首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroleptic drugs increase the level of alpha-melanotropin (alpha-MSH) in the blood of the rat. We have investigated whether neuroleptic-like peptides, the gamma-type endorphins, also affect alpha-MSH release. A structure-activity study revealed that (des-enkephalin)-gamma-endorphin (DE gamma E, beta-LPH-(66-77), beta-endorphin-(6-17)) is able to increase plasma alpha-MSH levels after intracerebroventricular injection, while the longer gamma-type endorphins, i.e. gamma E (beta-LPH-(61-77)), beta-endorphin-(1-17)), and DT gamma E (beta-LPH-(62-77), beta-endorphin-(2-17)) were without effect in the dosage used. A dose-response study revealed a more or less bell-shaped relationship for the effect of DE gamma E on plasma alpha-MSH levels. The effect of DE gamma E could not be counteracted by apomorphine or naloxone. The observations indicate that DE gamma E increases plasma alpha-MSH levels in a way distinct from that of haloperidol and the opiate peptide beta-endorphin. On the other hand, a time-course of plasma alpha-MSH levels after DE gamma E administration resembled the one which has been seen after haloperidol injection. From experiments performed on pituitary neurointermediate lobes incubated in vitro, it seems not likely that DE gamma E acts directly on the dopamine receptors of the pituitary in affecting alpha-MSH release. In conclusion, it appears that DE gamma E affects alpha-MSH levels in plasma in a way distinct from that of the neuroleptic drug haloperidol and of the opiate-peptide beta-endorphin.  相似文献   

2.
J M van Ree  O Gaffori  I Kiraly 《Life sciences》1984,34(14):1317-1324
Low doses (10 ng) of the dopamine agonist apomorphine induced hypolocomotion when injected into the nucleus accumbens of rats. This behavioral response was antagonized by local treatment with either the opioid peptide gamma-endorphin (gamma E) or the non-opioid peptide N alpha-acetyl-gamma-endorphin (Ac gamma E) in a dose of 100 pg. High doses of apomorphine (10 micrograms) r amphetamine (2 micrograms) injected into the nucleus accumbens resulted in hyperlocomotion. This response was blocked by pretreatment with gamma E but not with Ac gamma E. This effect of gamma E could be prevented by local treatment with naloxone. Neither peptides interfered with the apomorphine-induced stereotyped sniffing when the substances were injected into the nucleus caudatus. It is concluded that gamma E and Ac gamma E differentially interact with distinct dopaminergic systems in the nucleus accumbens of the rat brain via an opioid and a non-opioid mechanism, suggesting that the peptide fragments originating from pro-opiomelanocortin may be specifically implicated in the control of dopaminergic activity in this brain area.  相似文献   

3.
Rats were injected with 1 μg of alpha-melanocyte stimulating hormone (α-MSH) into the third ventricle and locally in the ventral tegmental area and in different regions of the substantia nigra. The modifications produced on grooming behavior and locomotion as well as on the dopamine content of the nucleus accumbens and the caudate putamen, were studied. Both intraventricular peptide administration and microinjections into the ventral tegmental area induced excessive grooming and a significant increase of the locomotor activity. The dopamine content of the nucleus accumbens and caudate putamen was markedly reduced. Injections of the peptide into the substantia nigra pars compacta failed to induce excessive grooming but did provoke a slight increase in locomotor activity and a smaller change in caudate dopamine content than that observed by injections in the ventral tegmental area or in the third ventricle. Dopamine levels in the nucleus accumbens were not changed. Finally, the injections of α-MSH into the lateral substantia nigra did not produce either biochemical or behavioral changes.The results suggests that α-MSH can modify, directly or indirectly, the striatal dopaminergic activity and that the behavioral alterations observed such as excessive grooming, could be mediated by the activation of the dopamine cells from the ventral tegmental area, that in turn may provoke a significative release of dopamine at the caudate putamen nucleus as well as in nucleus accumbens.  相似文献   

4.
The present study was designed to examine the effect of 5-HT1B receptor ligands microinjected into the subregions of the nucleus accumbens (the shell and the core) on the locomotor hyperactivity induced by cocaine in rats. Male Wistar rats were implanted bilaterally with cannulae into the accumbens shell or core, and then were locally injected with GR 55562 (an antagonist of 5-HT1B receptors) or CP 93129 (an agonist of 5-HT1B receptors). Given alone to any accumbal subregion, GR 55562 (0.1-10 microg/side) or CP 93129 (0.1-10 microg/side) did not change basal locomotor activity. Systemic cocaine (10 mg/kg) significantly increased the locomotor activity of rats. GR 55562 (0.1-10 microg/side), administered intra-accumbens shell prior to cocaine, dose-dependently attenuated the psychostimulant-induced locomotor hyperactivity. Such attenuation was not found in animals which had been injected with GR 55562 into the accumbens core. When injected into the accumbens shell (but not the core) before cocaine, CP 93129 (0.1-10 microg/side) enhanced the locomotor response to cocaine; the maximum effect being observed after 10 microg/side of the agonist. The later enhancement was attenuated after intra-accumbens shell treatment with GR 55562 (1 microg/side). Our findings indicate that cocaine induced hyperlocomotion is modified by 5-HT1B receptor ligands microinjected into the accumbens shell, but not core, this modification consisting in inhibitory and facilitatory effects of the 5-HT1B receptor antagonist (GR 55562) and agonist (CP 93129), respectively. In other words, the present results suggest that the accumbal shell 5-HT1B receptors play a permissive role in the behavioural response to the psychostimulant.  相似文献   

5.
Thyrotrophin-releasing hormone (TRH) and its stable analogues CG3509 and RX77368 were injected directly into the nucleus accumbens, septum and striatum of the rat and locomotor activity was recorded. TRH (5-20 micrograms) caused a dose-dependent increase in locomotor activity when injected into the nucleus accumbens. TRH (20 micrograms) also increased locomotor activity after administration into the septum but not when put into the striatum. Both the TRH analogues (0.1 and 1.0 microgram) produced closely related increases in activity when injected into either the nucleus accumbens or septum but CG3509 was more potent with a longer lasting effect. Also, in contrast with TRH (20 micrograms), both TRH analogues stimulated locomotor activity when injected into the striatum at a dose of 1 microgram but the effect was less marked and delayed in onset compared to the nucleus accumbens and septum response. Dopamine (100 micrograms) injected into the accumbens or septum also produced significant increases in locomotor activity. The locomotor effects of the peptides are discussed in relation to a possible dopamine-mediated mechanism which contrasts with the actions of TRH and the analogues on barbiturate anaesthesia.  相似文献   

6.
A growing body of evidence suggests that several protein kinases are involved in the expression of pharmacological actions induced by a psychostimulant methamphetamine. The present study was designed to investigate the role of the Rho/Rho-associated kinase (ROCK)-dependent pathway in the expression of the increase in extracellular levels of dopamine in the nucleus accumbens and its related behaviors induced by methamphetamine in rats. Methamphetamine (1 mg/kg, subcutaneously) produced a substantial increase in extracellular levels of dopamine in the nucleus accumbens, with a progressive augmentation of dopamine-related behaviors including rearing and sniffing. Methamphetamine also induced the decrease in levels of its major metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA). Both the increase in extracellular levels of dopamine and the induction of dopamine-related behaviors by methamphetamine were significantly suppressed by pretreatment with an intranucleus accumbens injection of a selective ROCK inhibitor Y-27632. In contrast, Y-27632 had no effect on the decrease in levels of DOPAC and HVA induced by methamphetamine. Under these conditions, there were no changes in protein levels of membrane-bound RhoA in the nucleus accumbens following methamphetamine treatment. It is of interest to note that the microinjection of Y-27632 into the nucleus accumbens failed to suppress the increases in extracellular levels of dopamine, DOPAC, and HVA in the nucleus accumbens induced by subcutaneous injection of a prototype of micro -opioid receptor agonist morphine (10 mg/kg). Furthermore, perfusion of a selective blocker of voltage-dependent Na+ channels, tetrodotoxin (TTx) into the rat nucleus accumbens did not affect the increase in extracellular levels of dopamine in the rat nucleus accumbens by methamphetamine, whereas the morphine-induced dopamine elevation was eliminated by this application of TTx. The extracellular level of dopamine in the nucleus accumbens was also increased by perfusion of a selective dopamine re-uptake inhibitor 1-[2-[bis(4-fluorophenyl)methoxy]-4-(3-phenylpropyl)piperazine (GBR-12909) in the nucleus accumbens. This effect was not affected by pretreatment with intranucleus accumbens injection of Y-27632. These findings provide first evidence that Rho/ROCK pathway in the nucleus accumbens may contribute to the increase in extracellular levels of dopamine in the nucleus accumbens evoked by a single subcutaneous injection of methamphetamine. In contrast, this pathway is not essential for the increased level of dopamine in this region induced by morphine, providing further evidence for the different mechanisms of dopamine release by methamphetamine and morphine in rats.  相似文献   

7.
CART peptides are modulators of mesolimbic dopamine and psychostimulants   总被引:1,自引:0,他引:1  
CART peptide produces behavioral effects when injected into the VTA or nucleus accumbens. In the VTA, the peptide behaves like an endogenous psychostimulant and produces increased locomotor activity and conditioned place preference. Since this is blocked by dopamine receptor blockers, it presumably involves release of dopamine. But in the nucleus accumbens, CART peptide reduces the locomotor-increasing effects of cocaine. This suggests that the peptide is an interesting target for medications development.  相似文献   

8.
alpha N-acetyl human beta-endorphin-(1-31) injected icv to mice antagonized the analgesic activity of beta-endorphin-(1-31) and morphine whereas the analgesia evoked by DADLE and DAGO was enhanced by this treatment. The modulatory activity of alpha N-acetyl beta-endorphin-(1-31) was exhibited at remarkable low doses (fmols) reaching a maximum that persisted even though the dose was increased 100,000 times. The regulatory effect of a single dose of the acetylated neuropeptide lasted for 24h. The activity of alpha N-acetyl human beta-endorphin-(1-31) was partially retained by the shorter peptide alpha N-acetyl human beta-endorphin-(1-27) and to a lesser extent by beta-endorphin-(1-27), beta-endorphin-(1-31) lacked this regulatory activity on opioid analgesia. Acetylated beta-endorphin-(1-31) displayed a biphasic curve when competing with 5 pM [125I]-Tyr27 human beta-endorphin-(1-31) specific binding, the first step (20 to 30% of the binding) was abolished with an apparent IC50 of 0.35 nM, and the rest with an IC50 of 200 nM. It is suggested that alpha N-acetyl beta-endorphin-(1-31) changed the efficiency of the opioid analgesics by acting upon a specific substrate that is functionally coupled to the opioid receptor, presumably the guanine nucleotide binding regulatory proteins Gi/Go.  相似文献   

9.
Glycogen synthase kinase 3β (GSK3β), which is abundantly present in the brain, is known to contribute to psychomotor stimulant‐induced locomotor behaviors. However, most studies have been focused in showing that GSK3β is able to attenuate psychomotor stimulants‐induced hyperactivity by increasing its phosphorylation levels in the nucleus accumbens (NAcc). So, here we examined in the opposite direction about the effects of decreased phosphorylation of GSK3β in the NAcc core on both basal and cocaine‐induced locomotor activity by a bilateral microinjection into this site of an artificially synthesized peptide, S9 (0.5 or 5.0 μg/μL), which contains sequences around N‐terminal serine 9 residue of GSK3β. We found that decreased levels of GSK3β phosphorylation in the NAcc core enhance cocaine‐induced hyper‐locomotor activity, while leaving basal locomotor activity unchanged. This is the first demonstration, to our knowledge, that the selective decrease of GSK3β phosphorylation levels in the NAcc core may contribute positively to cocaine‐induced locomotor activity, while this is not sufficient for the generation of locomotor behavior by itself without cocaine. Taken together, these findings importantly suggest that GSK3β may need other molecular targets which are co‐activated (or deactivated) by psychomotor stimulants like cocaine to contribute to generation of locomotor behaviors.  相似文献   

10.
N R Swerdlow  G F Koob 《Life sciences》1984,35(25):2537-2544
Efferent fibers from the nucleus accumbens (N.Acc.) to the substantia innominata and lateral preoptic region (SI/LPO) are believed to be essential for the supersensitive locomotor response to apomorphine in rats following 60HDA-induced denervation of the N.Acc., since destruction of cells within the SI/LPO eliminates this supersensitive response. In the present study, the neurochemical properties of this efferent projection were investigated. Injection of muscimol, a GABA agonist, directly into the SI/LPO produced a dose-dependent decrease in supersensitive locomotor activity at doses that did not alter baseline locomotion. Higher doses of muscimol actually produced a prolonged locomotor activation in all animals. These results suggest that the locomotor activation following stimulation of supersensitive dopamine receptors within the N.Acc. may involve a decrease in GABAergic activity at the level of the SI/LPO.  相似文献   

11.
The exacerbation of the locomotor and stereotypic effects of amphetamine after repeated drug administration is well documented. To elaborate on the involvement of the nigrostriatal and mesolimbic dopamine (DA) systems in modulating behavioral sensitization, locomotor activity and the time spent engaged in repetitive stereotyped behaviors following systemic amphetamine injection were assessed after electrical stimulation of the nucleus accumbens and neostriatum. It was found that exposure to repeated sessions of high frequency, low current stimulation of the anteromedial neostriatum and nucleus accumbens significantly enhanced the locomotor excitation induced by administration of 3.0 mg/kg of amphetamine. Stereotypic behaviors were also modified as a function of electrical stimulation of these brain regions, with the development of a significant decrease in the duration of focused head and body movements corresponding to the facilitated locomotor effects of the drug. Taken together, these data provide additional evidence demonstrating the interdependent relationship between amphetamine-elicited locomotor activity and stereotypy, and were discussed in terms of a functional interaction between mesolimbic and nigrostriatal systems in determining the behavioral profile of amphetamine administration.  相似文献   

12.
Picomol doses of the acetylated derivative of beta-endorphin-(1-31), injected intracerebroventricularly (icv) in mice, reduced the analgesic activity of morphine, etorphine and beta-endorphin-(1-31), while the efficiency of DAGO and DADLE in producing analgesia was enhanced. The effects of the delta agonists DPDPE and [D-Ala2]-Deltorphin II were not altered by this treatment. After alpha N-acetyl beta-endorphin-(1-31) injection, morphine antagonized the analgesia of DAGO. The regulatory effect of alpha N-acetyl beta-endorphin-(1-31) was exhibited when giving the peptide both before (up to 24 h) and after the opioids. Naloxone did not prevent or reverse that modulatory activity; moreover, pretreatment with the acetylated peptide did not change the pA2 value displayed by the antagonist at the mu receptor. The antinociceptive activity of the alpha 2-adrenoceptor agonist clonidine was also increased in mice treated with alpha N-acetyl beta-endorphin-(1-31). The reducing activity of alpha N-acetyl beta-endorphin-(1-31) upon morphine- and beta-endorphin-induced analgesia was not exhibited in mice undergoing treatment with pertussis toxin or N-ethylmaleimide, agents known to impair the function of Gi/Go transducer proteins. However, the enhancing activity displayed by this peptide upon DAGO- DADLE and clonidine-evoked antinociception was still manifested. These results confirm and strengthen the idea of alpha N-acetyl beta-endorphin-(1-31) acting as a non-competitive regulator of mu opioid- and alpha 2-adrenoceptor-mediated supraspinal antinociception. A neural substrate acted on by both receptors (likely Gi/Go transducer proteins) appears to be involved in the effects of that neuropeptide.  相似文献   

13.
Des-tyrosine-γ-endorphin (DTγE) administered directly into the nucleus accumbens inhibited the locomotor activity that follows the intraaccumbens injection of methylphenidate. In contrast, when DTγE was injected into the nucleus accumbens it had no effect on the locomotor behavior elicited by the direct injection of dopamine into the nucleus accumbens. These results suggest an interaction of DTγE with presynaptic rather than postsynaptic dopaminergic systems.  相似文献   

14.
D-amphetamine is known to induce an increase in dopamine release in subcortical structures, thus inducing locomotor hyperactivity in rodents. Previous data have indicated that only 15% of the D-amphetamine-induced release of dopamine in the nucleus accumbens is related to locomotor activity and that this 'functional' dopamine release is controlled by alpha1b-adrenergic receptors located in the prefrontal cortex. We show here that SR46349B (0.5 mg/kg, 30 min before D-amphetamine), a specific serotonin2A (5-HT(2A)) antagonist, can completely block 0.75 mg/kg D-amphetamine-induced locomotor activity without decreasing D-amphetamine-induced extracellular dopamine levels in the nucleus accumbens. Using the same experimental paradigm as before, i.e. a systemic injection of D-amphetamine accompanied by a continuous local perfusion of 3 microM D-amphetamine, we find that SR46349B (0.5 mg/kg) blocks completely the systemic (0.75 mg/kg) D-amphetamine-induced functional dopamine release in the nucleus accumbens. Finally, the bilateral injection of SR46349B (500 pmol/side) into the ventral tegmental area blocked both the D-amphetamine-induced locomotor activity and functional dopamine release in the nucleus accumbens, whereas bilateral injection of SR46349B into the medial prefrontal cortex was ineffective. We propose that 5-HT(2A) and alpha1b-adrenergic receptors control a common neural pathway responsible for the release of dopamine in the nucleus accumbens by psychostimulants.  相似文献   

15.
Kim HC  Bing G  Shin EJ  Jhoo HS  Cheon MA  Lee SH  Choi KH  Kim JI  Jhoo WK 《Life sciences》2001,69(6):615-624
In order to understand the underlying mechanisms responsible for the behaviors mediated by dextromethorphan (DM), we examined the effects of DM on locomotor activity and locomotor patterns in mice, and Fos-related antigen immunoreactivity (FRA-IR) of mouse brain following repeated administration of cocaine. Combined treatments (30 min prior to each cocaine administration) with DM dose-dependently decreased locomotor activity for high doses of cocaine (20 mg/kg, i.p./day x 7). DM combinations did not significantly affect hyperactivity for 10 mg cocaine/kg, i.p./day x 7. In contrast, combined treatments with DM increased the locomotor activity for 5 mg cocaine/kg, i.p./day x 7. These results were consistent with alterations in marginal activity. Repeated administration with cocaine or DM increased FRA-IR in the nucleus accumbens (NAc) and striatum which lasted for at least 7 days. Our results suggest that DM exhibits biphasic effects on the locomotor stimulation induced by cocaine, and that locomotor activities are in parallel with FRA-IR of the striatal complex. However, the role of FRA-IR regulated by DM or/and cocaine remains to be further determined.  相似文献   

16.
The behavioral and neurotrophic effects of ACTH-(7-16)NH2 were assessed in a number of tests in which other ACTH fragments are active. Subcutaneous injection of ACTH-(7-16)NH2 increased motor activity of group-housed rats tested under low light intensity and induced hypokinesia in rats subjected to the mild stress of a nonfunctional "hot" plate. In rats with 6-OHDA lesions in the nucleus accumbens daily subcutaneous treatment with ACTH-(7-16)NH2 during the first week following the lesions reversed the lesion-induced motor hypoactivity. The ED50's for the effects of ACTH-(7-16)NH2 on the environmentally induced changes in motor activity, the stress-induced hypokinesia and the impaired motor activity of 6-OHDA lesioned rats were approximately 8 micrograms/kg. 6.3 micrograms/kg and 0.45 micrograms/kg respectively. It is concluded that ACTH-(7-16)NH2 may mimic the effect of an ACTH-like peptide in the brain involved in brain processes triggered by changes in the environment and by brain damage.  相似文献   

17.
18.
Serotonergic projections from the raphe nuclei are thought to modulate locomotor activity in the rat, and serotonin injection into the nucleus accumbens attenuates the hypermotility elicited by amphetamine. The purpose of the present study was to characterize the effects of various classes of serotonergic agonists administered into the nucleus accumbens on d-amphetamine-stimulated locomotor activity in order to determine which serotonin receptor subtypes are involved. Administration of the nonselective 5-HT agonist quipazine, the 5-HT-1 agonist mCPP, the 5-HT-1a agonist 8-OH-DPAT, the 5-HT-1b agonist CGS-12066B, and the 5HT-1c/2 agonist DOI did not inhibit d-amphetamine-stimulated locomotor activity. Pronounced lateral head weaving was noted after 8-OH-DPAT administration. The combination of the 5-HT-1a agonist 8-OH-DPAT and the 5-HT-1b agonist CGS-12066B, however, did inhibit d-amphetamine-stimulated locomotor activity. In contrast, the 5-HT-3 agonist 1-phenylbiguanide enhanced the locomotor effect of d-amphetamine. This effect was partially reversed by the 5-HT-3 antagonist MDL-7222. These studies suggest that serotonin has complex and multiple effects on the regulation of locomotor activity within the nucleus accumbens.  相似文献   

19.
Dopamine autoreceptors were studied by determining the effects of chronic antidepressant treatment on the ability of several doses of apomorphine to decrease 3,4-dihydroxyphenylalanine accumulation (an index of dopamine synthesis in vivo) after saline or γ-hydroxybutyric acid lactone (γ-butyrolactone). 3,4-Dihydroxyphenylalanine accumulation was measured in nigrostriatal [nucleus caudatus putamen] and mesolimbic [nucleus accumbens and tuberculum olfactorium] nerve terminals. Apomorphine decreased 3,4-dihydroxyphenylalanine accumulation in the nucleus caudatus putamen, tuberculum olfactorium and nucleus accumbens in a dose-related manner. Chronic imipramine (10 days) treatment attenuated the low and high dose apomorphine-induced decrease in 3,4-dihydroxyphenylalanine accumulation in the nucleus caudatus putamen to a greater extent than the tuberculum olfactorium or nucleus accumbens. In γ-butyrolactone-treated animals chronic treatment with imipramine, amitriptyline or bupropion (10 days) attenuated the low dose apomorphine effect in the nucleus caudatus putamen, but not the tuberculum olfactorium or nucleus accumbens. Only 2 days of imipramine treatment had no effect on the apomorphine-induced decrease in 3,4-dihydroxyphenylalanine accumulation in the nucleus caudatus putamen with or without γ-butyrolactone treatment. These data suggest that chronic treatment with three antidepressants produces dopamine autoreceptor subsensitivity in nigrostriatal neurons more than mesolimbic neurons and that this effect is not seen with short-term imipramine treatment.  相似文献   

20.
The in vivo effects of amperozide, a novel atypical antipsychotic drug, on the release of dopamine (DA) and the output of its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), were investigated in the striatum and the nucleus accumbens of awake, freely moving rats using microdialysis. Amperozide (2-10 mg/kg, s.c.) significantly increased extracellular levels of DA in both the striatum and nucleus accumbens in a dose-dependent manner. It had a similar but lesser effect on extracellular DOPAC levels in both regions. d-Amphetamine (2 mg/kg, s.c.) alone produced a very large (43-fold) increase in DA release, together with a 70% decrease in DOPAC levels in both the striatum and the nucleus accumbens. Amperozide (1-5 mg/kg, s.c.) 30 min before d-amphetamine (2 mg/kg) dose-dependently attenuated d-amphetamine-induced DA release but had no effect on the d-amphetamine-induced decrease in extracellular DOPAC levels in both regions. The effect of amperozide on d-amphetamine-induced DA release in the nucleus accumbens may explain the inhibitory effect of amperozide on amphetamine-induced locomotor activity. However, the failure of amperozide to block amphetamine-induced stereotypy, despite marked inhibition of striatal DA release, suggests the need to reexamine the importance of striatal DA for amphetamine-induced stereotypy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号