首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deoxyxylulose phosphate pathway to terpenoids   总被引:8,自引:0,他引:8  
Recently, a mevalonate-independent pathway was discovered in bacteria and plants that leads to the formation of isopentenyl diphosphate and dimethylallyl diphosphate, the two basic precursors of isoprenoids. Although many details of the widely distributed pathway are unknown, some intermediates, mechanisms, enzymes and genes of this novel route have been identified. Information on this pathway could provide the basis for the development of new antibiotics, herbicides and antimalarials.  相似文献   

2.
A mevalonate-independent pathway for the biosynthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) that has been elucidated during the last decade is essential in plants, many eubacteria and apicomplexan parasites, but is absent in Archaea and animals. The enzymes of the pathway are potential targets for the development of novel antibiotic, antimalarial and herbicidal agents. This review is focused on the late steps of this pathway. The intermediate 2C-methyl-D-erythritol 2,4-cyclodiphosphate is converted into IPP and DMAPP via 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate by the consecutive action of the iron-sulfur proteins IspG and IspH. IPP and DMAPP can be interconverted by IPP isomerase which is essential in microorganisms using the mevalonate pathway, whereas its presence is optional in microorganisms using the non-mevalonate pathway. A hitherto unknown family of IPP isomerases using FMN as coenzyme has been discovered recently in Archaea and certain eubacteria.  相似文献   

3.
An alternative mevalonate-independent pathway for isoprenoid biosynthesis has been recently discovered in eubacteria (including Escherichia coli) and plant plastids, although it is not fully elucidated yet. In this work, E. coli cells were engineered to utilize exogenously provided mevalonate and used to demonstrate by a genetic approach that branching of the endogenous pathway results in separate synthesis of the isoprenoid building units isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In addition, the IPP isomerase encoded by the idi gene was shown to be functional in vivo and to represent the only possibility for interconverting IPP and DMAPP in this bacterium.  相似文献   

4.
Two distinct pathways are utilized by plants for the biosynthesis of isopentenyl diphosphate, the universal precursor of isoprenoids. The classical acetate/mevalonate pathway operates in the cytosol, whereas plastidial isoprenoids originate via a novel mevalonate-independent route that involves a transketolase-catalyzed condensation of pyruvate and D-glyceraldehyde-3-phosphate to yield 1-deoxy-D-xylulose-5-phosphate as the first intermediate. Based on in vivo feeding experiments, rearrangement and reduction of deoxyxylulose phosphate have been proposed to give rise to 2-C-methyl-D-erythritol-4-phosphate as the second intermediate of this pyruvate/glyceraldehyde-3-phosphate pathway (1-3). The cloning of an Escherichia coli gene encoding an enzyme capable of converting 1-deoxy-D-xylulose-5-phosphate to 2-C-erythritol-4-phosphate was recently reported (4). A cloning strategy was developed for isolating the gene encoding a plant homolog of this enzyme from peppermint (Mentha x piperita), and the identity of the resulting cDNA was confirmed by heterologous expression in E. coli. Unlike the microbial reductoisomerase, the plant ortholog encodes a preprotein bearing an N-terminal plastidial transit peptide that directs the enzyme to plastids where the mevalonate-independent pathway operates in plants. The peppermint gene comprises an open reading frame of 1425 nucleotides which, when the plastidial targeting sequence is excluded, encodes a deduced enzyme of approximately 400 amino acid residues with a mature size of about 43.5 kDa.  相似文献   

5.
The enzyme encoded by Rv2682c in Mycobacterium tuberculosis is a functional 1-deoxy-D-xylulose 5-phosphate synthase (DXS), suggesting that the pathogen utilizes the mevalonate-independent pathway for isopentenyl diphosphate and subsequent polyprenyl phosphate synthesis. These key precursors are vital in the biosynthesis of many essential aspects of the mycobacterial cell wall. Rv2682c encodes the conserved DRAG sequence that has been proposed as a signature motif for DXSs and also all 13 conserved amino acid residues thought to be important to the function of transketolase enzymes. Recombinant Rv2682c is capable of utilizing glyceraldehyde 3-phosphate and erythrose 4-phosphate as well as D- and L-glyceraldehyde as aldose substrates. The enzyme has K(m) values of 40 microM, 6.1 microM, 5.6 mM, and 4.5 mM for pyruvate, D-glyceraldehyde 3-phosphate, D-glyceraldehyde, and L-glyceradehyde, respectively. Rv2682c has an absolute requirement for divalent cation and thiamin diphosphate as cofactors. The K(d) (thiamin diphosphate )for the native M. tuberculosis DXS activity partially purified from M. tuberculosis cytosol is 1 microM in the presence of Mg(2+).  相似文献   

6.
The mevalonate-independent biosynthetic pathway to isopentenyl diphosphate and dimethylallyl diphosphate, the universal precursors to the isoprenoids, operates in eubacteria, including Escherichia coli, in algae, and in the plastids of higher plants. A search of the Sanger Centre Streptomyces coelicolor genome database revealed open reading frames with ca. 40--50% identity at the deduced amino acid level to the first three E. coli enzymes of this pathway, corresponding to deoxyxylulose phosphate synthase, deoxyxylulose phosphate reductoisomerase and 2-C-methyl erythritol 4-phosphate cytidylyltransferase. The S. coelicolor genes have been cloned and expressed in E. coli, and the recombinant proteins characterized physically and kinetically. The presence of the corresponding enzyme activities in extracts of S. coelicolor CH999 further supports the operation of the mevalonate-independent pathway in this organism.  相似文献   

7.
The mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis is essential in many eubacteria, plants, and the malaria parasite. Using genetically engineered Escherichia coli cells able to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway we demonstrate that the lytB gene is involved in the trunk line of the MEP pathway. Cells deleted for the essential lytB gene were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of lytB.  相似文献   

8.
9.
1-Deoxy-d-xylulose 5-phosphate reductoisomerase (IspC) catalyzes the first committed step in the mevalonate-independent isopentenyl diphosphate biosynthetic pathway and is a potential drug target in some pathogenic bacteria. The antibiotic fosmidomycin has been shown to inhibit IspC in a number of organisms and is active against most gram-negative bacteria but not gram positives, including Mycobacterium tuberculosis, even though the mevalonate-independent pathway is the sole isopentenyl diphosphate biosynthetic pathway in this organism. Therefore, the enzymatic properties of recombinant IspC from M. tuberculosis were characterized. Rv2870c from M. tuberculosis converts 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol 4-phosphate in the presence of NADPH. The enzymatic activity is dependent on the presence of Mg(2+) ions and exhibits optimal activity between pH 7.5 and 7.9; the K(m) for 1-deoxyxylulose 5-phosphate was calculated to be 47.1 microM, and the K(m) for NADPH was 29.7 microM. The specificity constant of Rv2780c in the forward direction is 1.5 x 10(6) M(-1) min(-1), and the reaction is inhibited by fosmidomycin, with a 50% inhibitory concentration of 310 nM. In addition, Rv2870c complements an inactivated chromosomal copy of IspC in Salmonella enterica, and the complemented strain is sensitive to fosmidomycin. Thus, M. tuberculosis resistance to fosmidomycin is not due to intrinsic properties of Rv2870c, and the enzyme appears to be a valid drug target in this pathogen.  相似文献   

10.
Isopentenyl pyrophosphate (IPP) is a common precursor for the synthesis of all isoprenoids, which have important functions in living organisms. IPP is produced by the mevalonate pathway in archaea, fungi, and animals. In contrast, IPP is synthesized by a mevalonate-independent pathway in most bacteria, algae, and plant plastids. 1-Deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the first and the rate-limiting step of the mevalonate-independent pathway and is an attractive target for the development of novel antibiotics, antimalarials, and herbicides. We report here the first structural information on DXS, from Escherichia coli and Deinococcus radiodurans, in complex with the coenzyme thiamine pyrophosphate (TPP). The structure contains three domains (I, II, and III), each of which bears homology to the equivalent domains in transketolase and the E1 subunit of pyruvate dehydrogenase. However, DXS has a novel arrangement of these domains as compared with the other enzymes, such that the active site of DXS is located at the interface of domains I and II in the same monomer, whereas that of transketolase is located at the interface of the dimer. The coenzyme TPP is mostly buried in the complex, but the C-2 atom of its thiazolium ring is exposed to a pocket that is the substrate-binding site. The structures identify residues that may have important roles in catalysis, which have been confirmed by our mutagenesis studies.  相似文献   

11.
Isoprenoids are biosynthesized from isopentenyl diphosphate and the isomeric dimethylallyl diphosphate via the mevalonate pathway or a mevalonate-independent pathway that was identified during the last decade. The non-mevalonate pathway is present in many bacteria, some algae and in certain protozoa such as the malaria parasite Plasmodium falciparum and in the plastids of higher plants, but not in mammals and archaea. Therefore, these enzymes have been recognised as promising drug targets. We report the crystal structure of Escherichia coli 2C- methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), which converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate into 2C-methyl-d-erythritol 2,4-cyclodiphosphate and CMP in a Mg-dependent reaction. The protein forms homotrimers that tightly bind one zinc ion per subunit at the active site, which helps to position the substrate for direct attack of the 2-phosphate group on the beta-phosphate.  相似文献   

12.
The YgbP protein of Escherichia coli encodes the enzyme 4-diphosphocytidyl-2-C-methylerythritol (CDP-ME) synthetase, a member of the cytidyltransferase family of enzymes. CDP-ME is an intermediate in the mevalonate-independent pathway for isoprenoid biosynthesis in a number of prokaryotic organisms, algae, the plant plastids and the malaria parasite. Because vertebrates synthesize isoprenoid precursors using a mevalonate pathway, CDP-ME synthetase and other enzymes of the mevalonate-independent pathway for isoprenoid production represent attractive targets for the structure-based design of selective antibacterial, herbicidal and antimalarial drugs. The high-resolution structures of E. coli CDP-ME synthetase in the apo form and complexed with both CTP-Mg2+ and CDP-ME-Mg2+ reveal the stereochemical principles underlying both substrate and product recognition as well as catalysis in CDP-ME synthetase. Moreover, these complexes represent the first experimental structures for any cytidyltransferase with both substrates and products bound.  相似文献   

13.
The enzyme 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MECDP) synthase catalyzes the conversion of 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-ME2P) to MECDP, a highly unusual cyclodiphosphate-containing intermediate on the mevalonate-independent pathway to isopentenyl diphosphate and dimethylallyl diphosphate. We now report two x-ray crystal structures of MECDP synthase refined to 2.8-A resolution. The first structure contains a bound Mn(2+) cation, and the second structure contains CMP, MECDP, and Mn(2+). The protein adopts a homotrimeric quaternary structure built around a central hydrophobic cavity and three externally facing active sites. Each of these active sites is located between two adjacent monomers. A tetrahedrally arranged transition metal binding site, potentially occupied by Mn(2+), sits at the base of the active site cleft. A phosphate oxygen of MECDP and the side chains of Asp(8), His(10), and His(42) occupy the metal ion coordination sphere. These structures reveal for the first time the structural determinants underlying substrate, product, and Mn(2+) recognition and the likely catalytic mechanism accompanying the biosynthesis of the cyclodiphosphate-containing isoprenoid precursor, MECDP.  相似文献   

14.
In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. In this work, we demonstrate that the gcpE gene of Escherichia coli is involved in this pathway. E. coli cells were genetically engineered to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway. These cells were then deleted for the essential gcpE gene and were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of gcpE.  相似文献   

15.
The essential steps of the novel non-mevalonate pathway of isopentenyl diphosphate and isoprenoid biosynthesis in plants are described. The first five enzymes and genes of this 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway are known. The herbicide fosmidomycin specifically blocks the second enzyme, the DOXP reductoisomerase. The DOXP/MEP pathway is also present in several pathogenic bacteria and the malaria parasite. Hence, all herbicides and inhibitors blocking this novel isoprenoid pathway in plants are also potential drugs against malaria and diseases caused by pathogenic bacteria.  相似文献   

16.
17.
18.
Zeidler J  Lichtenthaler HK 《Planta》2001,213(2):323-326
The volatile hemiterpene 2-methyl-3-buten-2-ol (MBO) is emitted from the needles of several pine species from the Western United States and contributes to ozone formation in the atmosphere. It is synthesised enzymatically from dimethylallyl diphosphate (DMAPP). We show here that needles of Pinus ponderosa Laws. incorporated [1-2H1]-1-deoxy-D-xylulose (d-DOX) into the emitted MBO, but not D,L-[2-13C]mevalonic acid lactone. Furthermore, MBO emission was inhibited by fosmidomycin, a specific inhibitor of the second enzyme of the mevalonate-independent pathway of isopentenyl diphosphate and DMAPP formation, i.e. the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway. We thus prove that MBO emitted from needles of P. ponderosa is primarily formed via the DOXP/MEP pathway.  相似文献   

19.
Specific inhibitors of 2-C-methylerythritol phosphate pathway (MEP-pathway), including compounds obtained based on its metabolites, may compose a new class of antibiotics combining high efficiency and low toxicity. MEP-pathway of isoprenoid biosynthesis is a promising target in identifying new herbicides, immunomodulators, and other physiologically active compounds.  相似文献   

20.
The mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways for isoprenoid biosynthesis both culminate in the production of the two-five carbon prenyl diphosphates: dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP). These are the building blocks for higher isoprenoids, including many that have industrial and pharmaceutical applications. With growing interest in producing commercial isoprenoids through microbial engineering, reports have appeared of toxicity associated with the accumulation of prenyl diphosphates in Escherichia coli expressing a heterologous MVA pathway. Here we explored whether similar prenyl diphosphate toxicity, related to MEP pathway flux, could also be observed in the bacterium Bacillus subtilis. After genetic and metabolic manipulations of the endogenous MEP pathway in B. subtilis, measurements of cell growth, MEP pathway flux, and DMAPP contents suggested cytotoxicity related to prenyl diphosphate accumulation. These results have implications as to understanding the factors impacting isoprenoid biosynthesis in microbial systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号