首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
目的 研究不同时间诱导X射线照射的淋巴细胞进入细胞周期DNA损伤修复与凋亡的影响.方法 X射线(0.5 Gy)作用于正常人外周血淋巴细胞,以照射后不同时间点(0、4 h)分别加入PHA并分成两组,即照射后0 h加PHA组(A组)和照射后4 h加PHA组(B组),再分别培养0、0.5、2 h,用流式细胞术和免疫印迹法检测A组和B组γ-H2AX蛋白的表达,Annexin-V/PI法分析A、B两组的细胞凋亡率.结果 流式细胞术及免疫印迹结果均显示A组的γ-H2AX蛋白表达高于B组(P<0.05),且均先升高后降低.A组细胞凋亡率亦大于B组.结论 不同时间诱导被打击的淋巴细胞进入周期其可能发生DNA修复并同时伴随细胞凋亡的发生.  相似文献   

2.
以Molt-4、Jurkat细胞株和外周血淋巴细胞(peripheralbloodlymphocyte,PBL)为靶细胞,检测细胞膜上Fas的表达。人重组Fas配体(recombinanthumanFasligand,rhFasL)诱导细胞6~36h后用改良后的API等方法检测细胞凋亡及诱导凋亡过程中细胞周期蛋白的变化,探讨Fas介导的细胞凋亡与细胞周期的关系。结果显示:rhFasL诱导Molt-4、Jurkat细胞株和植物血凝素刺激进入细胞周期的PBL的凋亡具有细胞周期特异性并始动于G1期;而G0期PBL的细胞膜上虽然也有Fas的表达,但不能诱导细胞凋亡。研究还发现rhFasL诱导细胞凋亡时G1期的细胞周期蛋白D3明显升高,细胞周期蛋白E明显下降。以上结果表明rhFasL体外诱导的细胞凋亡发生在晚G1期,细胞凋亡的发生与细胞是否通过限制点进入细胞周期有关,细胞凋亡发生于晚G1期是G1期细胞周期蛋白E的下降和检测点的监督导致DNA受损的细胞不能通过G1/S交界的结果。  相似文献   

3.
目的研究转染细胞周期依赖性蛋白激酶1(cyclin.dependent kinase1,CDK1)siRNA、以及转染后进行凋亡刺激对细胞周期和凋亡的影响,探讨CDK1在细胞凋亡中的确切作用,揭示细胞周期与细胞凋亡协调的分子机制。方法以人宫颈癌细胞株HeLa细胞为研究对象,脂质体转染CDK1siRNA,转染后48h加紫杉醇(Tax01)(20μg/m1)刺激凋亡,Western印迹检测CDK1和抗凋亡蛋白BCL2表达,AnnexinV/PI法检测细胞的凋亡,流式细胞仪分析DNA含量检测细胞周期。结果转染CDK1 siRNA后,CDK1蛋白的表达下降,细胞周期G2/M期比例增加,细胞凋亡率与对照相比没有明显升高。只加Taxol刺激12h后细胞凋亡率增加并伴有S期和G2/M期比例增加。转染CDKlsiRNA后再用Taxol刺激,其细胞凋亡率没有明显改变,G2/M期阻滞效应也没有叠加。BCL2蛋白只在加Taxol刺激组表达下降,与CDK1表达减少没有相关性。结论siRNA沉默导致的CDK1表达降低只导致细胞周期G2/M期阻滞,没有引起细胞凋亡;CDK1的表达降低对紫杉醇所诱导的细胞周期阻滞和细胞凋亡效应没有明显影响。  相似文献   

4.
目的:研究显示射频电磁场与白内障的发生关系密切,为了评价晶状体上皮细胞在射频电磁场诱导的白内障发生中的作 用,本实验探讨了1950 MHz射频电磁场暴露对人眼晶状体上皮细胞株(SRA01/04)细胞周期与凋亡的影响。方法:将处于对数生 长期的SRA01/04 细胞暴露或假暴露于频率为1950 MHz,比吸收率(SAR)为2.79 W/kg 的射频电磁场中,每天暴露1 h,每周暴露 5 天,连续暴露4 周。暴露结束后立即收集细胞,显微镜下观察细胞形态变化,噻唑蓝(MTT)法检测细胞存活力,流式细胞仪 (FCM)检测细胞周期与凋亡。结果:与假辐照组相比,暴露组细胞形态未见明显变化;细胞存活力、细胞周期分布及细胞凋亡率亦 无显著改变(P>0.05)。结论:1950 MHz射频电磁场暴露4 周对SRA01/04 细胞的形态、活力、周期以及凋亡均无明显影响,提示在 本实验条件下1950 MHz 射频电磁场不会诱发白内障的发生。  相似文献   

5.
为了探讨咖啡因是否影响细胞周期检验点而增强顺铂杀伤肿瘤细胞及其作用机制 ,选取同步化于S期的肝癌细胞系SMMC 772 1,用顺铂和咖啡因进行不同方式的处理 ,包括顺铂处理、咖啡因处理以及先经顺铂 ,再用咖啡因处理 .利用相关方法对不同处理的细胞进行了分析 ,包括细胞形态 ,细胞生长速率 ,多核细胞的形成与死亡 ,中心体的异常等 .结果显示 ,顺铂与咖啡因联合处理的细胞出现明显的多核化现象 ,多核细胞占总细胞的百分比可以达到 30 %以上 ,高于用顺铂或用咖啡因处理的细胞 .同时观察到多核细胞生存能力较差 ,它们会通过细胞凋亡的形式死亡 .抗中心体人自身免疫血清的免疫荧光结果显示 ,中心体异常与多核细胞的形成直接相关 .在部分多核细胞的核周围有多个不同强度的荧光点 ,在另部分多核细胞中 ,在其中央有一个大的荧光点 ,被多个细胞核围绕 ,荧光较强 .根据结果推测 ,由多个不完整的中心体导致的多极分裂形成多核细胞 ,随后多个中心体聚集到中央形成大的中心体 ,负责间期微管的组装 .结果表明 ,受到顺铂损伤的细胞由于检验点的作用而使细胞周期阻断 ,咖啡因可消除周期的阻断 ,使细胞在中心体未完成正常复制状态下进入有丝分裂 ,产生大量多核细胞 ,这些多核细胞最终发生凋亡 .  相似文献   

6.
细胞时刻面临着细胞内部因素或周围环境因素对基因组DNA的攻击,从而导致DNA损伤。DNA损伤可触发生物的DNA损伤修复系统来管理和修复各种DNA损伤,以维持基因组稳定性。当细胞受到损伤后,Rad9在细胞周期检测点中发挥作用,阻滞细胞周期的运行,使细胞有时间修复损伤DNA,来维持基因组的稳定。本文重点介绍Rad9在DNA损伤修复及细胞周期检测点调控中的作用及研究进展。  相似文献   

7.
目的:研究显示射频电磁场与白内障的发生关系密切,为了评价晶状体上皮细胞在射频电磁场诱导的白内障发生中的作用,本实验探讨了1950MHz射频电磁场暴露对人眼晶状体上皮细胞株(SRA01/04)细胞周期与凋亡的影响。方法:将处于对数生长期的SRA01/04细胞暴露或假暴露于频率为1950MHz,比吸收率(SAR)为2.79W/kg的射频电磁场中,每天暴露1h,每周暴露5天,连续暴露4周。暴露结束后立即收集细胞,显微镜下观察细胞形态变化,噻唑蓝(MTT)法检测细胞存活力,流式细胞仪(FCM)检测细胞周期与凋亡。结果:与假辐照组相比,暴露组细胞形态未见明显变化;细胞存活力、细胞周期分布及细胞凋亡率亦无显著改变(P〉0.05)。结论:1950MHz射频电磁场暴露4周对SRA01/04细胞的形态、活力、周期以及凋亡均无明显影响,提示在本实验条件下1950MHz射频电磁场不会诱发白内障的发生。  相似文献   

8.
持续性细胞皱缩在人上皮细胞凋亡过程中的必要性   总被引:2,自引:0,他引:2  
Shimizu T  Maeno E  Okada Y 《生理学报》2007,59(4):512-516
持续性细胞皱缩是凋亡发生的一个主要标志。近期研究发现细胞皱缩在细胞凋亡过程中并不是一个被动的次要事件。在各种细胞中,包括人上皮细胞,凋亡因子(apoptogen)刺激后马上发生全细胞皱缩,又称为凋亡性容积减小(apoptotic volumede crease,AVD),继而发生caspase激活、DNA片段化、细胞破裂死亡。K^+和Cl^-通道的激活导致KCl外流,诱导AVD发生。抑制AVD发生可以抑制细胞凋亡。AVD与调节性容积增加(regulatory volume increase,RVI)异常相伴发生时,人上皮性HeLa细胞发生持续性细胞皱缩。RVI功能受损时,高渗本身就能诱导HeLa细胞持续性细胞皱缩,继而凋亡。即使在正常渗透压、无凋亡因子刺激的情况下,将HeLa细胞置于缺乏Na^+或Cl。的溶液也会导致细胞持续性皱缩,继而凋亡。因此,AVD诱导和RVI异常所导致的持续性细胞皱缩是人上皮细胞发生凋亡的首要条件。  相似文献   

9.
哺乳动物细胞对于遗传毒性的刺激会产生一系列应答,如细胞周期阻滞,DNA修复和细胞凋亡等。Gadd45a在DNA损伤诱导的细胞应答中发挥重要作用。细胞内外环境的多种因素在转录水平、转录后水平、翻译后水平等多个层次对Gadd45a进行精确调节。Gadd45a通过与Cdc2相互作用调控细胞周期G1-M检测点,直接抑制Aurora—A激酶参与中心体稳定性的调节,通过G1-S期调控参与维持基因组的稳定性。Gadd45a参与p38/JNK、MAPK、线粒体介导的凋亡途径和NF—κB介导的生存通路调控。  相似文献   

10.
NF-κB信号转导通路对细胞周期的调控   总被引:2,自引:0,他引:2  
核转录因子NF-κB是哺乳动物Rel蛋白家族成员,属DNA结合蛋白,具有结合某些基因启动子κB序列并启动靶基因转录的功能。静息状态下,NF-κB二聚体在胞浆肉没有活性,当细胞受刺激后,它在NF-κB信号转导通路的上游激酶级联作用下被激活,并易位到细胞核内,增强靶基因表达。NF-κB是细胞分裂和生存的关键调节因子,参与调控细胞周期、细胞增殖和细胞分化。现就NF-κB对细胞周期的影响作一综述,着重阐述NF-κB通过细胞周期蛋白和CDK/CKI作用G1/S期检测点、G2/M期检测点,调控细胞周期进程。  相似文献   

11.
Rowley R  Zhang J 《Genetics》1999,152(1):61-71
Cells exposed to inhibitors of DNA synthesis or suffering DNA damage are arrested or delayed in interphase through the action of checkpoint controls. If the arrested cell is exposed to caffeine, relatively normal cell cycle progression is resumed and, as observed in checkpoint control mutants, loss of checkpoint control activity is associated with a reduction in cell viability. To address the mechanism of caffeine's action on cell progression, fission yeast mutants that take up caffeine but are not sensitized to hydroxyurea (HU) by caffeine were selected. Mutants 788 and 1176 are point mutants of rhp6, the fission yeast homolog of the budding yeast RAD6 gene. Mutant rhp6-788 is slightly HU sensitive, radiosensitive, and exhibits normal checkpoint responses to HU, radiation, or inactivation of DNA ligase. However, the addition of caffeine does not override the associated cell cycle blocks. Both point and deletion mutations show synthetic lethality at room temperature with temperature-sensitive mutations in cyclin B (cdc13-117) or the phosphatase cdc25 (cdc25-22). These observations suggest that the rhp6 gene product, a ubiquitin-conjugating enzyme required for DNA damage repair, promotes entry to mitosis in response to caffeine treatment.  相似文献   

12.
Qi W  Qiao D  Martinez JD 《Radiation research》2002,157(2):166-174
Caffeine is a model radiosensitizing agent that is thought to work by abrogating the radiation-induced G(2)-phase checkpoint. In this study, we examined the effect that various concentrations of caffeine had on cell cycle checkpoints and apoptosis in cells of a human lung carcinoma cell line and found that a concentration of 0.5 mM caffeine could abrogate the G(2)-phase arrest normally seen after exposure to ionizing radiation. Surprisingly, at a concentration of 5 mM, caffeine not only induced apoptosis by itself and acted synergistically to enhance radiation-induced apoptosis, but also induced a TP53-independent G(1)-phase arrest. Examination of the molecular mechanisms by which caffeine produced these effects revealed that caffeine had opposing effects on different cyclin-dependent kinases. CDK2 activity was suppressed by caffeine, whereas activity of CDC2 was enhanced by suppressing phosphorylation on Tyr15 and by interfering with 14-3-3 binding to CDC25C. These data indicate that the effect of caffeine on cell cycle checkpoints and apoptosis is dependent on dose and that caffeine acts through differential regulation of cyclin-dependent kinase activity.  相似文献   

13.
14.
Overexpression of protein kinase C delta (PKCdelta) stimulates apoptosis in a wide variety of cell types through a mechanism that is incompletely understood. PKCdelta-deficient cells are impaired in their response to DNA damage-induced apoptosis, suggesting that PKCdelta is required to mount an appropriate apoptotic response under conditions of stress. The mechanism through which it does so remains elusive. In addition to effects on cell survival, PKCdelta elicits pleiotropic effects on cellular proliferation. We now provide the first evidence that the ability of PKCdelta to stimulate apoptosis is intimately linked to its ability to stimulate G(1) phase cell cycle progression. Using an adenoviral-based expression system to express PKCalpha,-delta, and -epsilon in epithelial cells, we demonstrate that a modest increase in PKCdelta activity selectively stimulates quiescent cells to initiate G(1) phase cell cycle progression. Rather than completing the cell cycle, PKCdelta-infected cells arrest in S phase, an event that triggers caspase-dependent apoptotic cell death. Apoptosis was preceded by the activation of cell cycle checkpoints, culminating in the phosphorylation of Chk-1 and p53. Strikingly, blockade of S phase entry using the phosphatidylinositol 3-kinase inhibitor LY294002 prevented checkpoint activation and apoptosis. In contrast, inhibitors of mitogen-activated protein kinase cascades failed to prevent apoptosis. These findings demonstrate that the biological effects of PKCdelta can be extended to include positive regulation of G(1) phase cell cycle progression. Importantly, they reveal the existence of a novel, cell cycle-dependent mechanism through which PKCdelta stimulates cell death.  相似文献   

15.
Reactive oxygen species produced during hyperoxia damage DNA, inhibit proliferation in G1- through p53-dependent activation of p21(Cip1/WAF1/Sdi1), and kill cells. Because checkpoint activation protects cells from genotoxic stress, we investigated cell proliferation and survival of the murine type II epithelial cell line MLE15 during hyperoxia. These cells were chosen for study because they express Simian large and small-T antigens, which transform cells in part by disrupting the p53-dependent G1 checkpoint. Cell counts, 5-bromo-2'-deoxyuridine labeling, and flow cytometry revealed that hyperoxia slowed cell cycle progression after one replication, resulting in a pronounced G2 arrest by 72 h. Addition of caffeine, which inactivates the G2 checkpoint, diminished the percentage of hyperoxic cells in G2 and increased the percentage in sub-G1 and G1. Abrogation of the G2 checkpoint was associated with enhanced oxygen-induced DNA strand breaks and cell death. Caffeine did not affect DNA integrity or viability of cells exposed to room air. Similarly, caffeine abrogated the G2 checkpoint in hyperoxic A549 epithelial cells and enhanced oxygen-induced toxicity. These data indicate that hyperoxia rapidly inhibits proliferation after one cell cycle and that the G2 checkpoint is critical for limiting DNA damage and cell death.  相似文献   

16.
Cleavage-mediated activation of Chk1 during apoptosis   总被引:1,自引:0,他引:1  
The Chk1 kinase is highly conserved from yeast to humans and is well known to function in the cell cycle checkpoint induced by genotoxic or replication stress. The activation of Chk1 is achieved by ATR-dependent phosphorylation with the aid of additional factors. Robust genotoxic insults induce apoptosis instead of the cell cycle checkpoint, and some of the components in the ATR-Chk1 pathway are cleaved by active caspases, although it has been unclear whether the attenuation of the ATR-Chk1 pathway has some role in apoptosis induction. Here we show that Chk1 is activated by caspase-dependent cleavage when the cells undergo apoptosis. Treatment of chicken DT40 cells with various genotoxic agents, UV light, etoposide, or camptothecin induced Chk1 cleavage, which was inhibited by a pan-caspase inhibitor, benzyloxycarbonyl-VAD-fluoromethyl ketone. The cleavage of Chk1 was similarly observed in human Jurkat cells treated with a non-genotoxic apoptosis inducer, staurosporine. We have determined the cleavage site(s), Asp-299 in chicken and Asp-299 and Asp-351 in human cells. We further show that a truncated form of human Chk1 mimicking the N-terminal cleavage fragment (residues 1-299) possesses strikingly elevated kinase activity. Moreover, the ectopic expression of Chk1-(1-299) in human U2OS cells induces abnormal nuclear morphology with localized chromatin condensation and phosphorylation of histone H2AX. These results suggest that Chk1 is activated by caspase-mediated cleavage during apoptosis and might be implicated in enhancing apoptotic reactions rather than attenuating the ATR-Chk1 pathway.  相似文献   

17.
Apoptosis and cell cycle progression in HL60 cells irradiated in an acidic environment were investigated. Apoptosis was determined by TUNEL staining, PARP cleavage, DNA fragmentation, and flow cytometry. The majority of the apoptosis that occurred in HL60 cells after 4 Gy irradiation took place after G(2)/M-phase arrest. When irradiated with 12 Gy, a fraction of the cells underwent apoptosis in G(1) and S phases while the rest of the cells underwent apoptosis in G(2)/M phase. The apoptosis caused by 4 and 12 Gy irradiation was transiently suppressed in medium at pH 7.1 or lower. An acidic environment was found to perturb progression of irradiated cells through the cell cycle, including progression through G(2)/ M phase. Thus it was concluded that the suppression of apoptosis in the cells after 4-12 Gy irradiation in acidic medium was due at least in part to a delay in cell cycle progression, particularly the prolongation of G(2)/M-phase arrest. Irradiation with 20 Gy indiscriminately caused apoptosis in all cell cycle phases, i.e. G(1), S and G(2)/M phases, rapidly in neutral pH medium and relatively slowly in acidic pH medium. The delay in apoptosis in acidic medium after 20 Gy irradiation appeared to result from mechanisms other than prolonged G(2)/ M-phase arrest.  相似文献   

18.
In contrast to extracellular signals, the mechanisms utilized to transduce nuclear apoptotic signals are not well understood. Characterizing these mechanisms is important for predicting how tumors will respond to genotoxic radiation or chemotherapy. The retinoblastoma (Rb) tumor suppressor protein can regulate apoptosis triggered by DNA damage through an unknown mechanism. The nuclear death domain-containing protein p84N5 can induce apoptosis that is inhibited by association with Rb. The pattern of caspase and NF-kappaB activation during p84N5-induced apoptosis is similar to p53-independent cellular responses to DNA damage. One hallmark of this response is the activation of a G(2)/M cell cycle checkpoint. In this report, we characterize the effects of p84N5 on the cell cycle. Expression of p84N5 induces changes in cell cycle distribution and kinetics that are consistent with the activation of a G(2)/M cell cycle checkpoint. Like the radiation-induced checkpoint, caffeine blocks p84N5-induced G(2)/M arrest but not subsequent apoptotic cell death. The p84N5-induced checkpoint is functional in ataxia telangiectasia-mutated kinase-deficient cells. We conclude that p84N5 induces an ataxia telangiectasia-mutated kinase (ATM)-independent, caffeine-sensitive G(2)/M cell cycle arrest prior to the onset of apoptosis. This conclusion is consistent with the hypotheses that p84N5 functions in an Rb-regulated cellular response that is similar to that triggered by DNA damage.  相似文献   

19.
When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号