首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Differential effects on the proliferation of individual vs. combined administration of high-and lowmolecular-weight microbial autoregulators (extracellular RNase fromBacillus intermedius and anabiosis inducing factord 1) are reported for the first time for cultured cells of higher eukaryotes. Proliferation ofras- transformed mouse fibroblasts was affected by both autoregulators dose-dependently. The cytotoxic activity of individual regulators was directly related to their concentration. Unlike RNase, factord 1 (which functions as a chemical chaperone) exerted reversible effects. Studies of the effects of combined administration of the autoregulators demonstrated that pretreatment of the cells with low-dosed 1 decreased the toxicity of RNase. Higher doses ofd 1 were required to attenuate the effects of toxic agents with more pronounced membrane tropism. The results obtained suggest that a universal system regulating the physiological activity of cells is operative in taxonomically remote organisms. The operation of the system is based on sequential changes in the structural organization and function of subcellular structures induced by low-and high-molecular-weight autoregulators.  相似文献   

2.
The haloalkaliphilic, lithoautotrophic, sulfur-oxidizing gram-negative bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum were found to possess a special system for the autoregulation of their growth. The system includes the extracellular autoinducers of anabiosis (the d1 factor) and autolysis (the d2 factor). The principal components of the d1 factor are alkylhydroxybenzenes. The principal components of the d2 factor are free unsaturated fatty acids dominated by oleic acid isomers. Like the respective autoregulators of neutrophilic bacteria, the d1 factor of haloalkaliphilic bacteria presumably controls their growth and transition to a anabiotic state, while the d2 factor controls autolytic processes. Alkylhydroxybenzenes of both microbial and chemical origin were found to influence bacterial respiration. The low-molecular-weight osmoprotectant glycine betaine enhanced the thermostability of trypsin. This suggests that glycine betaine, like the d1 factor, serves as a molecular chaperone.  相似文献   

3.
Ribonuclease A (RNase A) and the ribonuclease inhibitor protein (RI) form one of the tightest known protein-protein complexes. RNase A variants and homologues, such as G88R RNase A, that retain ribonucleolytic activity in the presence of RI are toxic to cancer cells. Herein, a new and facile assay is described for measuring the equilibrium dissociation constant (K(d)) and dissociation rate constant (k(d)) for complexes of RI and RNase A. This assay is based on the decrease in fluorescence intensity that occurs when a fluorescein-labeled RNase A binds to RI. To allow time for equilibration, the assay is most readily applied to those complexes with K(d) values in the nanomolar range or higher. Using this assay, the value of K(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be 0.55 +/- 0.03 nM. In addition, the value of K(d) was determined for the complex of RI with unlabeled G88R RNase A to be 0.57 +/- 0.05 nM by using a competition assay with fluorescein-labeled G88R RNase A. Finally, the value of k(d) for the complex of RI with fluorescein-labeled G88R RNase A was determined to be (7.5 +/- 0.4) x 10(-3) s(-1) by monitoring the increase in fluorescence intensity upon dissociation. This assay can be used to characterize complexes of RI with a wide variety of RNase A variants and homologues, including those with cytotoxic activity.  相似文献   

4.
The design of new antisense oligomers with improved binding affinity for targeted RNA, while still activating RNase H, is a major research area in medicinal chemistry. RNase H recognizes the RNA-DNA duplex and cleaves the complementary mRNA strand, providing the main mechanism by which antisense oligomers elicit their activities. It has been shown that configuration inversion at the C2' position of the DNA sugar moiety (arabinonucleic acid, ANA), combined with the substitution of the 2'OH group by a fluorine atom (2'F-ANA) increases the oligomer's binding affinity for targeted RNA. In the present study, we evaluated the antisense activity of mixed-backbone phosphorothioate oligomers composed of 2'-deoxy-2'-fluoro-beta-D-arabinose and 2'-deoxyribose sugars (S-2'F-ANA-DNA chimeras). We determined their abilities to inhibit the protein expression and phosphorylation of Flk-1, a vascular endothelial growth factor receptor (VEGF), and VEGF biological effects on endothelial cell proliferation, migration, and platelet-activating factor synthesis. Treatment of endothelial cells with chimeric oligonucleotides reduced Flk-1 protein expression and phosphorylation more efficiently than with phosphorothioate antisenses (S-DNA). Nonetheless, these two classes of antisenses inhibited VEGF activities equally. Herein, we also demonstrated the capacity of the chimeric oligomers to elicit RNase H activity and their improved binding affinity for complementary RNA as compared with S-DNA.  相似文献   

5.
The 2′,5′-oligoadenylate (2-5A) system is an RNA degradation pathway which plays an important role in the antipicornavirus effects of interferon (IFN). RNase L, the terminal component of the 2-5A system, is thought to mediate this antiviral activity through the degradation of viral RNA; however, the capacity of RNase L to selectively target viral RNA has not been carefully examined in intact cells. Therefore, the mechanism of RNase L-mediated antiviral activity was investigated following encephalomyocarditis virus (EMCV) infection of cell lines in which expression of transfected RNase L was induced or endogenous RNase L activity was inhibited. RNase L induction markedly enhanced the anti-EMCV activity of IFN via a reduction in EMCV RNA. Inhibition of endogenous RNase L activity inhibited this reduction in viral RNA. RNase L had no effect on IFN-mediated protection from vesicular stomatitis virus. RNase L induction reduced the rate of EMCV RNA synthesis, suggesting that RNase L may target viral RNAs involved in replication early in the virus life cycle. The RNase L-mediated reduction in viral RNA occurred in the absence of detectable effects on specific cellular mRNAs and without any global alteration in the cellular RNA profile. Extensive rRNA cleavage, indicative of high levels of 2-5A, was not observed in RNase L-induced, EMCV-infected cells; however, transfection of 2-5A into cells resulted in widespread degradation of cellular RNAs. These findings provide the first demonstration of the selective capacity of RNase L in intact cells and link this selective activity to cellular levels of 2-5A.  相似文献   

6.
Dimers, trimers, and tetramers of bovine ribonuclease A, obtained by lyophilization of the enzyme from 40% acetic acid solutions, were purified and isolated by cation exchange chromatography. The two conformers constituting each aggregated species were assayed for their antitumor, aspermatogenic, or embryotoxic activities in comparison with monomeric RNase A and bovine seminal RNase, which is dimeric in nature. The antitumor action was tested in vitro on ML-2 (human myeloid leukemia) and HL-60 (human myeloid cell line) cells and in vivo on the growth of human non-pigmented melanoma (line UB900518) transplanted subcutaneously in nude mice. RNase A oligomers display a definite antitumor activity that increases as a function of the size of the oligomers. On ML-2 and HL-60 cells, dimers and trimers generally show a lower activity than bovine seminal RNase; the activity of tetramers, instead, is similar to or higher than that of the seminal enzyme. The growth of human melanoma in nude mice is inhibited by RNase A oligomers in the order dimers < trimers < tetramers. The action of the two tetramers is very strong, blocking almost completely the growth of melanoma. RNase A dimers, trimers, and tetramers display aspermatogenic effects similar to those of bovine seminal RNase, but, contrarily, they do not show any embryotoxic activity.  相似文献   

7.
We previously showed that the intrahepatic induction of cytokines such as alpha/beta interferon (IFN-alpha/beta) and gamma interferon (IFN-gamma) inhibits hepatitis B virus (HBV) replication noncytopathically in the livers of transgenic mice. The intracellular pathway(s) responsible for this effect is still poorly understood. To identify interferon (IFN)-inducible intracellular genes that could play a role in our system, we crossed HBV transgenic mice with mice deficient in IFN regulatory factor 1 (IRF-1), the double-stranded RNA-activated protein kinase (PKR), or RNase L (RNase L) (IRF-1(-/-), PKR(-/-), or RNase L(-/-) mice, respectively), three well-characterized IFN-inducible genes that mediate antiviral activity. We showed that unmanipulated IRF-1(-/-) or PKR(-/-) transgenic mice replicate HBV in the liver at slightly higher levels than the respective controls, suggesting that both IRF-1 and PKR individually appear to mediate signals that modulate HBV replication under basal conditions. These same animals were responsive to the antiviral effects of the IFN-alpha/beta inducer poly(I-C) or recombinant murine IFN-gamma, suggesting that under these conditions, either the IRF-1 or the PKR genes can mediate the antiviral activity of the IFNs or other IFN-inducible genes mediate the antiviral effects. Finally, RNase L(-/-) transgenic mice were undistinguishable from controls under basal conditions and after poly(I-C) or IFN-gamma administration, suggesting that RNase L does not modulate HBV replication in this model.  相似文献   

8.
Cellular factor affecting the stability of beta-globin mRNA   总被引:4,自引:0,他引:4  
C A Stolle  E J Benz 《Gene》1988,62(1):65-74
Messenger RNAs in eukaryotic cells exhibit a broad range of stabilities in vivo. Globin mRNA has a half life in excess of 50 h, but the half life of the c-myc oncogene mRNA is less than 20 min. Regulation of gene expression may be accomplished by a variety of mechanisms, including altering mRNA stability. We have examined the nuclear and cytoplasmic fractions of cells for factors affecting the metabolism of mRNA. Here we report that a HeLa whole-cell extract contains a factor that protects beta-globin mRNA from attack by RNases in a mouse erythroleukemia cell cytoplasmic extract. The factor is non-dialysable, inactivated by proteinase K and heat treatment, and resistant to RNase and DNase digestion. The HeLa cell factor resembles placental RNase inhibitor in that the mRNA-protecting activity is effective against RNase A and that treatment of the extract with N-ethylmaleimide completely destroys the protective activity. However, purified placental RNase inhibitor was unable to inhibit the RNase activity in the MELC cytoplasmic extract. These results suggest that the HeLa cell extract contains an RNase inhibitor (or inhibitors) with an activity or specificity that is distinct from that of placental RNase inhibitor.  相似文献   

9.
Acid azo dyes, most of them naphtholdisulfonic acid derivatives, were given intraperitoneally to rats and their effect on "alkaline" ribonuclease activity was studied in total homogenates of kidney cortex and liver. Acid treatment was used to release bound enzyme activity. Several of the dyes, including trypan blue, increased RNase activity in both organs 3 days after administration of single doses, while others, like Evans blue, were inactive. Activity was apparently bound to the sulfonic substitution in the 3, 6 positions in the naphthalene rings, substitutions in the benzidine rings being not critical. All of the active and most of the inactive compounds were taken up by tubule cells of kidney cortex and by reticular and parenchymal cells of liver. While the effect on both liver and kidney was obtained 1 day after trypan blue administration, RNase remained increased for only about 3 days in the first organ, and for at least a month in the second. However, repeated trypan blue doses increased liver enzyme activity for at least 9 days. Serum RNase activity was decreased after trypan blue administration. Ethionine administration together with trypan blue markedly blocked the effect of the dye on liver RNase activity; simultaneously given methionine partially reversed the action of the antimetabolite. This suggests that de novo synthesis of RNase is induced in liver by trypan blue. The action of ethionine on the kidney RNase response to trypan blue was less marked although significant; in view of the possible kidney uptake of the plasma enzyme, interpretation of this finding must be postponed. Results are discussed with reference to the mechanism of the structural specificity of the compounds used, cytological localization of the dyes and their mechanism of action on liver and kidney RNase.  相似文献   

10.
2-5A-dependent RNase is the terminal factor in the interferon-regulated 2-5A system thought to function in both the molecular mechanism of interferon action and in the general control of RNA stability. However, direct evidence for specific functions of 2-5A-dependent RNase has been generally lacking. Therefore, we developed a strategy to block the 2-5A system using a truncated form of 2-5A-dependent RNase which retains 2-5A binding activity while lacking RNase activity. When the truncated RNase was stably expressed to high levels in murine cells, it prevented specific rRNA cleavage in response to 2-5A transfection and the cells were unresponsive to the antiviral activity of interferon alpha/beta for encephalomyocarditis virus. Remarkably, cells expressing the truncated RNase were also resistant to the antiproliferative activity of interferon. The truncated RNase is a dominant negative mutant that binds 2-5A and that may interfere with normal protein-protein interactions through nine ankyrin-like repeats.  相似文献   

11.
Apoptosis of viral infected cells appears to be one defense strategy to limit viral infection. Interferon can also confer viral resistance by the induction of the 2-5A system comprised of 2'-5' oligoadenylate synthetase (OAS), and RNase L. Since rRNA is degraded upon activation of RNase L and during apoptosis and since both of these processes serve antiviral functions, we examined the role RNase L may play in cell death. Inhibition of RNase L activity, by transfection with a dominant negative mutant, blocked staurosporine-induced apoptosis of NIH3T3 cells and SV40-transformed BALB/c cells. In addition, K562 cell lines expressing inactive RNase L were more resistant to apoptosis induced by decreased glutathione levels. Hydrogen peroxide-induced death of NIH3T3 cells did not occur by apoptosis and was not dependent upon active RNAse L. Apoptosis regulatory proteins of the Bcl-2 family did not exhibit altered expression levels in the absence of RNase L activity. RNase L is required for certain pathways of cell death and may help mediate viral-induced apoptosis.  相似文献   

12.
RNase L is an antiviral endoribonuclease that cleaves viral mRNAs after single-stranded UA and UU dinucleotides. Poliovirus (PV) mRNA is surprisingly resistant to cleavage by RNase L due to an RNA structure in the 3C(Pro) open reading frame (ORF). The RNA structure associated with the inhibition of RNase L is phylogenetically conserved in group C enteroviruses, including PV type 1 (PV1), PV2, PV3, coxsackie A virus 11 (CAV11), CAV13, CAV17, CAV20, CAV21, and CAV24. The RNA structure is not present in other human enteroviruses (group A, B, or D enteroviruses). Coxsackievirus B3 mRNA and hepatitis C virus mRNA were fully sensitive to cleavage by RNase L. HeLa cells expressing either wild-type RNase L or a dominant-negative mutant RNase L were used to examine the effects of RNase L on PV replication. PV replication was not inhibited by RNase L activity, but rRNA cleavage characteristic of RNase L activity was detected late during the course of PV infection, after assembly of intracellular virus. Rather than inhibiting PV replication, RNase L activity was associated with larger plaques and better cell-to-cell spread. Mutations in the RNA structure associated with the inhibition of RNase L did not affect the magnitude of PV replication in HeLa cells expressing RNase L, consistent with the absence of observed RNase L activity until after virus assembly. Thus, PV carries an RNA structure in the 3C protease ORF that potently inhibits the endonuclease activity of RNase L, but this RNA structure does not prevent RNase L activity late during the course of infection, as virus assembly nears completion.  相似文献   

13.
Although ribonuclease H activity has long been implicated as a molecular mechanism by which DNA-like oligonucleotides induce degradation of target RNAs, definitive proof that one or more RNase H is responsible is lacking. To date, two RNase H enzymes (H1 and H2) have been cloned and shown to be expressed in human cells and tissues. To determine the role of RNase H1 in the mechanism of action of DNA-like antisense drugs, we varied the levels of the enzyme in human cells and mouse liver and determined the correlation of those levels with the effects of a number of DNA-like antisense drugs. Our results demonstrate that in human cells RNase H1 is responsible for most of the activity of DNA-like antisense drugs. Further, we show that there are several additional previously undescribed RNases H in human cells that may participate in the effects of DNA-like antisense oligonucleotides.  相似文献   

14.
Ribonuclease P (RNase P) is involved in regulation of noncoding RNA (ncRNA) expression in Saccharomyces cerevisiae. A hidden-in-reading-frame antisense-1 (HRA1) RNA in S. cerevisiae, which belongs to a class of ncRNAs located in the antisense strand to verified protein coding regions, was cloned for further use in RNase P assays. Escherichia coli RNase P assays in vitro of HRA1 RNA show two cleavage sites, one major and one minor in terms of rates. The same result was observed with a partially purified S. cerevisiae RNase P activity, both at 30 degrees C and 37 degrees C. These latter cells are normally grown at 30 degrees C. Predictions of the secondary structure of HRA1 RNA in silico show the cleavage sites are canonical RNase P recognition sites. A relatively small amount of endogenous HRA1 RNA was identified by RT-PCR in yeast cells. The endogenous HRA1 RNA is increased in amount in strains that are deficient in RNase P activity. A deletion of 10 nucleotides in the HRA1 gene that does not overlap with the gene coding for a protein (DRS2) in the sense strand shows no defective growth in galactose or glucose. These data indicate that HRA1 RNA is a substrate for RNase P and does not appear as a direct consequence of separate regulatory effects of the enzyme on ncRNAs.  相似文献   

15.
16.
RNase Po1 is a guanylic acid-specific ribonuclease (a RNase T1 family RNase) from Pleurotus ostreatus. We determined the cDNA sequence encoding RNase Po1 and expressed RNase Po1 in Escherichia coli. A comparison of the enzymatic properties of RNase Po1 and RNase T1 indicated that the optimum temperature for RNase Po1 activity was 20 °C higher than that for RNase T1. An MTT assay indicated that RNase Po1 inhibits the proliferation of human neuroblastoma cells (IMR-32 and SK-N-SH) and human leukemia cells (Jurkat and HL-60). Furthermore, Hoechst 33342 staining showed morphological changes in HL-60 cells due to RNase Po1, and flow cytometry indicated the appearance of a sub-G1 cell population. The extent of these changes was dependent on the concentration of RNase Pol. We suggest that RNase Po1 induces apoptosis in tumor cells.  相似文献   

17.
18.
19.
20.
Activation of RNase L by 2′,5′-linked oligoadenylates (2-5A) is one of the antiviral pathways of interferon action. To determine the involvement of the 2-5A system in the control of human immunodeficiency virus type 1 (HIV-1) replication, a segment of the HIV-1 nef gene was replaced with human RNase L cDNA. HIV-1 provirus containing sense orientation RNase L cDNA caused increased expression of RNase L and 500- to 1,000-fold inhibition of virus replication in Jurkat cells for a period of about 2 weeks. Subsequently, a partial deletion of the RNase L cDNA which coincided with increases in virus production occurred. The anti-HIV activity of RNase L correlated with decreases in HIV-1 RNA and with an acceleration in cell death accompanied by DNA fragmentation. Replication of HIV-1 encoding RNase L was also transiently suppressed in peripheral blood lymphocytes (PBL). In contrast, recombinant HIV containing reverse orientation RNase L cDNA caused decreased levels of RNase L, increases in HIV yields, and reductions in the anti-HIV effect of alpha interferon in PBL and in Jurkat cells. To obtain constitutive and continuous expression of RNase L cDNA, Jurkat cells were cotransfected with HIV-1 proviral DNA and with plasmid containing a cytomegalovirus promoter driving expression of RNase L cDNA. The RNase L plasmid suppressed HIV-1 replication by eightfold, while an antisense RNase L construct enhanced virus production by twofold. These findings demonstrate that RNase L can severely impair HIV replication and suggest involvement of the 2-5A system in the anti-HIV effect of alpha interferon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号