首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of dietary n - 3 polyunsaturated fatty acids (PUFA) on fatty acid profiles of rat brain phospholipid subclasses as well as on heart phosphatidylethanolamine through two generations were examined: Three groups of rats were fed 20 weight% fat diets in which approx. 30% of the fatty acids were polyunsaturated, either 17% linoleic acid + 13% C20(-) + C22 polyunsaturates from fish oil or 17% linoleic + 13% alpha-linolenic acid from linseed oil or 30% linoleic acid. The rats of the two generations were killed as adults at 18 weeks of age. The results demonstrated that fish oil was a better source than alpha-linolenic acid for incorporation of n - 3 PUFA into the examined phospholipids. This was seen both in brain and heart tissue and in both generations of rats. In the brain phosphatidylethanolamine (PE) and phosphatidylserine (PS) similar fatty acid profiles were found in 1st and 2nd generation, but fish oil was more efficient than 18:3(n - 3) in increasing the levels of 22:6(n - 3), 20:5(n - 3), 22:5(n - 3) and reducing 20:4(n - 6) and 22:5(n - 6). Fatty acid profiles of phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2) were affected by dietary fats. In PIP and PIP2 of 2nd generation rats 20:4(n - 6) was reduced from 36 to 29% following fish oil intake, whereas alpha-linolenic acid had no effects. The cholesterol/phospholipid ratio was not affected in the brain, neither was the degree of unsaturation of the phospholipids. In heart PE the highest levels of 20:5(n - 3)(2%) and 22:6(n - 3) (36%) were observed following fish oil intake. However, in rats fed alpha-linolenic acid a considerable increase in the level of 22:6(n - 3) was observed from the 1st (21%) to the 2nd generation (26%).  相似文献   

2.
The partitioning between peroxisomal and mitochondrial beta-oxidation of [1-14C]eicosapentaenoic acid (20:5(n-3] and [1-14C]arachidonic acid (20:4(n-6)) was studied. In hepatocytes from fasted rats approximately 70% of the fatty acid substrate was oxidized with oleic, linoleic, eicosapentaenoic and docosahexaenoic (22:6(n-3)) acid, even more with adrenic (22:4(n-6)) and less with arachidonic acid. When the mitochondrial oxidation was suppressed by fructose refeeding and by (+)-decanoylcarnitine, the fatty acid oxidation in per cent of that in cells from fasted rats was with 18:1(n-9) 7%, 18:2(n-6) 8%, 20:4(n-6) 12%, 20:5(n-3) 20%, 22:4(n-6) 57% and for 22:6(n-3) 29%. The fraction of 14C recovered in palmitate and other newly synthesized fatty acids after fructose refeeding decreased in the order 22:4(n-6) greater than 22:6(n-3) greater than 20:5(n-3) greater than 20:4(n-6) and was very small with 18:1(n-9) and 18:2(n-6). In cells from both fed and fructose-refed animals 20:5(n-3) was efficiently elongated to 22:5(n-3) and 22:6(n-3). 20:5(n-3) and 20:4(n-6) were not elongated after fasting. The phospholipid incorporation with [1-14C]20:5(n-3) decreased during prolonged incubations while it remained stable with [1-14C]arachidonic acid. The results suggest that peroxisomes contribute more to the oxidation of 20:5(n-3) than with 20:4(n-6) although both substrates are probably oxidized mainly in the mitochondria.  相似文献   

3.
The delta 6-desaturase reaction is regarded to be the rate-limiting step in the conversion of linoleic acid (18:2(n - 6)) to arachidonic acid (20:4(n - 6)). The same is probably also the case with the conversion of alpha-linolenic acid (18:3(n - 3)) to eicosapentaenoic acid (20:5(n - 3)). However, there are very few in vivo studies that directly compared the conversion rate between 18:3(n - 3) and stearidonic acid (18:4(n - 3)), which is the delta 6-desaturated product of 18:3(n - 3). We compared this rate by feeding rats on a lipid-free diet supplemented with lard (9%, w/w) and 18:3(n - 3) ethyl ester (1%) diet or on a diet containing lard (9%) and 18:4(n - 3) ethyl ester (1%). A lard (10%)-supplemented diet was used as the control diet. The fatty acid compositions of total phospholipids, triglycerides and free fatty acids of both liver and plasma were measured after 1 or 3 weeks on different diets. The molar ratio of 20:5(n - 3) of most lipid fractions was about 2-fold higher in rats fed the 18:4(n - 3)-supplemented diet than in rats fed the 18:3(n - 3)-supplemented diet. 18:4(n - 3) was found in the liver lipid fraction in only a very small amount, even in the 18:4(n - 3)-supplemented groups. Thus, desaturation at C-6 is suggested to be the rate-limiting step in the conversion of 18:3(n - 3) to 20:5(n - 3).  相似文献   

4.
We have assessed that nuclear lipids from rat kidney cells are not only membrane components, but they are also found within the nucleus. The most abundant nuclear and endonuclear lipids have a high proportion of unsaturated fatty acids (n-6 series: arachidonic > linoleic), mainly esterified to PtdCho. Nuclear most abundant molecular species are 16:0–20:4, 16:0–18:2, 18:0–20:4, 18:0–18:2, and 16:0–18:1. Arachidonic acid is esterified at the sn-2 position of PtdCho: 16:0–20:4(25%), 18:0–20:4(15%), 18:2–20:4(3%), 18:1–20:4(2%). Exogenous [1-14C]20:4n-6-CoA is esterified in vitro in GP (glycerophospholipids) > > TAG and DAG. Five PtdCho molecular species were labeled: 16:0–20:4, 18:0–20:4, 18:1–20:4, 18:2–20:4, and 20:4–20:4. In conclusion, these results demonstrated that: (1) there is an important lipid pool within kidney cell nuclei; (2) main nuclear and endonuclear lipid pools were PtdCho molecular species which contained a high proportion of unsaturated fatty acids (20:4n-6 and 18:2n-6) esterified at sn-2 position and 16:0 esterified at sn-1 position; (3) kidney cell nuclei also contained the necessary enzymes to esterify exogenous 20:4n-6-CoA to glycerolipids and to GP; (4) exogenous 20:4n-6-CoA was esterified in five PtdCho molecular species with 20:4n-6 at the sn-2 position, although the most actively synthesized PtdCho contained 20:4n-6 at both the sn-1 and sn-2 positions of the molecule; (5) we can infer that by a remodeling process, the unsaturated fatty acids at the sn-1 position of PtdCho molecular species could be replaced by 16:0 and 18:0, and thus PtdCho would achieve the physiological profile characteristic of the organ.  相似文献   

5.
Second generation rats depleted in long-chain polyunsaturated omega3 fatty acids display several features of the metabolic syndrome, including visceral obesity, liver steatosis, insulin resistance, hypertension, and cardiac hypertrophy. In the framework of an extensive study on such metabolic, hormonal and functional perturbations, the phospholipid fatty acid pattern and ex vivo metabolism of D-glucose were recently investigated in the soleus muscle of these omega3-depleted rats. The present study deals with the triglyceride fatty acid content and pattern of the soleus muscle in control animals and omega3-depleted rats. Some of the latter rats were injected intravenously 60-120 minutes before sacrifice with either an omega3 fatty acid-rich medium-chain triglyceride/fish oil emulsion (omega3-FO rats) or a control medium-chain triglyceride/olive oil emulsion (omega3-OO rats). The total fatty acid content of triglycerides was comparable in control and omega3-depleted rats and, in both cases, inversely related to their C20:4omega6 relative content. At variance with the situation found in control rats, no long-chain polyunsaturated omega3 fatty acid (C18:3omega3, C20:5omega3, C22:5omega3, C22:6omega3) was detected in the omega3-depleted rats. Unexpectedly, the triglyceride content in most long-chain polyunsaturated omega6 fatty acids (C18:2omega6, C20:3omega6, C20:4omega6 and C22:4omega6) had also decreased in the latter rats. Moreover, the activity of Delta9-desaturase was apparently increased in the omega3-depleted rats, as judged from the C16:1omega7/C16:0 and C18:1omega9/C18:0 ratios. The omega3-FO rats differed from omega3-OO rats by a lower contribution of C18:2omega6 metabolites (C18:3omega6, C20:3omega6, C20:4omega6 and C22:4omega6). These findings indicate that the prior injection of the medium-chain triglyceride/fish oil emulsion, known to increase the muscle phospholipid content in long-chain polyunsaturated omega3 fatty acids, may nevertheless accentuate the depletion in long-chain polyunsaturated omega6 fatty acids otherwise found in the triglycerides of omega3-depleted rats. Such a dual effect is reminiscent of that observed, under the same experimental conditions, for selected variables in D-glucose metabolism in the soleus muscle.  相似文献   

6.
7.
Cultured C6 glioma cells rapidly incorporate and metabolize the essential fatty acids, 18:2(n-6) and 18:3(n-3), to 20- and 22-carbon polyunsaturated fatty acids. Using several deuterated fatty acid substrates we have obtained data that suggest alternate pathways, one possibly involving delta 8-desaturation, may exist in glioma cells for formation of 20:5(n-3) and 22:6(n-3) from 18:3(n-3). With 18:3(n-3)-6,6,7,7-d4 practically no 18:4(n-3)-6,7-d2 or 20:4(n-3)-8,9-d2 was detected whereas 20:3(n-3)-8,8,9,9-d4 accounted for 3.4% and delta 5,11,14,17-20:4-8,8,9,9-d4 for 21.1% of the total deuterated fatty acids recovered in phospholipids after a 16 h incubation; 20:5(n-3)-8,9-d2, 22:5(n-3)-10,11-d2, and 22:6(n-3)-10,11-d2 accounted for 42.4%, 13.2%, and 2.8% of deuterated acyl chains, respectively. When added exogneously, 20:3-8,8,9,9,-d4 was extensively converted to delta 5,11,14,17-20:4(n-3)-8,8,9,9-d4 (45%) and 20:5(n-3)-8,9-d2 (24%); a small amount (4%) of 18:3(n-3)-d4 also was detected. Both 20:4(n-3)-8,9-d2 and 18:4(n-3)-12,13,15,16-d4 were also converted to 20:5(n-3) and 22:6(n-3) with 8 and 0% of the respective original deuterated substrate remaining after 16 h. A possible pathway for 18:3(n-3) metabolism in glioma cells is described whereby an initial chain elongation step is followed by successive delta 5 and delta 8 desaturation reactions resulting in 20:5(n-3) formation and accounting for the ordered removal of deuterium atoms. Alternatively, extremely effective retroconversion may occur to chain shorten 20:3(n-3)-d4 to 18:3(n-3)-d4 followed by rapid conversion through the classical desaturation and chain elongation sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
The intracellular localization of the oxidation of [2-14C]adrenic acid (22:4(n-6)) and [1-14C]docosahexaenoic acid (22:6(n-3)) was studied in isolated liver cells. The oxidation of 22:4(n-6) was 2-3-times more rapid than the oxidation of 22:6(n-3), [1-14C]arachidonic acid (20:4(n-6)) or [1-14C]oleic acid (18:1). (+)-Decanoylcarnitine and lactate, both known to inhibit mitochondrial beta-oxidation, reduced the oxidation of 18:1 distinctly more efficiently than with 22:4(n-6) and 22:6(n-3). In liver cells from rats fed a diet containing partially hydrogenated fish oil, the oxidation of 22:6(n-6) and 22:6(n-3) was increased by 30-40% compared with cells from rats fed a standard pellet diet. With 18:1 as substrate, the amount of fatty acid oxidized was very similar in cells from animals fed standard pellets or partially hydrogenated fish oil. Shortened fatty acids were not produced from [5,6,8,9,11,12,14,15-3H]arachidonic acid. In hepatocytes from rats starved and refed 20% fructose, a large fraction of 14C from 22:4 was recovered in 14C-labelled C14-C18 fatty acids. Oxidation of 22:4 thus caused a high specific activity of the extramitochondrial pool of acetyl-CoA. The results suggest that 22:4(n-6) and to some extent 22:6(n-3) are oxidized by peroxisomal beta-oxidation and by this are retroconverted to arachidonic acid and eicosapentaenoic acid.  相似文献   

10.
The present study examined the in vitro and in vivo metabolism of 18:2n-6 and 18:3n 6 by kidney and liver in the male adult spontaneously hypertensive (SHR) and normotensive (WKY) rats. In liver and kidney slices incubated for 1 h with either [1-14C]18:2n-6 or [1-14C]18:3n-6 (60 μM), substantial amounts of radioactivity were incorporated into triacylglycerol and phospholipid fractions. Approximately 15% of the radiolabeled 18:2n-6 was converted into 18:3n-6 in liver slices but no conversion was found in kidney slices. When incubated with radiolabeled 18:3n-6, over 40% of the radioactivity was metabolized mainly to 20:4n-6 in liver slices, but evenly to 20:3n-6 and 20:4n-6 in kidney slices. There were no differences between the results from SHR and those from WKY. In WKY rats given an oral bolus of radiolabeled 18:3n-6, most of the radioactivity was recovered in the liver and significantly less in the kidney. In both tissues, the radioactivity was associated initially only with 18:3n-6 and later with its elongation product, 20:3n-6. These findings indicated that the kidney, although unable to metabolize 18:2n-6, could metabolize 18:3n-6 taken up from the circulation. The effectiveness of 18:3n-6, compared to 18:2n-6, as an anti hypertensive agent may result from the provision of a post-Δ6-desaturation metabolite which can be directly converted to blood pressure-regulating eicosanoids in the kidney.  相似文献   

11.
Sex differences in n-3 and n-6 fatty acid metabolism in EFA-depleted rats   总被引:1,自引:0,他引:1  
We studied the effect of sex on the distribution of long-chain n-3 and n-6 fatty acids in essential fatty acid-deficient rats fed gamma-linolenate (GLA) concentrate and/or eicosapentaenoate and docosahexaenoate-rich fish oil (FO). Male and female weanling rats were rendered essential fatty acid deficient by maintaining them on a fat-free semisynthetic diet for 8 weeks. Thereafter, animals of each sex were separated into three groups (n = 6) and given, for 2 consecutive days by gastric intubation, 4 g/kg body wt per day of GLA concentrate (containing 84% 18:2n-6), n-3 fatty acid-rich FO (containing 18% 20:5n-3 and 52% 22:6n-3), or an equal mixture of the two oil preparations (GLA + FO). The fatty acid distributions in plasma and liver lipids were then examined. GLA treatment increased the levels of C-20 and C-22 n-6 fatty acids in all lipid fractions indicating that GLA was rapidly metabolized. However, the increases in 20:3n-6 were less in females than those in males, while those in 20:4n-6 were greater, suggesting that the conversion of 20:3n-6 to 20:4n-6 was more active in female than in male rats. FO treatment increased the levels of 20:5n-3 and 22:6n-3 and reduced those of 20:4n-6. The increase in n-3 fatty acids was greater in females than that in males and the reduction in 20:4n-6 was smaller. Consequently, the sum of total long-chain EFAs incorporated was greater in females than that in males. The administration of n-3 fatty acids also reduced the ratio of 20:4n-6 to 20:3n-6 in GLA + FO-treated rats indicating that n-3 fatty acids inhibited the activity of delta-5-desaturase. However, this effect was not affected by the sex difference.  相似文献   

12.
Streptozotocin diabetes depresses delta 9, delta 6 and delta 5 fatty acid desaturases, decreasing arachidonic acid and increasing linoleic acid, but also unexpectedly increasing docosahexaenoic acid in the different phospholipids of liver microsomal lipids. 18:0/20:4n-6, 16:0/20:4n-6 and 16:0/18:2n-6 are the predominant phosphatidyl choline (PC) molecular species in control rats, determining mainly PC contribution to the dynamic and biochemical properties of this bilayer. Diabetes decreases 20:4n-6 containing species and increases 18:2n-6 and 22:6n-3 containing species, maintaining the bulk dynamic properties in the hydrophobic interior of the bilayer, but changing its biochemical properties. The different dynamic parameters were measured by fluorometry using the probes 1,6-diphenyl-1,3,5-hexatriene (DPH), (4-trimethylammonium phenyl) 6-phenyl-1,3,5 (TMA-DPH) and 6-lauroyl-2,4-dimethyl aminonaphtalene (Laurdan). In the surrounding of the hydrophobic/hydrophilic interphase lipid molecules were less ordered and tightly packed in the diabetic samples, allowing a higher mobility of incorporated water molecules. The fact that diabetes decreases highly polyunsaturated acid of n-6 family, but increases docosahexaenoic acid, indicates the necessity of re-evaluating its effect in human physiology.  相似文献   

13.
1. The DNA polymerase (EC 2.7.7.7) activity in purified intact brain nuclei from infant rats was investigated. The effects of pH, Mg(2+), glycerol, sonication and storage of the nuclei under different conditions were examined and a suitable assay system was established. 2. The nuclei from infant brain cells were fractionated by zonal centrifugation in a discontinuous sucrose gradient into five zones: zone (I) contained neuronal nuclei (59%) and astrocytic nuclei (41%); zone (II) contained astrocytic nuclei (81%) and neuronal nuclei (19%); zone (III) contained astrocytic nuclei (82%) and oligodendrocytic nuclei (18%); zone (IV) contained oligodendrocytic nuclei (92%) and zone (V) contained oligodendrocytic nuclei (100%). 3. The content of DNA, RNA and protein for each fraction was measured. 4. The distribution of DNA polymerase activity in the fractionated infant and adult rat brain nuclei was determined. The highest activity was found in the neuronal nuclei from zone (I) and the following zones exhibited a progressive decline. In contrast with the nuclei from infant rats those from adults had a much higher activity and expressed a preference for native DNA as template. 5. The deoxyribonuclease activity in all classes of nuclei was measured with [(3)H]DNA as substrate. A general correspondence in the pattern of the relative activities in the nuclear fractions with the distribution of DNA polymerase was found. 6. The incorporation of [(3)H]thymidine into nuclear DNA in infant and adult rat brain was investigated. The specific radioactivity of the DNA in the 10-day-old rats was highest in zone (V) whereas in the nuclei of adult rats, which exhibited a comparatively low incorporation, the highest specific radioactivity was associated with zones (I) and (V).  相似文献   

14.
Essential fatty acid metabolism in cultured human airway epithelial cells.   总被引:3,自引:0,他引:3  
To characterize essential fatty acid metabolism of human airway epithelium, we examined the capacity of epithelial cells to incorporate and desaturate/elongate 18:2(n - 6) and the turnover of phospholipid fatty acyl chains in these cells. Epithelial cells were cultured for 5-7 days and incubated with [1-14C]18:2(n - 6) (1 microCi, 100 nmol). The essential fatty acid profile of the cells was readily modified by 18:2(n - 6) supplementation to culture medium. After 4 h incubation, 32 +/- 5.6 nmol of [1-14C]18:2(n - 6) was incorporated into phospholipids (65 +/- 9.5%, of which 74% was incorporated into phosphatidylcholine (PC)) and neutral lipid (31 +/- 10%) per mg protein of cultured cells. 30 +/- 8% of [1-14C]18:2(n - 6) incorporated, was converted to homologous trienes, tetraenes and pentaenes, the major products being 20:3(n - 6) and 20:4(n - 6). The conversion of 18:2(n - 6) was time-dependent and donor age-related. A higher proportion of 20:3(n - 6) and 20:4(n - 6) was incorporated into phosphatidylinositol (PI) and phosphatidylethanolamine (PE). About 10-15% of total products formed from 18:2(n - 6) was released from membrane to culture medium. Both 20:4(n - 6) and 20:5(n - 3) inhibited 18:2(n - 6) incorporation and desaturation. Rate of incorporation of 18:2(n - 6) was more than either 18:1(n - 9) or 16:0. With pulse-chase studies, the half-life of 18:2(n - 6) in PC, PI and PE was estimated to be 5.5, 6.0 and 7.3 h, respectively. These data indicate active metabolism of essential fatty acids in human airway epithelial cells. This metabolism may play a key role in the regulation of membrane properties and function in these cells.  相似文献   

15.
The effect of dietary fats on essential fatty acid metabolism in rats subjected to chemically induced hepatocarcinogenesis was studied. Sixty male rats were fed a diet supplemented with one of the following three oil compositions: 10% hydrogenated coconut oil (HCO); 5% hydrogenated coconut oil and 5% gamma-linolenic acid (18:3n-6)-rich evening primrose oil (EPO); or 5% hydrogenated coconut oil and 5% marine oil (FO). Half of the animals in each dietary regimen were subjected to hepatocarcinogenesis induction using diethylnitrosamine and 2-acetylaminofluorene (2-AAF) followed by partial hepatectomy, whereas the other half underwent hepatectomy without receiving diethylnitrosamine and 2-acetylaminofluorene. Liver phospholipid composition was analyzed. In comparison to the HCO group, the EPO group showed raised levels of arachidonic acid (20:4n-6) and suppressed n-3 fatty acids. The FO group, on the other hand, showed suppressed levels of n-6 and increased n-3 fatty acids. Hepatocarcinogenesis suppressed the level of 20:4n-6 and this effect was greater in the FO rats. The levels of dihomo-gamma-linolenic acid (20:3n-6) were increased by the hepatocarcinogenic treatment, and this effect was further accentuated in the EPO rats. These results suggest that hepatocarcinogenesis may suppress the activity of delta-5-desaturase, which may be one of the reasons why tumor cell membranes have low levels of long chain fatty acids, especially 20:4n-6 cells, and have an impaired capacity to undergo lipid peroxidation.  相似文献   

16.
1. Uteri of 6--10-day-old rats do not show a late growth response to oestrogen (increase in rate of DNA synthesis and cell division) exhibited by fully competent (20 days or older) uteri. We posed the question whether the lack of the late growth response is due to an inability to replenish the cytoplasmic pool of oestrogen receptors or to curtailed retention of oestrogen binding in the nucleus. Uterine nuclear and cytoplasmic receptors were measured by a [3H]oestradiol-17 beta exchange assay, at 1, 3, 6, 14 and 24 h after oestrogen injection. 2. The replenishment of cytoplasmic oestrogen receptors showed a similar pattern in the uteri of 6 and 10-day-old (partially responsive) and in 20-day-old (fully responsive) rats. 3. Oestrogen was retained longer in uterine nuclei obtained from 5 and 10-day-old rats than in uterine nuclei of 20 and 25-day-old rats. 4. Oestrogen receptors resistant to 0.4 M KCl extraction (residual receptors) were found in uterine nuclei of 6 and 25-day-old rats after oestrogen injection at all the times tested. The concentration of these residual receptors during the late period (6--24 h after injection) was not significantly different in uterine nuclei of 6-day-old and 25-day-old rats. 5. We conclude that neither lack of oestrogen receptor replenishment nor curtailed retention of oestrogen binding in the nucleus is the factor which limits the complete responsiveness to oestrogen in uteri of rats during postnatal development.  相似文献   

17.
The effect of streptozotocin-induced diabetes on the fatty acid composition and metabolism in testes of rats on diets varying in protein content has been investigated. The protein content of the diet (40, 20, 5%) had little or no effect on essential fatty acid metabolism during the 2 weeks following injection of streptozotocin, but the 5% diet resulted in a high rate of mortality for diabetic rats. Increased amounts of octadeca-9,12-dienoic (linoleic or 18:2) acid and of eicosa-8,11,14-trienoic (dihomo-gamma-linolenic or 20:3) acid and decreased amounts of eicosa-5,8,11,14-tetraenoic (arachidonic or 20:4) acid were observed in testes of some but not all diabetic compared to pair-fed control rats 2 weeks after injection of streptozotocin. Incorporation of 14C from [14C]18:2 into testicular lipids of these rats was determined 26 hr after intratesticular injection. In some rats there was a greater amount of 14C in eicosa-11,14-dienoic acid (dihomolinoleic acid or 20:2) and 20:3 and less 14C in 20:4 of testes of diabetic than in those of control rats. The suggested impairment in conversion of 18:2 to 20:4 was studied further by using [14C]20:3 as the substrate for intratesticular injection. Four hours after administration of the [14C]polyene there was more 14C in 20:3 and less 14C in 20:4 and in docosa-7,10,13,16-tetraenoic (adrenic or 22:4) acid in testes of diabetic than in those of control rats. The results indicate that in diabetic rats at least one enzyme responsible for the decreased conversion of 18:2 to 20:4 is the delta 5-desaturase.  相似文献   

18.
Inner membrane vesicles obtained from the liver mitochondria of hypothyroid and normal rats were compared. In the vesicles from hypothyroid rats the rate of ATP synthesis at 30 °C is 35–50% less than the normal rate. The Arrhenius profile for phosphorylation by such vesicles lacks the discontinuity at 21 °C that is seen with vesicles from normal rats; at temperatures below about 9 °C the rate of phosphorylation by vesicles from hypothyroid rats is not lower than normal. The phospholipids of hypothyroid vesicles contain higher mole fractions of 18:2 (linoleic), 18:3 (linolenic or γ-linolenic), and 20:3 (eicosatrienoic) and lower fractions of 20:4 (arachidonic), 22:3 (docosatrienoic), and 22:4 (docosatetraenoic); the unsaturation index, mainly due to 20:4, is 10% less than in normal vesicles. Injecting hypothyroid rats with l-thyroxine 3 days before preparation of vesicles corrects the relative contents of these unsaturated fatty acids as well as the Arrhenius profile and also increases the phosphorylation rate at 30 °C. Respiration and cytochrome a content do not differ for membrane vesicles prepared from livers of rats in the various thyroid states. A metabolic defect in unsaturated fatty acid metabolism in hypothyroidism may be involved in the function of the inner mitochondrial membrane.  相似文献   

19.
An important question for mammalian nutrition is the relative efficiency of C18 versus C20 essential fatty acids (EFAs) for supporting the tissue composition of n-3 and n-6 pathway end products. One specific question is whether C22 EFAs are made available to tissues more effectively by dietary alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) or by dietary eicosapentaenoic acid (20:5n-3) and dihomo-gamma-linolenic acid (20:3n-6). To address this question in a direct manner, four stable isotope compounds were given simultaneously in a novel paradigm. A single oral dose of a mixture of 2H5-18:3n-3, 13C-U-20:5n-3, 13C-U-18:2n-6, and 2H5-20:3n-6 was administered to rats given a defined diet. There was a preferential in vivo conversion of arachidonic acid (20:4n-6) to docosatetraenoic acid (22:4n-6) and of 22:4n-6 to n-6 docosapentaenoic acid (22:5n-6) when the substrates originated from the C18 precursors. However, when the end products docosahexaenoic acid (22:6n-3) or 22:5n-6 were expressed as the total amount in the plasma compartment divided by the dosage, this parameter was 11-fold greater for 20:5n-3 than for 18:3n-3 and 14-fold greater for 20:3n-6 than for 18:2n-6. Thus, on a per dosage basis, the total amounts of n-3 and n-6 end products accreted in plasma were considerably greater for C20 EFA precursors relative to C18.  相似文献   

20.
The binding of estrogen-receptor (ER) complex to nuclei following post-synthetic modifications of proteins was examined in the uteri of young (18 weeks) and old (96 weeks) rats. Acetylation decreases the binding of ER complex to nuclei but methylation shows no effect on the extent of binding in both ages. On the other hand, phosphorylation enhances the binding of ER complex by two-fold in nuclei from young rats but reduces this to half in nuclei from old rats. The pattern of binding in salt-resistant nuclear fractions is similar to that in total nuclei except in methylation where old rats show about 20% higher binding as compared to the respective control. These findings suggest that post-synthetic modifications of proteins modulate the binding of ER complex to uterine nuclei in an age-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号