首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Angiotensin II stimulation of vascular smooth muscle cells results in initial, rapid diacylglycerol (DG) formation from the polyphosphoinositides accompanied by intracellular acidification, as well as a more sustained DG accumulation which is accompanied by a prolonged intracellular alkalinization. To determine whether intracellular pH (pHi) modulates DG accumulation, NH4Cl and potassium acetate were used to alter pHi and DG formation was measured. NH4Cl (10 mM) increased pHi from 7.15 +/- 0.05 to 7.34 +/- 0.02 pH units and markedly enhanced the sustained (5 min), but not the initial (15 s), phase of DG formation in response to 100 nM angiotensin II (65 +/- 13% increase). Conversely, intracellular acidification with Na+-free buffer and potassium acetate (20 mM) decreased pHi to 6.93 +/- 0.08 and reduced subsequent angiotensin II-induced sustained DG formation by 82 +/- 9%. In intact cells, inhibition of angiotensin II-stimulated alkalinization by incubation in Na+-free buffer or by addition of the Na+/H+ exchange inhibitor dimethylamiloride (10 microM) decreased the ability of the cell to sustain DG formation, suggesting that active Na+/H+ exchange is necessary for continued DG formation. Thus, it seems that sustained, angiotensin II-induced diacylglycerol accumulation is regulated by intracellular alkalinization secondary to Na+/H+ exchange in cultured vascular smooth muscle cells.  相似文献   

2.
Abstract. The authors have previously shown that cell treatments causing intra-cellular alkalinization stimulate the in vivo phosphorylation of a 33-K Dalton polypeptide (33 KP) (Tognoli & Basso, 1987). Here, the authors report that this polypeptide belongs to a protein associated with the microsomal membranes. They show that treatment of cells which induce intracellular alkalinization stimulate 33-KP phosphorylation, whether the phosphorylation is performed in vivo (cells loaded with 32Pi before treatments) or in vitro (microsomes from control and treated cells, incubated with γ32P ATP). In both cases, 33 KP is phosphorylated on a serine residue. Microsomes do not show any phosphatase activity towards this phosphorylated protein, indicating involvement of a protein kinase reaction as an effector of changes induced by intracellular alkalinization. The number of phosphorylated sites or molecules of this protein increases as a result of intracellular alkalinization, suggesting that intracellular alkalinization causes topological or conformational modifications to a protein kinase or its substrate protein. The in vitro phosphorylation is not specifically influenced by the pH of the in vitro phosphorylation medium, suggesting that protein phosphorylation is not directly controlled by cytoplasmic pH.  相似文献   

3.
The effects of extracellular ATP and/or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) on the intracellular pH of Ehrlich ascites tumor cells were measured using both distribution of [14C]5,5-dimethyloxazolidine-2,4-dione, and the fluorescent indicator 5(6)-carboxyfluorescein. Micromolar concentrations of extracellular ATP induce a biphasic change in the intracellular pH characterized by a rapid acidification of 0.04 pH units followed by an alkalinization of 0.11 pH units. Concurrently with the alkalinization, an increase in the total cellular [Na+] from 37.5 to 45.0 mM is observed. The pH change is half-maximally activated by 0.5-2.5 microM extracellular ATP. The intracellular alkalinization, but not the initial acidification, phase requires extracellular Na+, with half-maximal alkalinization in the presence of 24-32 mM Na+, and is inhibited by amiloride. Exposure of Ehrlich ascites tumor cells to TPA alone produces a slight alkalinization of approximately 0.04 pH units. Conversely, preincubation of the cells with TPA partially inhibits the ATP-induced changes in intracellular pH. Under identical conditions TPA also inhibits the ATP-induced increase in the cytosolic [Ca2+]. The half-maximal dose for both effects is produced by 3-10 nM TPA. These data indicate that extracellular ATP triggers the activation of Na+/H+ exchange. Furthermore, activation of protein kinase C mediates at least part of the Na+/H+ exchange, although a second mechanism may also exist.  相似文献   

4.
It has been proposed that intracellular alkalinization underlies the enhanced contractility of ventricular myocytes exposed to endothelin (ET)-1. The effects of ET-1 on the contractility and intracellular pH (pH(i)) were examined here in cultured adult rat ventricular myocytes by employing the pH-sensitive fluorescent dye SNARF-1. Variable pH(i) changes were observed on ET-1 stimulation. Most myocytes (n = 20 of 32) did not alkalinize, but showed an approximate 60% increase in twitch amplitude in response to ET-1. In the remaining myocytes (12 of 32), ET-1 induced an increase in pH(i) by 0.05 +/- 0.02 pH units with a similar approximate 60% increase in twitch amplitude. Therefore, there was no strong correlation between ET-1-mediated positive inotropy (enhanced contractility) and intracellular alkalinization. To determine whether ET-1 contractile and pH(i) responses were mediated by protein kinase C (PKC), yellow fluorescent protein (YFP)-fused dominant negative (dn) PKC constructs were used as isoform specific inhibitors. In dn-PKC-epsilon-YFP-expressing myocytes, the ET-1-mediated positive inotropic response was greatly diminished to 13 +/- 15%, but alkalinization was still observed. Expression of dn-PKC-delta-YFP also did not block alkalinization, but in this case the positive inotropic response was still observed. In a previous study, we showed that expression of PKC-delta and PKC-epsilon caused a strong positive inotropy on stimulation with phorbol 12,13-dibutyrate (PDBu). Using this system, PDBu failed to affect pH(i) in the majority of PKC expressing myocytes despite increases in twitch amplitudes of >60%. Overall, the poor correlation of positive inotropic responses and alkalinization was observed for ET-1 with and without dn-PKC constructs and for PDBu with and without wild-type PKC constructs. These results suggest that ET-1 produces positive inotropy via PKC-epsilon by mechanisms other than intracellular alkalinization.  相似文献   

5.
Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.  相似文献   

6.
In quiescent Ha-ras-transfected NIH 3T3 cells, addition of serum growth factors, bombesin or 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to a dimethylamiloride-sensitive intracellular alkalinization which can be inhibited by staurosporine, a potent inhibitor of protein kinase C. Expression of the transforming Ha-ras gene causes a growth factor-independent increase in cytoplasmic pH. This Ha-ras-induced alkalinization is sensitive to dimethylamiloride but is not affected by staurosporine concentrations which prevent the pH response after addition of growth factors or TPA. Protein kinase C depletion by long term exposure to TPA eliminates the pH response to bombesin and phorbol ester but does not effect the Ha-ras-induced intracellular alkalinization. It is concluded that expression of Ha-ras causes an activation of the Na+/H+ antiporter by an as yet unknown protein kinase C-independent mechanism.  相似文献   

7.
Sodium orthovanadate caused a 2-fold stimulation of system A transport activity in soleus muscle, as assessed by the uptake of the nonmetabolizable analog 2-(methylamino)isobutyric acid (MeAIB). The effect of vanadate on system A was rapid, concentration-dependent and was characterized by an increased Vmax without modification of Km for MeAIB. Under these conditions, vanadate also activated 3-O-methylglucose uptake and lactate production. The effects of vanadate on muscle metabolism showed a complex interaction with the effects of insulin. Thus, the stimulatory effects of vanadate and insulin on MeAIB and 3-O-methylglucose uptake were not additive; however, the effects of insulin and vanadate on lactate production were additive. In spite of the lack of additivity, insulin- and vanadate-induced stimulation of system A differed in their sensitivity to gramicidin D, being the vanadate effect more susceptible to inhibition by gramicidin D than the insulin effect. System A transport activity shows a dependence on pH, and recent results suggest the presence of critical histidine residues on the A carrier that may be responsible for its pH dependence (Bertran, J., Roca, A., Pola, E., Testar, X., Zorzano, A. & Palacín, M. (1991) J. Biol. Chem. 266, 798-802). In this regard, a rise in extracellular pH led to a substantial activation of system A. Furthermore, lowering of muscle intracellular pH induced by ethylisopropylamiloride (EIPA), a specific inhibitor of sodium/proton exchange activity, led to inhibition of system A. This suggests that critical histidine residues are present in an intracellular localization on the A carrier. Furthermore, the rate of muscle glycolysis was also altered in response to a rise in extracellular pH or to EIPA treatment. Regarding the mechanisms involved in vanadate action, vanadate treatment in the incubated soleus muscle did not cause any significant stimulation of tyrosine kinase activity after partial purification of muscle insulin receptors. On the other hand, vanadate but not insulin caused a substantial increase in muscle intracellular pH as assessed by 5,5'-dimethyloxazolidine-2,4-dione equilibrium. This effect of vanadate on intracellular pH was not due to activation of the sodium/proton exchanger, since it was not blocked by EIPA. Based on these findings, we suggest that alkalinization of muscle intracellular pH might mediate the effects of vanadate on system A and on glycolysis.  相似文献   

8.
Vascular smooth muscle contracts on increases of extracellular pH (pH(o)) and relaxes on pH(o) decreases possibly resulting from changes in transsarcolemmal Ca(2+) influx. Therefore, we studied store-operated Ca(2+) entry (SOCE; i.e. capacitative Ca(2+) entry (CCE)) during acidification (pH(o)=6.5) and alkalinization (pH(o)=8.0) in isolated porcine coronary smooth muscle cells (SMCs) by monitoring cytoplasmic Ca(2+) ([Ca(2+)](i)) and divalent cation entry (Mn(2+) quench) with fura-2/AM-fluorometry. Additionally, we evaluated the contribution of SOCE to pH(o)-dependent changes in isometric tension of porcine coronary smooth muscle strips. SOCE elicited in SMCs by the SERCA inhibitor BHQ was strongly modulated by pH(o) showing a decrease upon acidification and vice versa an increase upon alkalinization. BHQ-mediated tension of smooth muscle strips also revealed strong pH(o) dependence. In contrast, L-VOC-dependent tension ([K(+)](o)=20 and 40 mmol l(-1)) was remarkably less affected by pH(o) changes. Moreover, refilling of depleted Ca(2+) stores after repeated M(3)-cholinergic receptor stimulation could be almost completely inhibited by SKF 96365 and was markedly reduced by acidification and considerably enhanced by alkalinization pointing to a major role of SOCE in refilling. We conclude that vascular tone particularly responds to alterations in pH(o) whenever SOCE substantially contributes to the amount of activator Ca(2+) for contraction.  相似文献   

9.
Mammalian sperm capacitation is the obligatory maturational process leading to the development of the fertilization-competent state. Heparin is known to be a unique species-specific inducer of bovine sperm capacitation in vitro and glucose a unique inhibitor of this induction. Heparin-induced capacitation of bovine sperm has been shown to correlate with protein kinase A (PKA)-dependent protein tyrosine phosphorylation driven by an increase in intracellular cAMP. This study examines the possible roles of cyclic nucleotide phosphodiesterase (PDE) activity and intracellular alkalinization on bovine sperm capacitation and the protein tyrosine phosphorylation associated with it. Measurement of whole cell PDE kinetics during capacitation reveals neither a substantial change with heparin nor one with glucose: PDE activity is effectively constitutive in maintaining intracellular cAMP levels during capacitation. In contrast to a transient increase in intracellular pH, a sustained increase in medium pH by switching from 5% CO(2)/95% air incubation to 1% CO(2)/99% air incubation over 4 hr in the absence of heparin resulted in an increase in protein tyrosine phosphorylation and in the extent of induced acrosome reaction comparable to that observed following heparin-induced capacitation in 5% CO(2). These results suggest that increased bicarbonate-dependent adenylyl cyclase activity, driven by alkalinization, increases intracellular cAMP and so increases PKA activity mediating protein tyrosine phosphorylation. Quantitative analysis of the lactic acid production rate by bovine sperm glycolysis accounts fully for intracellular acidification sufficient to offset heparin-induced alkalinization, thus inhibiting capacitation. The mechanism by which heparin uniquely induces intracellular alkalinization in bovine sperm leading to capacitation remains obscure, inviting future investigation.  相似文献   

10.
11.
Leg muscle was biopsied and frozen for storage at -70 degrees C. from 5 wild-type mice, two knocked out acid alpha-glucosidase (GAA) gene mice, and seven glycogen synthase plus glucose muscle transporter transgenic mice. All of the wild-type mice had very little muscle glycogen (3.58 +/- 1.67 micromols glucosyl subunits per g muscle), and 52% or more of its glycogen phosphorylase activity without AMP (69% +/- 17% glycogen phosphorylase a). In contrast the GAA knockout and transgenic mice had glycogen ranging from 63 to 297 micromols glucosyl subunits per g muscle, and very little or no glycogen phosphorylase activity without 1.00 mM AMP (4.8% and less glycogen phosphorylase a). This suggests that there is an inverse relationship between mouse muscle phosphorylase a and the muscle's glycogen content.  相似文献   

12.
Angiotensin II, a potent vasoconstrictor, is known to stimulate Ca2+ mobilization and Na+ influx in vascular smooth muscle cells (VSMC). The fact that the Na+/H+ exchange inhibitor, amiloride, blocks angiotensin II-stimulated Na+ influx and is itself a vasodilator suggests that Na+/H+ exchange may play a role in the angiotensin II-mediated effects on VSMC. We have used a pH-sensitive fluorescent dye to study Na+/H+ exchange in cultured rat aortic VSMC. Basal intracellular pH was 7.08 in physiological saline buffer. Angiotensin II stimulation caused an initial transient acidification, followed by a Na+-dependent alkalinization. Angiotensin II increased the rate of alkalinization with apparent threshold, half-maximal, and maximal effect of 0.01, 3, and 100 nM, respectively. Angiotensin II stimulation appeared to be mediated by a shift in the Km of the Na+/H+ exchanger for extracellular Na+. Since angiotensin II activates phospholipase C in VSMC, we tested the possibility that angiotensin II increased Na+/H+ exchange by activation of protein kinase C via stimulation of diacylglycerol formation. The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated Na+/H+ exchange in VSMC cultured for 24 h in serum-free medium, and the subsequent angiotensin II response was inhibited. However, VSMC grown in serum and treated for 24 h with TPA to decrease protein kinase C activity showed no inhibition of angiotensin II-stimulated Na+/H+ exchange. TPA caused no intracellular alkalinization of VSMC grown in serum, while the angiotensin II response was actually enhanced compared to VSMC deprived of serum for 24 h. We conclude that angiotensin II stimulates an amiloride-sensitive Na+/H+ exchange system in cultured VSMC which is mediated by protein kinase C-dependent and -independent mechanisms. Angiotensin II-mediated Na+ influx and intracellular alkalinization may play a role in excitation-response coupling in vascular smooth muscle.  相似文献   

13.
Although alkaline pH is known to trigger Ca(2+) influx in diverse cells, no pH-sensitive Ca(2+) channel has been identified. Here, we report that extracellular alkalinization induces opening of connexin 43 hemichannels (Cx43 HCs). Increasing extracellular pH from 7.4 to 8.5, in the presence of physiological Ca(2+)/Mg(2+) concentrations, rapidly increased the ethidium uptake rate and open probability of HCs in Cx43 and Cx43EGFP HeLa transfectants (HeLa-Cx3 and HeLa-Cx43EGFP, respectively) but not in parental HeLa cells (HeLa-parental) lacking Cx43 HCs. The increase in ethidium uptake induced by pH 8.5 was not affected by raising the extracellular Ca(2+) concentration from 1.8 to 10 mM but was inhibited by a connexin HC inhibitor (La(3+)). Probenecid, a pannexin HC blocker, had no effect. Extracellular alkalinization increased the intracellular Ca(2+) levels only in cells expressing HCs. The above changes induced by extracellular alkalinization did not change the cellular distribution of Cx43, suggesting that HC activation occurs through a gating mechanism. Experiments on cells expressing a COOH-terminal truncated Cx43 mutant indicated that the effects of alkalinization on intracellular Ca(2+) and ethidium uptake did not depend on the Cx43 C terminus. Moreover, purified dephosphorylated Cx43 HCs reconstituted in liposomes were Ca(2+) permeable, suggesting that Ca(2+) influx through Cx43 HCs could account for the elevation in intracellular Ca(2+) elicited by extracellular alkalinization. These studies identify a membrane pathway for Ca(2+) influx and provide a potential explanation for the activation of cellular events induced by extracellular alkalinization.  相似文献   

14.
The molecular identity of ion channels which confer PCO(2)/pH sensitivity in the brain is unclear. Heteromeric Kir4.1/Kir5.1 channels are highly sensitive to inhibition by intracellular pH and are widely expressed in several brainstem nuclei involved in cardiorespiratory control, including the locus coeruleus. This has therefore led to a proposed role for these channels in neuronal CO(2) chemosensitivity. To examine this, we generated mutant mice lacking the Kir5.1 (Kcnj16) gene. We show that although locus coeruleus neurons from Kcnj16((+/+)) mice rapidly respond to cytoplasmic alkalinization and acidification, those from Kcnj16((-/-)) mice display a dramatically reduced and delayed response. These results identify Kir5.1 as an important determinant of PCO(2)/pH sensitivity in locus coeruleus neurons and suggest that Kir5.1 may be involved in the response to hypercapnic acidosis.  相似文献   

15.
Porcine uterine smooth muscle phosphorylase kinase has been partially purified. The enzyme was activated about 1.5-2.0-fold by exogenous calmodulin. Half maximal stimulation was observed at about 100 nM calmodulin. The activation was dependent on calcium and was maximum at pH 7.5 in the range of pH from 6 to 9. This activation was completely abolished by 100 microM trifluoperazine. The result suggested that unlike slow and cardiac muscles, phosphorylase kinase of uterine smooth muscle showed similar response to calmodulin with that of fast muscle. The physiological role of the calcium and calmodulin-dependent activation of myometrium phosphorylase kinase is briefly discussed.  相似文献   

16.
A muscle biopsy from a boy with the autosomal form of phosphorylase kinase deficiency has been analysed. The glycogen content was higher than normal; phosphorylase was mostly in the b form, and the activity of phosphorylase kinase was undetectable at pH 6.8 and reached about 15 % of the mean control value at pH 8.3. The residual activity could be enhanced by trypsin and inhibited by EGTA. Cyclic AMP-dependent and independent protein kinases were normally active.  相似文献   

17.
The stimulation of different cell types with growth factors is often accompanied by a rapid intracellular alkalinization. By using mitogenic lectins, cluster of differentiation (CD)2 and CD3 mAb, as stimuli, we studied early changes of the intracellular pH in the activation process of resting human PBL. We found increases in free cytoplasmic Ca2+ levels and DNA synthesis but no intracellular alkalinization in the early activation phase upon stimulation with the mitogenic lectins, Con A, and PHA. Similarly stimulation with CD3 mAb led in most instances to no detectable pH shifts. Only in 7 out of 30 experiments was CD3 mAb-induced alkalinization observed. In contrast, stimulation with mitogenic combinations of anti-CD2 mAb led in all instances to rapid and clear-cut intracellular pH shifts very similar to those observed upon stimulation with PMA. In medium lacking sodium bicarbonate the intracellular alkalinization via the CD2 structure could be blocked by the amiloride analogue 5-(N-methyl-N-isobutyl)amiloride (MIA), which indicates that this increase in pH is mediated by the amiloride-sensitive Na+/H+ antiporter. Blockade of this antiporter had no negative effect, however, on T cell proliferation as measured by thymidine incorporation. In contrast, significantly enhanced proliferation rates were observed after stimulation with mitogenic combinations of anti-CD2 antibodies in the presence of MIA. No such effect of MIA could be observed in lectin induced T cell stimulation. These findings indicate that stimulation of the Na+/H+ antiporter via the CD2 structure is neither a prerequisite for T cell proliferation nor does it promote T cell growth. It rather seems to function in a regulatory role. In its absence, superinduction of proliferation can be achieved.  相似文献   

18.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

19.
The digitalic glicoside ouabain induces potentiation of rat mast cell histamine release in response to several stimuli, which is mediated by Na+/Ca2+ exchanger. In this work, we studied the effect of ouabain on cytosolic calcium, intracellular pH and histamine release with Ca2+ ionophore A23187 in conditions designed to maximize ouabain-induced potentiation of rat mast cells response. The effect of protein kinase C (PKC), cAMP and phosphatase inhibition was also tested. Ouabain induced an enhancement in histamine release, cytosolic calcium and intracellular pH. The adenylate cyclase activator forskolin reduced the effect of ouabain on histamine release and intracellular pH, but enhanced the effect on cytosolic calcium. PKC activator PMA enhanced the effect of ouabain on histamine release and cytosolic calcium, without affecting intracellular pH. A PKC inhibitor, GF-109203X, reduced ouabain-induced enhancement of histamine release and intracellular pH, but increased the enhancement on cytosolic calcium. Finally, inhibition of protein phosphatases 1 and 2A with okadaic acid, increased the effect of ouabain on histamine release and intracellular pH, but reduced cytosolic calcium in presence of ouabain. This result suggest that ouabain-induced potentiation of rat mast cell histamine release with A23187 is modulated by kinases, and this modulation may be carried out by changes in intracellular alkalinization. However, the mechanism underlying cellular alkalinization remains to be elucidated.  相似文献   

20.
Female (I/St X C57BL/St) F1 mice heterozygous at the sex-linked phosphorylase kinase deficiency locus (Phk) have phosphorylase kinase activities averaging 86% that of mice homozygous for the wild-type allele (C57BL/St), i.e., 72% greater than the sum of one-half the activities of the parental strains. Approximately one-half the phosphorylase kinase activity in the (I X C57BL) F1 muscle extracts had a stability at 42.5 C similar to that of the activity in C57BL extracts (t1/2 = 13.2 min); the other half of the activity in the F1 extracts was more labile (t1/2 = 3.9 min). Two species of phosphorylase kinase activity in F1 muscle extracts were also differentiated with an antiserum prepared in guinea pigs against purified rabbit skeletal muscle phosphorylase kinase. This anti-serum cross-reacted with phosphorylase kinase in C57BL muscle extracts but did not cross-react with skeletal muscle extracts of mice hemi- or homozygous for the mutant allele (I/LnJ). The guinea pig antiserum precipitated 52% as much protein from (I X C57BL)F1 muscle extracts compared to those of C57BL. However, an antiserum prepared against purified rabbit skeletal muscle phosphorylase kinase in the goat cross-reacted with the mutant phosphorylase kinase. The ratio C57BL:(I X C57BL)F1:I of immunoprecipitated protein from skeletal muscle extracts with this antiserum was 1:0.97:1.08. Polyacrylamide gel electrophoresis of the immunoprecipitates in the presence of 0.1% sodium dodecylsulfate showed three subunits for mouse phosphorylase kinase with molecular weights of 139,000, 118,000, and 41,000; these values are similar to the ones obtained with purified rabbit skeletal muscle phosphorylase kinase. These three subunits were also observed in immunoprecipitates from I/LnJ muscle extracts. These results offer substantial evidence (1) that in skeletal muscle extracts of mice heterozygous at the Phk locus the mutant phosphorylase kinase is active, (2) that the gene product of the mutant allele is an enzyme with an abnormal structure, and (3) that the phosphorylase kinase deficiency in I/LnJ skeletal muscle extracts is not the result of the absence of phosphorylase kinase or one of its subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号