首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
FPP and adenosine modulate the adenylyl cyclase (AC)/cAMP signal transduction pathway in mammalian spermatozoa to elicit a biphasic response, initially stimulating capacitation and then inhibiting spontaneous acrosome loss. This study addressed the hypothesis that responses to FPP involve interactions between receptors for FPP and adenosine, the biphasic responses involving stimulatory and inhibitory adenosine receptors. Gln‐FPP, a competitive inhibitor of FPP, significantly inhibited binding of an adenosine analogue and responses to adenosine, especially in capacitated suspensions, consistent with interaction between FPP and adenosine receptors. CGS‐21680 (1 μM), a stimulatory A2a adenosine receptor agonist, significantly stimulated capacitation and cAMP in uncapacitated cells, while cyclopentyl adenosine (1 μM), an inhibitory A1 adenosine receptor agonist only affected capacitated cells, inhibiting spontaneous acrosome loss. Responses to FPP and adenosine were inhibited in uncapacitated cells by a selective A2a antagonist and in capacitated cells by a selective A1 antagonist; subsequent investigations indicated possible involvement of G proteins. Like FPP, cholera toxin stimulated capacitation and cAMP production in uncapacitated cells, suggesting involvement of a G protein with a Gαs subunit. In contrast, pertussis toxin prevented FPP's inhibition of both spontaneous acrosome loss and cAMP production, suggesting involvement of a Gαi/o subunit. Immunoblotting evidence revealed the presence of proteins of the appropriate molecular weights for Gαs, Gαi2, i3, and Gαo subunits. This study provides the first direct evidence suggesting the involvement of two different types of adenosine receptors and both Gαs and Gαi/o subunits in the regulation of capacitation, resulting in modulation of AC activity and availability of cAMP. Mol. Reprod. Dev. 53:459–471, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
Calcitonin stimulates capacitation in uncapacitated mouse spermatozoa and then inhibits spontaneous acrosome loss in capacitated cells, responses similar to those elicited by fertilization promoting peptide (FPP), a peptide known to regulate the adenylyl cyclase/cAMP pathway. This study investigated the hypothesis that calcitonin also modulates this pathway. Calcitonin significantly stimulated cAMP production in uncapacitated spermatozoa and then inhibited it in capacitated cells; the magnitude of both stimulatory and inhibitory changes was similar to that obtained with FPP but the inhibitory responses to FPP preceded those of calcitonin. This possibly reflects the involvement of two different adenosine receptors in response to FPP compared with one calcitonin receptor. Calcitonin receptors were located on the acrosomal cap and the flagellum, the midpiece having a greater abundance than the principal piece. Although both calcitonin and adenosine receptors are found in the head and flagellum, there was no evidence for cross-talk between them. Chlortetracycline investigations to determine the minimum extracellular Ca(2+) requirement for responses to calcitonin revealed that calcitonin significantly stimulated capacitation in Ca(2+)-deficient medium but FPP did not. Calcitonin also significantly stimulated cAMP production under these conditions, and similarly preincubated suspensions, when diluted into +Ca(2+) medium, were significantly more fertile in vitro than untreated controls. These results indicate that calcitonin, like FPP, acts as a first messenger to regulate the production of cAMP and mammalian sperm function, but the differences in Ca(2+) requirements suggest that calcitonin and FPP may regulate different isoforms of adenylyl cyclase.  相似文献   

3.
This study was designed to localize adenosine receptors and to provide evidence that specific receptors are active only in either uncapacitated or capacitated mouse spermatozoa, where they play a role in regulating cAMP production. Using specific antibodies, stimulatory A(2A) receptors were localized primarily on the acrosomal cap region and the flagellar principal piece. Interestingly, the staining was much more pronounced in uncapacitated than in capacitated spermatozoa, suggesting capacitation-dependent changes in epitope accessibility. A(1) receptors showed a very similar distribution, but the staining was markedly greater in capacitated than in uncapacitated cells. After addition of purified decapacitation factor (DF) to capacitated cells, strong staining for A(2A) was regained, suggesting reversibility in epitope accessibility. Chlortetracycline analysis revealed that an agonist specific for A(2A) receptors had no detectable effect on capacitated cells, but after DF-induced decapacitation, the agonist then stimulated capacitation. That agonist also significantly stimulated cAMP production in uncapacitated cells, had no effect on capacitated cells, but regained the ability to stimulate cAMP in the latter following DF treatment. In contrast, an A(1) agonist inhibited cAMP in capacitated cells. These results indicate that specific adenosine receptors function in a reversible manner in one or other capacitation state, resulting in regulation of cAMP.  相似文献   

4.
Effects of adenosine and pGlu-Glu-ProNH(2) (FPP) on the function and in vitro penetration of boar spermatozoa were examined. First, the effects of dibutyryl cAMP or agonists and antagonists of adenosine receptors (inhibitory adenosine receptors, A1AdR; stimulatory adenosine receptors, A2AdR) on freshly ejaculated spermatozoa were determined by chlortetracycline fluorescence assessment. Capacitation of spermatozoa was stimulated when they were cultured in a medium with dibutyryl cAMP, adenosine, A2AdR agonist, and adenosine plus A1AdR antagonist (CPT). However, acrosome reaction was inhibited only by adenosine. A1AdR agonist did not affect intact spermatozoa. A2AdR antagonist (DMPX) neutralized all of the effects of adenosine. Second, interaction of adenosine and FPP was examined. Gln-FPP, a competitive inhibitor of FPP, and DMPX inhibited the effects of adenosine and FPP, and CPT neutralized the inhibitory effect of FPP on acrosome reaction. Last, the effects of adenosine, FPP, and caffeine on the rate of sperm penetration were examined using frozen-thawed spermatozoa. Adenosine, FPP, and caffeine significantly enhanced the rate of sperm penetration as compared with the case of no additions. Caffeine treatment resulted in a high rate of polyspermic fertilization. In contrast, adenosine and FPP treatments resulted in an increased proportion of normal fertilization in in vitro-matured oocytes. These results suggest that boar spermatozoa can be modulated by the adenylyl cyclase/cAMP pathway via A2AdR in intact cells to induce capacitation and A1AdR in capacitated cells to inhibit spontaneous acrosome loss and that FPP receptors interact with A2AdR in intact cells and with A1AdR in capacitated cells. Furthermore, adenosine and FPP seem to be useful in reducing the incidence of polyspermic penetration.  相似文献   

5.
The 24p3 protein is a 25 kDa glycoprotein that is secreted into the uterine fluid during the proestrous phase of mice. We assessed the effects on spermatozoa motility and on the functions of mouse spermatozoa using the computer-assisted sperm analysis method, cytochemical staining and detection of the protein tyrosine phosphorylation pattern. Compared with the control cells, sperm motility was stimulated by the addition of 24p3 protein into the medium. Introducing 24p3 protein enhanced progressive motility but did not promote the appearance of hyperactivated movement. The presence of 24p3 protein in the medium did not allow the cells to undergo the capacitated protein tyrosine phosphorylation pattern and acrosome reaction. The tyrosine phosphorylation pattern shows phosphoproteins in the range of Mr 50000–106000 correlated with the sperm progressive motility after the addition of 24p3 protein into the medium. Using flow cytometry, we assessed the changes in the intracellular pH and measured the intracellular cAMP concentration with an immunodetection kit. The results indicated that the elevation in intracellular pH from 6.67 to 6.89, increase of intracellular cAMP accumulation, and protein tyrosine phosphorylation might be the factors in enhancement of sperm motility as the 24p3 protein bound to the spermatozoa. The 24p3 protein may have a role in regulating flagellar motility.  相似文献   

6.
Monoclonal antibodies against phosphoserine and phosphothreonine were used in the present study to investigate the changes in serine and threonine phosphorylation respectectively during capacitation of hamster spermatozoa. Immunoblot analysis of hamster spermatozoa capacitated in TALP, a medium that supports capacitation, showed that a set of four proteins of molecular weight 56, 63, 66, and 100 kDa was phosphorylated both at the serine and threonine residues. In addition, five other proteins of molecular weight 32, 39, 45, 53, and 61 kDa were phosphorylated specifically at the threonine residues. Of these nine proteins, the 100 kDa protein showed a time dependent or capacitation-dependent decrease in intensity which coincided with the percentage acrosome-reacted spermatozoa. In contrast, the 49 and 63 kDa threonine phosphorylated proteins showed increased phosphorylation coinciding with capacitation. H8 (a serine and threonine kinase inhibitor) had a transient effect on the phosphorylation of these two phosphothreonine proteins but inhibited acrosome reaction substantially all through the treatment period. Okadaic acid (OA) (a serine and threonine protein phosphatase inhibitor) inhibited hyperactivation but had no effect on acrosome reaction. In fact, OA stimulated acrosome reaction. Finally the immunofluorescence studies indicated localization of the serine phosphorylated proteins in tail as well as in head of the capacitated hamster spermatozoa whereas the threonine phosphorylated proteins were localized mostly in the tail of the spermatozoa. The findings of the present study suggest that serine/threonine phosphorylation and the enzymes responsible for regulating the level of phosphorylation play an important role in capacitation and capacitation-associated events namely hyperactivation and acrosome reaction. However, further studies are needed in order to establish the exact role of these proteins in capacitation of spermatozoa.  相似文献   

7.
Surface protein changes in goat spermatozoa during capacitation   总被引:1,自引:0,他引:1  
Polypeptides of goat sperm surface before and after capacitation were examined by radiolabelling and immunologically using polyclonal antisera. Radioiodination revealed five protein bands having mol wt of 14.8, 72.4, 81, 100 and 128 kDa in uncapacitated ejaculated spermatozoa and only three bands of 23.4, 27 and 72.4 KDa in capacitated spermatozoa. The protein band with mol wt 72.4 kDa was only feebly iodinated in uncapacitated sperm surface but in capacitated spermatozoa it was heavily labelled. Western blot analysis of detergent-extracted proteins using gamma-globulin fraction of antisera raised against purified goat sperm plasma membrane revealed six antigens (17.8, 29.1, 33.4, 45.6, 85.1, 123.2 kDa) in uncapacitated spermatozoa, four (26, 32.1, 40.1, 45.6 kDa) in capacitated spermatozoa and only one (45.6 kDa) in acrosome-reacted spermatozoa. High mol wt proteins were more numerous on the surface of uncapacitated spermatozoa while the capacitated spermatozoa had relatively low mol wt proteins. An apparent effect of capacitation is the metabolism and reorganisation of proteins on goat sperm surface. Polypeptides on capacitated sperm surface revealed through radiolabelling and polyclonal antisera may have a likely receptor(s) role in the recognition and binding to homologous zona pellucida during fertilization.  相似文献   

8.
Fertilization promoting peptide (FPP), a tripeptide structurally related to thyrotrophin releasing hormone (TRH), has been shown to stimulate capacitation and fertilizing ability in both mouse and human spermatozoa, but the mechanisms of action involved in these responses are currently unknown. In the present study utilizing epididymal mouse spermatozoa, we have compared the ability of FPP, TRH, and pyroglutamylphenylalanineprolineamide (an uncharged structurally related tripeptide found in seminal plasma) to stimulate capacitation. At 50 nM, the mean concentration of FPP found in human seminal plasma, only FPP produced a significant response. This suggests that if a receptor is involved, it is one distinct from the TRH receptor. A significant response to FPP required the presence of extracellular Ca2+, with 90 μm Ca2+ being sufficient to support a stimulation of capacitation. The addition of FPP to suspensions at later stages of capacitation indicated that the nature of the response changed, such that addition of FPP to capacitated suspensions inhibited spontaneous acrosome reactions; however, FPP-treated, cells were still able to undergo acrosomal exocytosis in response to progesterone, a physiological agonist of acrosomal exocytosis. Because earlier studies had identified a similar capacitation-related change in response to adenosine, being stimulatory early in capacitation and inhibitory later in capacitation, we investigated the possibility that FPP and adenosine might be acting via the same pathway. The combination of FPP plus adenosine, whether used at low, non-stimulatory concentrations or high, maximally-stimulatory concentrations, was more effective in promoting capacitation than either compound used individually. As observed with FPP, addition of adenosine to capacitated cells inhibited spontaneous acrosome loss but did not inhibit exocytosis in response to progesterone. This suggests that the two molecules are affecting a common pathway. Since adenosine, acting via specific cell surface receptors, can stimulate fertilizing ability and adenylate cyclase activity in uncapacitated cells and then inhibit enzyme activity in capacitated cells, we propose that FPP may act by modulating the adenylate cyclase/cyclic AMP signal transduction pathway. In vivo, FPP, which would contact spermatozoa at ejaculation and probably remain bound to cells for some time, could stimulate capacitation as the spermatozoa ascend the female tract; adenosine, present in seminal plasma and the female tract, could either augment FPP's action or replace it if FPP is lost from the cell surface. We therefore suggest that FPP and adenosine, by modulating adenylate cyclase activity to promote capacitation but inhibit spontaneous acrosomal exocytosis, may provide an endogenous mechanism that helps to optimize the fertilizing potential of the few sperm cells that reach the site of fertilization in vivo. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Capacitation confers on the spermatozoa the competence to fertilize the oocyte. At the molecular level, a cyclic adenosine monophosphate (cAMP) dependent protein tyrosine phosphorylation pathway operates in capacitated spermatozoa, thus resulting in tyrosine phosphorylation of specific proteins. Identification of these tyrosine‐phosphorylated proteins and their function with respect to hyperactivation and acrosome reaction, would unravel the molecular basis of capacitation. With this in view, 21 phosphotyrosine proteins have been identified in capacitated hamster spermatozoa out of which 11 did not identify with any known sperm protein. So, in the present study attempts have been made to ascertain the role of one of these eleven proteins namely glycerol‐3‐phosphate dehydrogenase 2 (GPD2) in hamster sperm capacitation. GPD2 is phosphorylated only in capacitated hamster spermatozoa and is noncanonically localized in the acrosome and principal piece in human, mouse, rat, and hamster spermatozoa, though in somatic cells it is localized in the mitochondria. This noncanonical localization may imply a role of GPD2 in acrosome reaction and hyperactivation. Further, enzymatic activity of GPD2 during capacitation correlates positively with hyperactivation and acrosome reaction thus demonstrating that GPD2 may be required for sperm capacitation.  相似文献   

10.
At ejaculation mammalian sperm lack fertilizing ability as they are released in a functionally immature form. The capacity to fertilize eggs is only acquired after they have been educated in the female reproductive tract and this phenomenon is termed as capacitation. Sperm capacitation includes a cascade of biochemical modifications, including cholesterol efflux, Ca(2+) influx and cAMP/PKA-dependent/independent protein tyrosine phosphorylation which is specifically considered as the biochemical marker for capacitation. The identification of tyrosine phosphoproteins shall be useful in delineating their physiological role in different events associated with sperm capacitation. The present study was conducted to identify the tyrosine phosphoproteins in the capacitated buffalo and cattle spermatozoa using 2D immunoblotting and mass spectrometry. Among several proteins identified in the buffalo capacitated sperm, serine/threonine-protein phosphatase PP1-gamma catalytic subunit, MGC157332 protein, alpha-enolase, 3-oxoacid CoA transferase 2 and actin-like protein 7A were identified as new tyrosine phosphorylation substrates in mammalian spermatozoa. Cattle sperm also contain proteins such as serine/threonine-protein phosphatase PP1-alpha catalytic subunit and membrane metallo-endopeptidase-like 1 which have not been reported as tyrosine phosphorylated in any other species. Though the presence of serine/threonine-protein phosphatase PP1-alpha catalytic subunit was demonstrated for the first time in mammalian sperm, further studies are required for its existence and possible role in different sperm functions.  相似文献   

11.
The possible roles of adenosine and the GTP analogue Gpp(NH)p in regulating mouse sperm adenylate cyclase activity were investigated during incubation in vitro under conditions in which after 30 min the spermatozoa are essentially uncapacitated and poorly fertile, whereas after 120 min they are capacitated and highly fertile. Adenylate cyclase activity, assayed in the presence of 1 mM ATP and 2 mM Mn2+, was determined by monitoring cAMP production. When adenosine deaminase (1 U/ml) was included in the assay to deplete endogenous adenosine, enzyme activity was decreased in the 30-min suspensions but increased in the 120-min samples (P < 0.02). This suggests that endogenous adenosine has a stimulatory effect on adenylate cyclase in uncapacitated spermatozoa but is inhibitory in capacitated cells. Since the expression of adenosine effects at low nucleoside concentrations usually requires guanine nucleotides, the effect of adding adenosine in the presence of 5 x 10–5 M Gpp(NH)p was examined. While either endogenous adenosine or adenosine deaminase may have masked low concentration (10?9?10?7 M) effects of exogenous adenosine, a marked inhibition (P < 0.001) of adenylate cyclase activity in both uncapacitated and capacitated suspensions was observed with higher concentrations (>10?5 M) of adenosine. Similar inhibition was also observed in the absence of Gpp(NH)p, suggesting the presence of an inhibitory P site on the enzyme. In further experiments, the effects of Gpp(NH)p in the presence and absence of adenosine deaminase were examined. Activity in 30-min suspensions was stimulated by the guanine nucleotide and in the presence of adenosine deaminase this stimulation was marked, reversing the inhibition seen with adenosine deaminase alone. In capacitated suspensions the opposite profile was observed, with Gpp(NH)p plus adenosine deaminase being inhibitory; again, this was a reversal of the effects obtained in the presence of adenosine deaminase alone, which had stimulated enzyme activity. These results suggest the existence of a stimulatory adenosine receptor site (Ra) on mouse sperm adenylate cyclase that is expressed in uncapacitated spermatozoa and an inhibitory receptor site (Ri) that is expressed in capacitated cells, with guanine nucleotides modifying the final response to adenosine. It is concluded that adenosine and guanine nucleotides may regulate mouse sperm adenylate cyclase activity during capacitation.  相似文献   

12.
Fraser LR 《Theriogenology》2008,70(8):1356-1359
Mammalian spermatozoa released into an appropriate environment in vitro can capacitate but then may undergo spontaneous acrosome reactions. Since successful sperm interaction with the zona pellucida of an unfertilized oocyte requires an intact sperm plasma membrane, spontaneous acrosome loss is biologically undesirable because it renders spermatozoa non-fertilizing. Several small molecules (fertilization promoting peptide [FPP], adenosine, calcitonin and adrenaline), found in various body fluids including seminal plasma, have been shown to regulate capacitation in vitro. They initially accelerate capacitation but then inhibit spontaneous acrosome loss, allowing spermatozoa to maintain their fertilizing potential. Specific receptors for all these molecules are present on mammalian spermatozoa and their activation by the appropriate ligands leads to modulation of membrane-associated adenylyl cyclase activity and production of cAMP, stimulating cAMP production in uncapacitated cells and inhibiting it in capacitated cells. Boar spermatozoa have been shown to respond in vitro to adenosine and FPP, suggesting that the addition of these molecules to sperm samples used for artificial insemination could be beneficial in helping spermatozoa maintain fertilizing potential until they reach their target.  相似文献   

13.
The addition of platelet-activating factor (PAF) to human neutrophils increases the levels of the tyrosine phosphorylation in several proteins. These proteins have molecular weights of 41 (pp41), 54 (pp54), 66 (pp66), 104 (pp104), and 116 (pp116) kDa. The effect of PAF was dose-dependent and could be seen at concentrations as low as 1 nM. The nonmetabolizable bioactive PAF analog, C-PAF, caused an increase in the level of phosphorylation of the same proteins in a time- and dose-dependent manner. On the contrary, lyso-PAF, enantio-PAF, and L-beta,gamma-dihexadecyl-alpha-lecithin failed to stimulate the phosphorylation of any of the aforementioned proteins. The response to PAF was prevented by the PAF antagonist BN-52021. The PAF-induced increases in tyrosine phosphorylation in pp66, pp116, and pp104 were selectively inhibited by pertussis toxin. In contrast, the level of pp41 phosphorylation remained unchanged after the pertussis toxin treatment. The calcium chelator EGTA significantly inhibited the PAF-produced phosphorylation of the pp41 protein. The intracellular calcium chelator 1,2-bis-(O-aminophenoxil)ethane-N,N,N',N'-tetraacetic acid (BAPTA) potentiated the PAF-enhanced levels of tyrosine phosphorylation on the pp41 protein. On the other hand, the PAF-induced phosphorylations of pp66, pp104, and pp116 were inhibited in BAPTA-treated cells. The calcium ionophore A23187 selectively potentiated the phosphorylation of the pp41 protein and reduced the phosphorylation in the pp54 protein. This phosphorylation was dependent on the extracellular calcium and was inhibited in toxin-treated cells. The results suggest that PAF is able to affect either directly or indirectly tyrosine kinase and/or phosphotyrosine phosphatase activities. The phosphorylation of the high and low molecular weight proteins are mediated by two different sets of kinases and/or phosphatases.  相似文献   

14.
Sperm motility is a process which involves a cascade of events mediated by cAMP and Ca2+, cAMP in the initiation of flagellar movement, and Ca2+ in the regulation of beat asymmetry, and it has been suggested that these two messengers act through phosphorylation/dephosphorylation of axonemal proteins. Only a few studies on human sperm protein phosphorylation have been reported and no relation of this process with motility or other function has been established. In the present study, phosphorylation of human sperm proteins was performed using detergent-demembranated spermatozoa, in which motility is reactivated by the addition of ATP. This system allows direct accessibility of intracellular kinases to [32P]-γATP and allows some relation between protein phosphorylation and flagellar movements. After electrophoresis and autoradiography, numerous phosphoproteins were detected. Phosphorylation of 2 proteins (36 and 51 kDa) was stimulated by cAMP in a concentration-dependent manner, and this increase was prevented by inhibitors of cAMP-dependent protein kinase. In order to characterize phosphoproteins originating from the cytoskeleton or axoneme, detergent extracted spermatozoa were also subjected to phosphorylation. Three major phosphorylated proteins (14.8, 15.3, and 16.2 kDa) were detected, the first two expressing cAMP-dependency according to their cAMP concentration-dependent increase in phosphorylation and the reversal of this effect by inhibitors of cAMP-dependent protein kinase. Proteins phosphorylation during the reactivation of demembranated spermatozoa previously immobilized H2O2, xanthine + xanthine oxidase-generated reactive oxygen species, or the oxidative phosphorylation uncoupler rotenone, revealed increases in cAMP-independent phosphorylation of proteins of 16.2, 46, and 93 kDa. These results documenting human sperm phosphoproteins form a base for further studies on the role of protein phosphorylation in sperm functions. © 1996 Wiley-Liss, Inc.  相似文献   

15.
As mammalian spermatozoa migrate through the epididymis, they acquire functionality characterized by the potential to express coordinated movement and the competence to undergo capacitation. The mechanisms by which spermatozoa gain the ability to capacitate during epididymal transit are poorly understood. The purpose of this study was to investigate the impact of epididymal maturation on the signal transduction pathways regulating tyrosine phosphorylation, because this process is thought to be central to the attainment of a capacitated state and expression of hyperactivated motility. Western blot and immunocytochemical analyses demonstrated that epididymal maturation in vivo is associated with a progressive loss of phosphotyrosine residues from the sperm head. As cells pass from the caput to the cauda epididymis, tyrosine phosphorylation becomes confined to a narrow band at the posterior margin of the acrosomal vesicle. Epididymal maturation of rat spermatozoa was also associated with an acquired competence to respond to high levels of intracellular cAMP by phosphorylating tyrosine residues on the sperm tail. Immature caput spermatozoa were incapable of exhibiting this response, despite the apparent availability of cAMP and protein kinase A. These findings help to clarify the biochemical changes associated with the functional maturation of spermatozoa during epididymal transit.  相似文献   

16.
This study was undertaken in order to characterize alterations occurring in cooled boar spermatozoa by a chlortetracycline (CTC) staining assay and immunodetection of tyrosine-phosphorylated sperm proteins. Spermatozoa were collected from 10 mature boars, washed and then resuspended in a Tris-citric acid-glucose (TCG) solution. The sperm suspensions were slowly cooled to 4 degrees C over 5 h and held for 2 days. Aliquots of the sperm suspensions were recovered before and after the cooling treatment and then used for the CTC staining assay and immunodetection of tyrosine-phosphorylated sperm proteins. Before the cooling treatment, almost all of the spermatozoa stained with CTC were characterized by uniform fluorescence over the whole head (an F pattern: uncapacitated spermatozoa). After the cooling treatment, however, significant higher percentages of spermatozoa exhibited a B pattern with a dark band of diminished fluorescence in the post acrosomal region and a relatively bright fluorescence in the acrosomal region (the pattern of capacitated spermatozoa). Coincidently, a 32 kDa tyrosine-phosphorylated protein appeared in the spermatozoa. However, these alterations occurring in the cooled spermatozoa were attenuated by the supplementation to the sperm suspensions with seminal plasma (20% (v/v)). Additionally, the same alterations were observed in the spermatozoa incubated in a capacitation-supporting medium (a modified Krebs-Ringer bicarbonate; mKRB) for 5 h. These results suggest that cooling could induce capacitation-like alterations in boar spermatozoa that were associated with the tyrosine phosphorylation of the 32 kDa sperm protein.  相似文献   

17.
18.
Interleukin 3 (IL-3) is required for the proliferation of growth factor-dependent myeloid cell lines. To determine the possible signal transduction mechanisms involved in IL-3 growth regulation, we have examined the effects of IL-3 on tyrosine phosphorylation. Using a monoclonal antibody against phosphotyrosine, IL-3 was found to specifically and rapidly induce tyrosine phosphorylation of cytoplasmic proteins of 70, 56, and 38 kDa and a membrane-associated glycoprotein of 140 kDa. Minor and/or variable detected phosphoproteins of 120, 85, 51, and 28 kDa were also seen. Oncogenes encoding tyrosine protein kinases abrogate the requirement of factor-dependent myeloid cells for IL-3. We therefore compared the phosphoprotein profiles of a transformed, IL-3-independent cell line with the IL-3-induced profile. In cells transformed with trk, the 56-, 51-, and 38-kDa cytoplasmic phosphoproteins were constitutively phosphorylated, whereas the 140-kDa phosphoprotein was only phosphorylated in the presence of IL-3. Taken together, these results support a role for tyrosine phosphorylation in the IL-3 signal transduction pathway and suggest that growth factor abrogation by oncogenes encoding tyrosine protein kinases may be due to the phosphorylation of substrates which are normally phosphorylated in response to IL-3.  相似文献   

19.
A cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein tyrosine phosphorylation is involved in the expression of fertilizing ability in mammalian spermatozoa. However, there are only limited data concerning the identification of protein tyrosine kinase (PTK) that is activated by the cAMP signaling. In this study, we have shown data supporting that boar sperm flagellum possesses a unique cAMP-protein kinase A (PKA) signaling cascade leading to phosphorylation of Syk PTK at the tyrosine residues of the activation loop. Ejaculated spermatozoa were washed and then incubated in a modified Krebs-Ringer HEPES medium (mKRH) containing polyvinyl alcohol (PVA) plus 0.1 mM cBiMPS (a cell-permeable cAMP analog), 0.25 mM sodium orthovanadate (Na3VO4) (a protein tyrosine phosphatase (PTP) inhibitor) or both at 38.5 degrees C for 180 min. Aliquots of the sperm suspensions were recovered before and after incubation and then used to detect sperm tyrosine-phosphorylated proteins by Western blotting and indirect immunofluorescence. In the Western blotting, the anti-phosphotyrosine monoclonal antibody (4G10) recognized several bands including 72-kDa protein in the protein extracts from spermatozoa that were incubated solely with cBiMPS. The tyrosine phosphorylation in these sperm proteins was dependent on cBiMPS and enhanced by the addition of Na3VO4. The 72-kDa tyrosine-phosphorylated protein was apparently reacted with the anti-phospho-Syk antibody (Tyr525/526). Indirect immunofluorescence revealed that the connecting and principal pieces of spermatozoa incubated with cBiMPS and Na3VO4 were stained with the anti-phospho-Syk antibody. However, the reactivity of the 72-kDa protein with the anti-phospho-Syk antibody was reduced by the addition of H-89 (a PKA inhibitor, 0.01-0.1 mM) to the sperm suspensions but not affected by the pretreatment of spermatozoa with BAPTA-AM (an intracellular Ca2+ chelator, 0.1 mM). Fractionation of phosphorylated proteins from the spermatozoa with a detergent Nonidet P-40 suggested that the 72-kDa tyrosine-phosphorylated protein might be a cytoskeletal component. Based on these findings, we have concluded that the cAMP-PKA signaling is linked to the Ca2+-independent tyrosine phosphorylation of Syk in the connecting and principal pieces of boar spermatozoa.  相似文献   

20.
The stimulation of activated human T lymphocytes with IL-2 results in increased tyrosine kinase activity. IL-2 treatment of Tac+ T cells stimulates the rapid phosphorylation of multiple protein substrates at M of 116, 100, 92, 70 to 75, 60, 56, 55, 33, and 32 kDa. Phosphorylation on tyrosine residues was detected by immunoaffinity purification of protein substrates with Sepharose linked antiphosphotyrosine mAb, 1G2. Although phorbol ester stimulated serine phosphorylation of the IL-2R alpha (p55) subunit recognized by alpha TAC mAb, IL-2 did not stimulate any detectable phosphorylation of IL-2R alpha or associated coimmune precipitated proteins. In fact, the tyrosine phosphorylated proteins did not coprecipitate with alpha Tac antibody and similar phosphoproteins were stimulated by IL-2 in IL-2R alpha- human large granular lymphocytes which express only the 70 to 75 kDa IL-2R beta subunit of the high affinity IL-2R. Anti-Tac mAb could inhibit IL-2-stimulated tyrosine phosphorylation in activated T cells, which express both IL-2R subunits that together form the high affinity receptor complex, but not in large granular lymphocytes expressing only the IL-2R beta subunit. The data suggest that IL-2 stimulation of tyrosine kinase activities requires only the IL-2R beta subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号