [(3)H]guanine: 2-chloro-2'-deoxyadenosine > 2-chloroadenosine > 2'3'-dideoxyadenosine = 2'-deoxyadenosine > 5-deoxyadenosine > adenosine. 2-Chloro-2'-deoxyadenosine and 2-chloroadenosine inhibited [(3)H]guanine uptake with IC(50) values of 68 +/- 5 and 99 +/- 10 microM, respectively. The nucleobase/nucleoside transporter was resistant to nitrobenzylthioinosine {6-[(4-nitrobenzyl) thiol]-9-beta-D-ribofuranosylpurine}, dipyridamole, and dilazep, but was inhibited by papaverine, the organic cation transporter inhibitor decynium-22 (IC(50) of approximately 1 microM), and by acidic pH (pH = 5.5). In conclusion, we have identified a mammalian purine-selective nucleobase/nucleoside transporter with high affinity for purine nucleobases. This transporter is potentially important for transporting naturally occurring purines and purine analog drugs into cells.  相似文献   

18.
Insulin is known to increase the number of cell surface insulin-like growth factor II (IGF-II) receptors in isolated rat adipose cells through a subcellular redistribution mechanism similar to that for the glucose transporter. The effects of insulin on these two processes, therefore, have now been directly compared in the same cell preparations. 1) Insulin increases the steady state number of cell surface IGF-II receptors by 7-13-fold without affecting receptor affinity; however, insulin stimulates glucose transport activity by 25-40-fold. 2) The insulin concentration required for half-maximal stimulation of cell surface IGF-II receptor number is approximately 30% lower than that for the stimulation of glucose transport activity. 3) The half-time for the achievement of insulin's maximal effect at 37 degrees C is much shorter for IGF-II receptor number (approximately 0.8 min) than for glucose transport activity (approximately 2.6 min). 4) Reversal of insulin's action at 37 degrees C occurs more rapidly for cell surface IGF-II receptors (t1/2 congruent to 2.9 min) than for glucose transport activity (t1/2 congruent to 4.9 min). 5) When the relative subcellular distribution of IGF-II receptors is examined in basal cells, less than 10% of the receptors are localized to the plasma membrane fraction indicating that most of the receptors, like glucose transporters, are localized to an intracellular compartment. However, in response to insulin, the number of plasma membrane IGF-II receptors increases only approximately 1.4-fold while the number of glucose transporters increases approximately 4.5-fold. Thus, while the stimulatory actions of insulin on cell surface IGF-II receptors and glucose transport activity are qualitatively similar, marked quantitative differences suggest that the subcellular cycling of these two integral membrane proteins occurs by distinct processes.  相似文献   

19.
D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) regulates intracellular Ca2+ by mobilizing Ca2+ from a non-mitochondrial store. We have investigated the effects of Ca2+ on the binding of [32P]Ins (1,4,5)P3 to permeabilized rat hepatocytes and a liver plasma membrane-enriched fraction. Increasing the free Ca2+ concentration in the medium from 0.1 nM to 0.7 microM increased the capacity of a high affinity binding component (KD = 2-3 nM) in permeabilized cells by a factor of 10. If the membrane fraction was preincubated at 37 degrees C before binding was measured at 4 degrees C, all of the Ins(1,4,5)P3 receptors were transformed to a low affinity state (KD = 65 +/- 12 nM, Bmax = 3.1 +/- 0.1 fmol/mg, n = 4). When 0.7 microM of Ca2+ was added, the receptors were totally transformed to a high affinity state (KD = 2.8 +/- 0.4 nM, Bmax = 2.7 +/- 0.4 fmol/mg, n = 4). The EC50 of the Ca2(+)-induced interconversion of the Ins(1,4,5)P3 receptor was 140 nM. This Ca2(+)-induced transformation of the Ins(1,4,5)P3 receptor from a low affinity to a high affinity state was associated with an inhibition of the Ins(1,4,5)P3-induced Ca2+ release in permeabilized hepatocytes. These data suggest that the Ins(1,4,5)P3-dependent hormones, by increasing the intracellular Ca2+ concentration, induce a reversible transformation of the receptor from its low affinity state, coupled to the Ca2+ release, to a desensitized high affinity state. Transformation of the receptor may play a role in the oscillatory release of Ca2+ observed in single isolated hepatocytes.  相似文献   

20.
Specific binding sites with pharmacological properties typical of serotonin 5-HT3 receptors were identified in membranes of the murine hybridoma cell line NG 108-15, using [3H]zacopride as a ligand. Optimal solubilization of these sites (yield, 50%) could be achieved using the detergent 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) at 24 mM plus 0.5 M NaCl in 25 mM Tris-HCl, pH 7.4. Specific [3H]zacopride binding to soluble sites in the 100,000-g CHAPS extract was saturable and showed characteristics (Bmax = 425 +/- 81 fmol/mg of protein; KD = 0.19 +/- 0.02 nM) closely related to those of membrane-bound sites (Bmax = 932 +/- 183 fmol/mg of protein; KD = 0.60 +/- 0.03 nM). Determination of association (k+1 = 0.17 nM min-1) and dissociation (k-1 = 0.02 min-1) rate constants for the soluble sites gave a KD value of 0.12 nM, a result consistent with that calculated from saturation studies. As assessed from the displacement potencies (IC50) of 10 different drugs, the pharmacological profile of [3H]zacopride specific binding sites was essentially the same (r = 0.99) in the CHAPS-soluble extract and in cell membranes, although some increase in the affinity for 5-HT3 antagonists (zacopride, ICS 205-930, and MDL 72222) and decrease in the affinity for 5-HT3 agonists (2-methyl-5-hydroxytryptamine and phenylbiguanide) were noted for the soluble sites. Sucrose density gradient sedimentation of the CHAPS-soluble extract gave a Svedberg coefficient of 12S for the material with [3H]zacopride specific binding capacity. Chromatographic analyses using Sephacryl S-400 and wheat germ agglutinin-agarose columns indicated marked enrichment (by 2.5- and 10-fold, respectively) in [3H]zacopride specific binding activity in the corresponding eluates compared with the starting soluble extract, a finding suggesting that both steps are of potential interest for the partial purification of solubilized 5-HT3 receptors. Two soluble materials with apparent molecular masses of approximately 600 and approximately 36 kDa were found to bind [3H]zacopride specifically in the Sephacryl S-400 eluate. Interestingly, molecular mass determination by radiation inactivation of [3H]zacopride binding sites in frozen NG 108-15 cells gave a value of approximately 35 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号