首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inulin-type fructans are stored in the tuberous roots of the Brazilian cerrado plant Viguiera discolor Baker (Asteraceae). In Cynara scolymus (artichoke) and Echinops ritro (globe thistle), the fructans have a considerably higher degree of polymerization (DP) than in Cichorium intybus (chicory) and Helianthus tuberosus (Jerusalem artichoke). It was shown before that the higher DP in some species can be attributed to the properties of their fructan: fructan 1-fructosyl transferases (1-FFTs; EC 2.4.1.100), enzymes responsible for chain elongation. Here, we describe the cloning of a high DP (hDP) 1-FFT cDNA from V. discolor and its heterologous expression in Pichia pastoris . Starting from 1-kestose and Neosugar P (a mixture of oligo-inulins from microbial origin) as substrates, the recombinant enzyme produces a typical hDP inulin profile in vitro, closely resembling the one observed in vivo. The enzyme shows no invertase activity and sucrose: sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) activity in vitro. Pattern evolution during incubation suggests that inulins with DP ≥ 6 are much better substrates than sucrose or lower DP oligo-fructans. Because hDP inulin-type fructans show superior properties for specific food and non-food applications, the hDP 1-FFT gene from V. discolor has potential for the production of hDP inulin in vitro or in transgenic crops.  相似文献   

2.
Remarkably, within the Asteraceae, a species-specific fructan pattern can be observed. Some species such as artichoke (Cynara scolymus) and globe thistle (Echinops ritro) store fructans with a considerably higher degree of polymerization than the one observed in chicory (Cichorium intybus) and Jerusalem artichoke (Helianthus tuberosus). Fructan:fructan 1-fructosyltransferase (1-FFT) is the enzyme responsible for chain elongation of inulin-type fructans. 1-FFTs were purified from chicory and globe thistle. A comparison revealed that chicory 1-FFT has a high affinity for sucrose (Suc), fructose (Fru), and 1-kestose as acceptor substrate. This makes redistribution of Fru moieties from large to small fructans very likely during the period of active fructan synthesis in the root when import and concentration of Suc can be expected to be high. In globe thistle, this problem is avoided by the very low affinity of 1-FFT for Suc, Fru, and 1-kestose and the higher affinity for inulin as acceptor substrate. Therefore, the 1-kestose formed by Suc:Suc 1-fructosyltransferase is preferentially used for elongation of inulin molecules, explaining why inulins with a much higher degree of polymerization accumulate in roots of globe thistle. Inulin patterns obtained in vitro from 1-kestose and the purified 1-FFTs from both species closely resemble the in vivo inulin patterns. Therefore, we conclude that the species-specific fructan pattern within the Asteraceae can be explained by the different characteristics of their respective 1-FFTs. Although 1-FFT and bacterial levansucrases clearly differ in their ability to use Suc as a donor substrate, a kinetic analysis suggests that 1-FFT also works via a ping-pong mechanism.  相似文献   

3.
Inulin-type fructans are the simplest and most studied fructans and have become increasingly popular as prebiotic health-improving compounds. A natural variation in the degree of polymerization (DP) of inulins is observed within the family of the Asteraceae. Globe thistle (Echinops ritro), artichoke (Cynara scolymus), and Viguiera discolor biosynthesize fructans with a considerably higher DP than Cichorium intybus (chicory), Helianthus tuberosus (Jerusalem artichoke), and Dahlia variabilis. The higher DP in some species can be explained by the presence of special fructan:fructan 1-fructosyl transferases (high DP 1-FFTs), different from the classical low DP 1-FFTs. Here, the RT-PCR-based cloning of a high DP 1-FFT cDNA from Echinops ritro is described, starting from peptide sequence information derived from the purified native high DP 1-FFT enzyme. The cDNA was successfully expressed in Pichia pastoris. A comparison is made between the mass fingerprints of the native, heterodimeric enzyme and its recombinant, monomeric counterpart (mass fingerprints and kinetical analysis) showing that they have very similar properties. The recombinant enzyme is a functional 1-FFT lacking invertase and 1-SST activities, but shows a small intrinsic 1-FEH activity. The enzyme is capable of producing a high DP inulin pattern in vitro, similar to the one observed in vivo. Depending on conditions, the enzyme is able to produce fructo-oligosaccharides (FOS) as well. Therefore, the enzyme might be suitable for both FOS and high DP inulin production in bioreactors. Alternatively, introduction of the high DP 1-FFT gene in chicory, a crop widely used for inulin extraction, could lead to an increase in DP which is useful for a number of specific industrial applications. 1-FFT expression analysis correlates well with high DP fructan accumulation in vivo, suggesting that the enzyme is responsible for high DP fructan formation in planta.  相似文献   

4.
The activities of fructan metabolising enzymes and fructan contents are reported for rhizophores of Vernonia herbacea (Vell.) Rusby induced to sprouting by shoot excision. The activities of fructan exohydrolase (1-FEH), sucrose: sucrose fructosyltransferase (1-SST), fructan: fructan fructosyltransferase (1-FFT) and invertase (INV) and the fructan contents were analysed every 3-4 days for 1 month by colorimetric and chromatographic methods. Sprouting of new shoots started on day 9. 1-FEH activity increased after day 13 and reached its maximum value 20 days after shoot excision. A gradual decrease in 1-SST activity was detected between days 3 and 9. 1-FFT activity exhibited fluctuations throughout the experimental period and a peak of activity for invertase was detected 9 days after shoot excision. Variation in fructan contents in vivo included a decrease until day 13 after which, levels remained practically unchanged. Fructan depolymerization and sprouting are concomitant processes in V. herbacea and can be induced by shoot excision at any phenological phase. 1-FEH and 1-FFT seemed to act in a concerted way to catalyse fructan depolymerization, while 1-SST was inhibited, possibly due to interruption of sucrose supply to rhizophores from the aerial organs.  相似文献   

5.
Variations in the inulin contents have been detected in rhizophores of Vernonia herbacea during the phenological cycle. These variations indicate the occurrence of active inulin synthesis and depolymerization throughout the cycle and a role for this carbohydrate as a reserve compound. 1-Fructan exohydrolase (1-FEH) is the enzyme responsible for inulin depolymerization, and its activity has been detected in rhizophores of sprouting plants. Defoliation and low temperature are enhancer conditions of this 1-FEH activity. The aim of the present work was the cloning of this enzyme. Rhizophores were collected from plants induced to sprout, followed by storage at 5 degrees C. A full length 1-FEH cDNA sequence was obtained by PCR and inverse PCR techniques, and expressed in Pichia pastoris. Cold storage enhances FEH gene expression. Vh1-FEH was shown to be a functional 1-FEH, hydrolyzing predominantly beta-2,1 linkages, sharing high identity with chicory FEH sequences, and its activity was inhibited by 81% in the presence of 10 mM sucrose. In V. herbacea, low temperature and sucrose play a role in the control of fructan degradation. This is the first study concerning the cloning and functional analysis of a 1-FEH cDNA of a native species from the Brazilian Cerrado. Results will contribute to understanding the role of fructans in the establishment of a very successful fructan flora of the Brazilian Cerrado, subjected to water limitation and low temperature during winter.  相似文献   

6.
Recently, the three-dimensional structure of chicory (Cichorium intybus) fructan 1-exohydrolase (1-FEH IIa) in complex with its preferential substrate, 1-kestose, was determined. Unfortunately, no such data could be generated with high degree of polymerization (DP) inulin, despite several soaking and cocrystallization attempts. Here, site-directed mutagenesis data are presented, supporting the presence of an inulin-binding cleft between the N- and C-terminal domains of 1-FEH IIa. In general, enzymes that are unable to degrade high DP inulins contain an N-glycosylation site probably blocking the cleft. By contrast, inulin-degrading enzymes have an open cleft configuration. An 1-FEH IIa P294N mutant, introducing an N-glycosylation site near the cleft, showed highly decreased activity against higher DP inulin. The introduction of a glycosyl chain most probably blocks the cleft and prevents inulin binding and degradation. Besides cell wall invertases, fructan 6-exohydrolases (6-FEHs) also contain a glycosyl chain most probably blocking the cleft. Removal of this glycosyl chain by site-directed mutagenesis in Arabidopsis thaliana cell wall invertase 1 and Beta vulgaris 6-FEH resulted in a strong decrease of enzymatic activities of the mutant proteins. By analogy, glycosylation of 1-FEH IIa affected overall enzyme activity. These data strongly suggest that the presence or absence of a glycosyl chain in the cleft is important for the enzyme's stability and optimal conformation.  相似文献   

7.
* Fructan:fructan 6G-fructosyltransferase (6G-FFT) catalyses a transfructosylation from fructooligosaccharides to C6 of the glucose residue of sucrose or fructooligosacchrides. In asparagus (Asparagus officinalis), 6G-FFT is important for the synthesis of inulin neoseries fructan. Here, we report the isolation and functional analysis of the gene encoding asparagus 6G-FFT. * A cDNA clone was isolated from asparagus cDNA library. Recombinant protein was produced by expression system of Pichia pastoris. To measure enzymatic activity, recombinant protein was incubated with sucrose, 1-kestose, 1-kestose and sucrose, or neokestose. The reaction products were detected by high performance anion-exchange chromatography. * The deduced amino acid sequence of isolated cDNA was similar to that of fructosyltransferases and vacuolar type invertases from plants. Recombinant protein mainly produced inulin neoseries fructan, such as 1F, 6G-di-beta-D-fructofuranosylsucrose and neokestose. * Recombinant protein demonstrates 6G-FFT activity, and slight fructan:fructan 1-fructosyltransferase (1-FFT) activity. The ratio of 6G-FFT activity to 1-FFT activity was calculated to be 13. The characteristics of the recombinant protein closely resemble those of the 6G-FFT from asparagus roots, except for a difference in accompanying 1-FFT activity.  相似文献   

8.
Fructans are the major storage carbohydrate in vegetative tissues of wheat (Triticum aestivum L.). Fructan:fructan fructosyl transferase (FFT) catalyzes fructosyl transfer between fructan molecules to elongate the fructan chain. The objective of this research was to isolate this activity in wheat. Wheat (cv Caldwell) plants grown at 25°C for 3 weeks were transferred to 10°C to induce fructan synthesis. From the leaf blades kept at 10°C for 4 days, fructosyl transferase activity was purified using salt precipitation and a series of chromatographic procedures including size exclusion, anion-exchange, and affinity chromatography. The transferase activity was free from invertase and other fructan-metabolizing activities. Fructosyl transferase had a broad pH spectrum with a peak activity at 6.5. The temperature optimum was 30°C. The activity was specific for fructosyl transfer from β(2→1)-linked 1-kestose or fructan to sucrose and β(2→1) fructosyl transfer to other fructans (1-FFT). Fructosyl transfer from oligofructans to sucrose was most efficient when 1-kestose was used as donor molecule and declined as the degree of polymerization of the donor increased from 3 to 5. 1-FFT catalyzed the in vitro synthesis of inulin tetra- and penta-saccharides from 1-kestose; however, formation of the tetrasaccharide was greatly reduced at high sucrose concentration. 6-Kestose could not act as donor molecule, but could accept a fructosyl moiety from 1-kestose to produce bifurcose and a tetrasaccharide having a β(2→1) fructose attached to the terminal fructose of 6-kestose. The role of this FFT activity in the synthesis of fructan in wheat is discussed.  相似文献   

9.
In addition to the storage function, fructans in Asteraceae from floras with seasonal growth have been associated with drought and freezing tolerance. Vernonia herbacea, native of the Brazilian Cerrado, bears underground reserve organs, rhizophores, accumulating inulin-type fructans. The rhizophore is a cauline branched system with positive geotropic growth, with the apex (distal region) presenting younger tissues; sprouting of new shoots occurs by development of buds located on the opposite end (proximal region). Plants induced to sprouting by excision of the aerial organs present increased 1-fructan exohydrolase (1-FEH) activity in the proximal region, while plants at the vegetative stage present high 1-sucrose:sucrose fructosyltransferase (1-SST) in the distal region. The aim of the present study was to analyze how low temperature (5 °C) could affect fructan-metabolizing enzymes and fructan composition in the different regions of the rhizophores of intact and excised plants. 1-SST and 1-fructan:fructan fructosyltransferase (1-FFT) were higher in the distal region decreasing towards the proximal region in intact plants at the vegetative phase, and were drastically diminished when cold and/or excision were imposed. In contrast, 1-FEH increased in the proximal region of treated plants, mainly in excised plants subjected to cold. The ratio fructo-oligo to fructo-polysaccharides was significantly higher in plants exposed to low temperature (1.17 in intact plants and 1.64 in excised plants) than in plants exposed to natural temperature conditions (0.84 in intact vegetative plants and 0.58 in excised plants), suggesting that oligosaccharides are involved in the tolerance of plants to low temperature via 1-FEH, in addition to 1-FFT. Principal component analysis indicated different response mechanisms in fructan metabolism under defoliation and low temperature, which could be interpreted as part of the strategies to undergo unfavorable environmental conditions prevailing in the Cerrado during winter.  相似文献   

10.
Although fructans occur widely in several plant families and they have been a subject of investigation for decennia, the mechanism of their biosynthesis is not completely elucidated. We succeeded in purifying a fructan: fructan 1-fructosyl transferase (1-FFT; EC 2.4.1.100) from chicory roots (Cichorium intybus L. var. foliosum cv. Flash). In combination with the purified chicory root sucrose: sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99), this enzyme synthesized a range of naturally occurring chicory fructans (inulins) from sucrose as the sole substrate. Starting from physiologically relevant sucrose concentrations, inulins up to a degree of polymerization (DP) of about 20 were synthesized in vitro after 96 h at 0°C. Neither 1-SST, nor 1-FFT alone could mediate the observed fructan synthesis. Fructan synthesis in vitro was compared starting from 50, 100 and 200 mM sucrose, respectively. The initiation of (DP > 3)-fructan synthesis was found to be correlated with a certain ratio of 1 kestose to sucrose. The data presented now provide strong evidence to validate the 1-SST/1-FFT model for in-vivo fructan synthesis, at least in the Asteraceae.Abbreviations DP degree of polymerization - 1-FFT fructan: fructan 1-fructosyl transferase - 1-SST sucrose: sucrose 1-fructosyl transferase The authors thank E. Nackaerts for valuable technical assistance. W. Van den Ende is grateful to the National Fund for Scientific Research (NFSR Belgium) for giving a grant for research assistants.  相似文献   

11.
Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was carried out with the objective to understand the regulation of inulin metabolism and the process that determines the chain length and inulin yield throughout the whole growing season. Metabolic aspects of inulin production and degradation in chicory were monitored in the field and under controlled conditions. The following characteristics were determined in taproots: concentrations of glucose, fructose and sucrose, the inulin mean polymer length (mDP), yield, gene expression and activity of enzymes involved in inulin metabolism. Inulin synthesis, catalyzed by sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) (1-SST) and fructan:fructan 1-fructosyltransferase (EC 2.4.1.100) (1-FFT), started at the onset of taproot development. Inulin yield as a function of time followed a sigmoid curve reaching a maximum in November. Inulin reached a maximum mDP of about 15 in September, than gradually decreased. Based on the changes observed in the pattern of inulin accumulation, we defined three different phases in the growing season and analyzed product formation, enzyme activity and gene expression in these defined periods. The results were validated by performing experiments under controlled conditions in climate rooms. Our results show that the decrease in 1-SST that starts in June is not regulated by day length and temperature. From mid-September onwards, the mean degree of polymerization (mDP) decreased gradually although inulin yield still increased. The decrease in mDP combined with increased yield results from fructan exohydrolase activity, induced by low temperature, and the back transfer activity of 1-FFT. Overall, this study provides background information on how to improve inulin yield and quality in chicory.  相似文献   

12.
13.
Witloof chicory seeds ( Cichorium intybus L. var. foliosum cv. Flash) were sown in acid-washed vermiculite in a controlled environment growth chamber. Plants received a nitrogen poor ("N-poor": 0.2 m M NH4NO3) but otherwise complete medium, or a nitrogen rich ("N-rich": 2 m M NH4NO3) medium. After 1 month of growth the fructan concentration in the "N-poor" plants was about five times higher and also the activity of sucrose:sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) was twice as high as in "N-rich" plants. The activities of the catabolic enzymes fructan 1-exohydrolase (1-FEH; EC 3.2.1.80) and acid invertase (EC 3.2.1.26) were higher in the "N-rich" plants where significant energy was invested in root and leaf growth. After one month of growth, part of the "N-poor" plants were switched to the "N-rich" medium. One day after this switch, a sharp decrease in sucrose and glucose concentration was observed in the roots. During the following days, both the activities of 1-SST and fructan:fructan 1-fructosyl transferase (1-FFT; EC 2.4.1.100) decreased and the 1-FEH and invertase activities increased. These changes were correlated with a decrease in fructan concentration. Ten days after the switch, glucose and sucrose concentrations increased again and fructan synthesis resumed. During this period 1-SST activity increased and 1-FEH activity decreased. Apparently 1-SST, 1-FFT and 1-FEH simultaneously control fructan in young chicory roots. The rather unexpected finding that 1-FEH activity, which was believed to occur only in older material, can be induced in very young roots indicates that this enzyme can be induced at any physiological stage.  相似文献   

14.
15.
Water-soluble carbohydrate composition of mature (ceased expanding) leaf blades and the elongation zone of developing leaf blades was characterized in wheat (Triticum aestivum L.), tall fescue (Festuca arundinacea Schreb.), and timothy (Phleum pratense L.). These species were chosen because they differ in mean degree of polymerization (DP) of fructan in the mature leaf blade. Our objective was to compare the nature and DP of the fructan. Vegetative plants were grown with a 14-hour photoperiod and constant 21°C at the leaf base. Gel permeation chromatography of leaf blade extracts showed that the apparent mean fructan DP increased in the order wheat < tall fescue < timothy. Apparent mean DP of elongation zone fructan was higher than that of leaf blade fructan in wheat and timothy, but the reverse occurred for tall fescue. Low DP (≤10) and high DP (>10) pools were found in both tissues of tall fescue and wheat, but concentration of low DP fructan was very low in either tissue of timothy. All three species have high DP fructan. Comigration with standards on thin-layer chromotography showed that wheat contained 1-kestose and a noninulin fructan oligomer series. Tall fescue contained neokestose, 1-kestose and higher oligosaccharides that comigrated with neokestose-based compounds and inulins. Thin-layer chromatography showed that small amounts of fructose-containing oligosaccharides were present in timothy.  相似文献   

16.
17.
At low concentrations of purified chicory root 1-SST, only 1-kestosewas produced from a physiologically relevant sucrose concentration.As the 1-SST concentration increased, some higher oligofructanswere also detected, showing that 1-SST has some 1-FFT activityafter sucrose exhaustion in the reaction mixtures. The consequencesfor the interpretation of fructan synthesizing activities invitro are discussed. With a mixture of both purified 1-SST and1-FFT it was found that the higher the enzyme concentration,the higher the maximal DP of the fructans that could be synthesized.The higher the enzyme concentration, the higher the relativeabundance of the larger DP fructans and fructose in the reactionmixtures. Taken together with previous results, there is confidencethat the final fructan pattern obtained in vitro is a functionof the (1-SST+1-FFT)/sucrose ratio and suggest that the latterratio in situ could affect the highly variable tissue- or species-specificpattern of fructans produced in vivo. Key words: 1-FFT, 1-SST, chicory, enzyme concentration, sucrose  相似文献   

18.
Fructan (polyfructosylsucrose) is an important storage carbohydrate in many plant families. fructan:fructan 6G-fructosyltransferase (6G-FFT) is a key enzyme in the formation of the inulin neoseries, a type of fructan accumulated by members of the Liliales. We have cloned the 6G-FFT from onion by screening a cDNA library using barley sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. The deduced amino acid sequence showed a high homology with plant invertases and 6-SFT. Incubation of protein extracts from transgenic tobacco plants with the trisaccharide 1-kestose and sucrose resulted in the formation of neokestose and fructans of the inulin neoseries with a degree of polymerization up to six. Introduction of the onion 6G-FFT into chicory resulted in the synthesis of fructan of the inulin neoseries, in addition to the synthesis of linear inulin.  相似文献   

19.
A 1-FEH II (1-fructan exohydrolase, EC 3.2.1.80) was purified from forced chicory roots ( Cichorium intybus L. var. foliosum cv. Flash) by a combination of ammonium sulfate precipitation, concanavalin A (Con A) affinity chromatography and anion and cation exchange chromatography. This protocol produced a 70-fold purification and a specific activity of 52 nkat mg−1 protein. The apparent size of the enzyme was 60 kDa as estimated by gel filtration and 64 kDa on SDS-PAGE. Optimal activity was found between pH 5.0 and 5.5. The temperature optimum was around 35°C. No product other than fructose could be detected with inulin as the substrate. The purified enzyme exhibited hyperbolic saturation kinetics with an apparent Km of 58 m M for 1-kestose (Kes) and 64 m M for 1,1-nystose (Nys). The purified 1-FEH II hydrolyzed the β (2↠1) linkages in inulin, Kes and Nys at rates at least 5 times faster than the β (2↠6) linkages in levan oligosaccharides and levanbiose. Fructose did not affect the 1-FEH II activity but sucrose (Suc) was a strong inhibitor of this 1-FEH II (Ki=5.9 m M ). The enzyme was partially inhibited by Na-EDTA and CaCl2 (1 m M ).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号