首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the impact of Pleistocene glacial cycles on the diversification of the tropical biota was once dismissed, increasing evidence suggests that Pleistocene climatic fluctuations greatly affected the distribution and population divergence of tropical organisms. Landscape genomic analyses coupled with paleoclimatic distribution models provide a powerful way to understand the consequences of past climate changes on the present‐day tropical biota. Using genome‐wide SNP data and mitochondrial DNA, combined with projections of the species distribution across the late Quaternary until the present, we evaluate the effect of paleoclimatic shifts on the genetic structure and population differentiation of Hypsiboas lundii, a treefrog endemic to the South American Cerrado savanna. Our results show a recent and strong genetic divergence in H. lundii across the Cerrado landscape, yielding four genetic clusters that do not seem congruent with any current physical barrier to gene flow. Isolation by distance (IBD) explains some of the population differentiation, but we also find strong support for past climate changes promoting range shifts and structuring populations even in the presence of IBD. Post‐Pleistocene population persistence in four main areas of historical stable climate in the Cerrado seems to have played a major role establishing the present genetic structure of this treefrog. This pattern is consistent with a model of reduced gene flow in areas with high climatic instability promoting isolation of populations, defined here as “isolation by instability,” highlighting the effects of Pleistocene climatic fluctuations structuring populations in tropical savannas.  相似文献   

2.
Understanding the biotic consequences of Pleistocene range shifts and fragmentation remains a fundamental goal in historical biogeography and evolutionary biology. Here, we combine species distribution models (SDM) from the present and two late Quaternary time periods with multilocus genetic data (mitochondrial DNA and microsatellites) to evaluate the effect of climate‐induced habitat shifts on population genetic structure in the Large‐blotched Ensatina (Ensatina eschscholtzii klauberi), a plethodontid salamander endemic to middle and high‐elevation conifer forest in the Transverse and Peninsular Ranges of southern California and northern Baja California. A composite SDM representing the range through time predicts two disjunct refugia, one in southern California encompassing the core of the species range and the other in the Sierra San Pedro Mártir of northern Baja California at the southern limit of the species range. Based on our spatial model, we would expect a pattern of high connectivity among populations within the northern refugium and, conversely, a pattern of isolation due to long‐term persistence of the Sierra San Pedro Mártir population. Our genetic results are consistent with these predictions based on the hypothetical refugia in that (i) historical measures of population connectivity among stable areas are correlated with gene flow estimates; and (ii) there is strong geographical structure between separate refugia. These results provide evidence for the role of recent climatic change in shaping patterns of population persistence and connectivity within the Transverse and Peninsular Ranges, an evolutionary hotspot.  相似文献   

3.
Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic–climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west‐to‐east) across the Pacific‐North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041–2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east–west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns.  相似文献   

4.
Larix laricina (eastern larch, tamarack) is a transcontinental North American conifer with a prominent disjunction in the Yukon isolating the Alaskan distribution from the rest of its range. We investigate whether in situ persistence during the last glacial maximum (LGM) or long‐distance postglacial migration from south of the ice sheets resulted in the modern‐day Alaskan distribution. We analyzed variation in three chloroplast DNA regions of 840 trees from a total of 69 populations (24 new sampling sites situated on both sides of the Yukon range disjunction pooled with 45 populations from a published source) and conducted ensemble species distribution modeling (SDM) throughout Canada and United States to hindcast the potential range of L. laricina during the LGM. We uncovered the genetic signature of a long‐term isolation of larch populations in Alaska, identifying three endemic chlorotypes and low levels of genetic diversity. Range‐wide analysis across North America revealed the presence of a distinct Alaskan lineage. Postglacial gene flow across the Yukon divide was unidirectional, from Alaska toward previously glaciated Canadian regions, and with no evidence of immigration into Alaska. Hindcast SDM indicates one of the broadest areas of past climate suitability for L. laricina existed in central Alaska, suggesting possible in situ persistence of larch in Alaska during the LGM. Our results provide the first unambiguous evidence for the long‐term isolation of L. laricina in Alaska that extends beyond the last glacial period and into the present interglacial period. The lack of gene flow into Alaska along with the overall probability of larch occurrence in Alaska being currently lower than during the LGM suggests that modern‐day Alaskan larch populations are isolated climate relicts of broader glacial distributions, and so are particularly vulnerable to current warming trends.  相似文献   

5.
Neutral and selective processes can drive repeated patterns of evolution in different groups of populations experiencing similar ecological gradients. In this paper, we used a combination of nuclear and mitochondrial DNA markers, as well as geometric morphometrics, to investigate repeated patterns of morphological and genetic divergence of European minnows in two mountain ranges: the Pyrenees and the Alps. European minnows (Phoxinus phoxinus) are cyprinid fish inhabiting most freshwater bodies in Europe, including those in different mountain ranges that could act as major geographical barriers to gene flow. We explored patterns of P. phoxinus phenotypic and genetic diversification along a gradient of altitude common to the two mountain ranges, and tested for isolation by distance (IBD), isolation by environment (IBE) and isolation by adaptation (IBA). The results indicated that populations from the Pyrenees and the Alps belong to two well differentiated, reciprocally monophyletic mtDNA lineages. Substantial genetic differentiation due to geographical isolation within and between populations from the Pyrenees and the Alps was also found using rapidly evolving AFLPs markers (isolation by distance or IBD), as well as morphological differences between mountain ranges. Also, morphology varied strongly with elevation and so did genetic differentiation to a lower extent. Despite moderate evidence for IBE and IBA, and therefore of repeated evolution, substantial population heterogeneity was found at the genetic level, suggesting that selection and population specific genetic drift act in concert to affect genetic divergence.  相似文献   

6.
Knowledge of a species’ population genetic structure can provide insight into fundamental ecological and evolutionary processes including gene flow, genetic drift and adaptive evolution. Such inference is of particular importance for parasites, as an understanding of their population structure can illuminate epidemiological and coevolutionary dynamics. Here, we describe the population genetic structure of the bacterium Pasteuria ramosa, a parasite that infects planktonic crustaceans of the genus Daphnia. This system has become a model for investigations of host–parasite interactions and represents an example of coevolution via negative frequency‐dependent selection (aka “Red Queen” dynamics). To sample P. ramosa, we experimentally infected a panel of Daphnia hosts with natural spore banks from the sediments of 25 ponds throughout much of the species range in Europe and western Asia. Using 12 polymorphic variable number tandem repeat loci (VNTR loci), we identified substantial genetic diversity, both within and among localities, that was structured geographically among ponds. Genetic diversity was also structured among host genotypes within ponds, although this pattern varied by locality, with P. ramosa at some localities partitioned into distinct host‐specific lineages, and other localities where recombination had shuffled genetic variation among different infection phenotypes. Across the sample range, there was a pattern of isolation by distance, and principal components analysis coupled with Procrustes rotation identified congruence between patterns of genetic variation and geography. Our findings support the hypothesis that Pasteuria is an endemic parasite coevolving closely with its host. These results provide important context for previous studies of this model system and inform hypotheses for future research.  相似文献   

7.
The study of the factors structuring genetic variation can help to infer the neutral and adaptive processes shaping the demographic and evolutionary trajectories of natural populations. Here, we analyse the role of isolation by distance (IBD), isolation by resistance (IBR, defined by landscape composition) and isolation by environment (IBE, estimated as habitat and elevation dissimilarity) in structuring genetic variation in 25 blue tit (Cyanistes caeruleus) populations. We typed 1385 individuals at 26 microsatellite loci classified into two groups by considering whether they are located into genomic regions that are actively (TL; 12 loci) or not (NTL; 14 loci) transcribed to RNA. Population genetic differentiation was mostly detected using the panel of NTL. Landscape genetic analyses showed a pattern of IBD for all loci and the panel of NTL, but genetic differentiation estimated at TL was only explained by IBR models considering high resistance for natural vegetation and low resistance for agricultural lands. Finally, the absence for IBE suggests a lack of divergent selection pressures associated with differences in habitat and elevation. Overall, our study shows that markers located in different genomic regions can yield contrasting inferences on landscape‐level patterns of realized gene flow in natural populations.  相似文献   

8.
9.
The genetic structure of the earth bumblebee (Bombus terrestris L.) was examined across 22 wild populations and two commercially reared populations using eight microsatellite loci and two mitochondrial genes. Our study included wild bumblebee samples from six populations in Ireland, one from the Isle of Man, four from Britain and 11 from mainland Europe. A further sample was acquired from New Zealand. Observed levels of genetic variability and heterozygosity were low in Ireland and the Isle of Man, but relatively high in continental Europe and among commercial populations. Estimates of Fst revealed significant genetic differentiation among populations. Bayesian cluster analysis indicated that Irish populations were highly differentiated from British and continental populations, the latter two showing higher levels of admixture. The data suggest that the Irish Sea and prevailing south westerly winds act as a considerable geographical barrier to gene flow between populations in Ireland and Britain; however, some immigration from the Isle of Man to Ireland was detected. The results are discussed in the context of the recent commercialization of bumblebees for the European horticultural industry.  相似文献   

10.
Conservation of the local genetic variation and evolutionary integrity of economically and ecologically important trees is a key aspect of studies involving forest genetics, and a population demographic history of the target species provides valuable information for this purpose. Here, the genetic structure of 48 populations of Betula maximowicziana was assessed using 12 expressed sequence tag–simple sequence repeat (EST‐SSR) markers. Genetic diversity was lower in northern populations than southern ones and structure analysis revealed three groups: northern and southern clusters and an admixed group. Eleven more genomic‐SSR loci were added and the demographic history of these three groups was inferred by approximate Bayesian computation (ABC). The ABC revealed that a simple split scenario was much more likely than isolation with admixture, suggesting that the admixture‐like structure detected in this species was due to ancestral polymorphisms. The ABC analysis suggested that the population growth and divergence of the three groups occurred 96 800 (95% CI, 20 500–599 000) and 28 300 (95% CI, 8700–98 400) years ago, respectively. We need to be aware of several sources of uncertainty in the inference such as assumptions about the generation time, overlapping of generations, confidence intervals of the estimated parameters and the assumed model in the ABC. However, the results of the ABC together with the model‐based maps of reconstructed past species distribution and palaeoecological data suggested that the modern genetic structure of B. maximowicziana originated prior to the last glacial maximum (LGM) and that some populations survived in the northern range even during the LGM.  相似文献   

11.
Small populations are more prone to extinction if the dispersal among them is not adequately maintained by ecological connections. The degree of isolation between populations could be evaluated measuring their genetic distance, which depends on the respective geographic (isolation by distance, IBD) and/or ecological (isolation by resistance, IBR) distances. The aim of this study was to assess the ecological connectivity of fire salamander Salamandra salamandra populations by means of a landscape genetic approach. The species lives in broad‐leaved forest ecosystems and is particularly affected by fragmentation due to its habitat selectivity and low dispersal capability. We analyzed 477 biological samples collected in 47 sampling locations (SLs) in the mainly continuous populations of the Prealpine and Eastern foothill lowland (PEF) and 10 SLs in the fragmented populations of the Western foothill (WF) lowland of Lombardy (northern Italy). Pairwise genetic distances (Chord distance, DC) were estimated from allele frequencies of 16 microsatellites loci. Ecological distances were calculated using one of the most promising methodology in landscape genetics studies, the circuit theory, applied to habitat suitability maps. We realized two habitat suitability models: one without barriers (EcoD) and a second one accounting for the possible barrier effect of main roads (EcoDb). Mantel tests between distance matrices highlighted how the Log‐DC in PEF populations was related to log‐transformed geographic distance (confirming a prevalence of IBD), while it was explained by the Log‐EcoD, and particularly by the Log‐EcoDb, in WF populations, even when accounting for the confounding effect of geographic distance (highlighting a prevalence of IBR). Moreover, we also demonstrated how considering the overall population, the effect of Euclidean or ecological distances on genetic distances acting at the level of a single group (PEF or WF populations) could not be detected, when population are strongly structured.  相似文献   

12.
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east‐west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.  相似文献   

13.
Comparative phylogeography offers a unique opportunity to understand the interplay between past environmental events and life‐history traits on diversification of unrelated but co‐distributed species. Here, we examined the effects of the quaternary climate fluctuations and palaeomarine currents and present‐day marine currents on the extant patterns of genetic diversity in the two most conspicuous mangrove species of the Neotropics. The black (Avicennia germinans, Avicenniaceae) and the red (Rhizophora mangle, Rhizophoraceae) mangroves have similar geographic ranges but are very distantly related and show striking differences on their life‐history traits. We sampled 18 Atlantic and 26 Pacific locations for A. germinans (N = 292) and R. mangle (N = 422). We performed coalescence simulations using microsatellite diversity to test for evidence of population change associated with quaternary climate fluctuations. In addition, we examined whether patterns of genetic variation were consistent with the directions of major marine (historical and present day) currents in the region. Our demographic analysis was grounded within a phylogeographic framework provided by the sequence analysis of two chloroplasts and one flanking microsatellite region in a subsample of individuals. The two mangrove species shared similar biogeographic histories including: (1) strong genetic breaks between Atlantic and Pacific ocean basins associated with the final closure of the Central American Isthmus (CAI), (2) evidence for simultaneous population declines between the mid‐Pleistocene and early Holocene, (3) asymmetric historical migration with higher gene flow from the Atlantic to the Pacific oceans following the direction of the palaeomarine current, and (4) contemporary gene flow between West Africa and South America following the major Atlantic Ocean currents. Despite the remarkable differences in life‐history traits of mangrove species, which should have had a strong influence on seed dispersal capability and, thus, population connectivity, we found that vicariant events, climate fluctuations and marine currents have shaped the distribution of genetic diversity in strikingly similar ways.  相似文献   

14.
15.
16.
During Pleistocene glacial‐interglacial cycles, the geographic range is often assumed to have shifted as a species tracks its climatic niche. Alternatively, the geographic range would not necessarily shift if a species can adapt in situ to a changing environment. The potential for a species to persist in place might increase with the diversity of habitat types that a species exploits. We evaluate evidence for either range shift or range stability between the last glacial maximum (LGM) and present time in the chisel‐toothed kangaroo rat (Dipodomys microps), an endemic of the Great Basin and Mojave deserts. We modeled how the species’ range would have changed if the climatic niche of the species remained conserved between the LGM and present time. The climatic models imply that if D. microps inhabited the same climatic niche during the LGM as it does today, the species would have persisted primarily within the warm Mojave Desert and expanded northwards into the cold Great Basin only after the LGM. Contrary to the climatic models, the mitochondrial DNA assessment revealed signals of population persistence within the current distribution of the species throughout at least the latest glacial‐interglacial cycle. We concluded that D. microps did not track its climatic niche during late Pleistocene oscillations, but rather met the challenge of a changing environment by shifting its niche and retaining large portions of its distribution. We speculate that this kind of response to fluctuating climate was possible because of ‘niche drifting’, an alteration of the species’ realized niche due to plasticity in various biological characters. Our study provides an example of an approach to reconstruct species’ responses to past climatic changes that can be used to evaluate whether and to what extent taxa have capacity to shift their niches in response to the changing environment – information becoming increasingly important to predicting biotic responses to future environmental changes.  相似文献   

17.
Despite the well‐known effects that Quaternary climate oscillations had on shaping intraspecific diversity, their role in driving homoploid hybrid speciation is less clear. Here, we examine their importance in the putative homoploid hybrid origin and evolution of Ostryopsis intermedia, a diploid species occurring in the Qinghai‐Tibet Plateau (QTP), a biodiversity hotspot. We investigated interspecific relationships between this species and its only other congeners, O. davidiana and O. nobilis, based on four sets of nuclear and chloroplast population genetic data and tested alternative speciation hypotheses. All nuclear data distinguished the three species clearly and supported a close relationship between O. intermedia and the disjunctly distributed O. davidiana. Chloroplast DNA sequence variation identified two tentative lineages, which distinguished O. intermedia from O. davidiana; however, both were present in O. nobilis. Admixture analyses of genetic polymorphisms at 20 SSR loci and sequence variation at 11 nuclear loci and approximate Bayesian computation (ABC) tests supported the hypothesis that O. intermedia originated by homoploid hybrid speciation from O. davidiana and O. nobilis. We further estimated that O. davidiana and O. nobilis diverged 6–11 Ma, while O. intermedia originated 0.5–1.2 Ma when O. davidiana is believed to have migrated southward, contacted and hybridized with O. nobilis possibly during the largest Quaternary glaciation that occurred in this region. Our findings highlight the importance of Quaternary climate change in the QTP in causing hybrid speciation in this important biodiversity hotspot.  相似文献   

18.
  1. Alpine treelines are expected to shift upward due to recent climate change. However, interpretation of changes in montane systems has been problematic because effects of climate change are frequently confounded with those of land use changes. The eastern Himalaya, particularly Langtang National Park, Central Nepal, has been relatively undisturbed for centuries and thus presents an opportunity for studying climate change impacts on alpine treeline uncontaminated by potential confounding factors.
  2. We studied two dominant species, Abies spectabilis (AS) and Rhododendron campanulatum (RC), above and below the treeline on two mountains. We constructed 13 transects, each spanning up to 400 m in elevation, in which we recorded height and state (dead or alive) of all trees, as well as slope, aspect, canopy density, and measures of anthropogenic and animal disturbance.
  3. All size classes of RC plants had lower mortality above treeline than below it, and young RC plants (<2 m tall) were at higher density above treeline than below. AS shows little evidence of a position change from the historic treeline, with a sudden extreme drop in density above treeline compared to below. Recruitment, as measured by size–class distribution, was greater above treeline than below for both species but AS is confined to ~25 m above treeline whereas RC is luxuriantly growing up to 200 m above treeline.
  4. Synthesis. Evidence suggests that the elevational limits of RC have shifted upward both because (a) young plants above treeline benefited from facilitation of recruitment by surrounding vegetation, allowing upward expansion of recruitment, and (b) temperature amelioration to mature plants increased adult survival. We predict that the current pure stand of RC growing above treeline will be colonized by AS that will, in turn, outshade and eventually relegate RC to be a minor component of the community, as is the current situation below the treeline.
  相似文献   

19.
The genetic structure of small semiaquatic animals may be influenced by dispersal across both rivers and land. The relative importance of these two modes of dispersal may vary across different species and with ecological conditions and evolutionary periods. The Pyrenean desman (Galemys pyrenaicus) is an endemic mammal of the Iberian Peninsula with a strong phylogeographic structure and semiaquatic habits, thus making it an ideal model to study the effects of river and overland dispersal on its genetic structure. Thanks to different types of noninvasive samples, we obtained an extensive sampling of the Pyrenean desman from the northwestern region of the Iberian Peninsula and sequenced two mitochondrial DNA fragments. We then analyzed, using an isolation‐by‐distance approach, the correlation between phylogenetic distances and geographical distances measured along both river networks and land to infer the relative importance of river and overland dispersal. We found that the correlations in the whole area and in a large basin were consistent with an effect of overland dispersal, which may be due to the postglacial colonization of new territories using terrestrial corridors and, possibly, a more extensive fluvial network that may have been present during the Holocene. However, in a small basin, likely to be less influenced by the impact of ancient postglacial dispersal, the correlations suggested significant overall effects of both overland and river dispersal, as expected for a semiaquatic mammal. Therefore, different scales and geographical regions reflect different aspects of the evolutionary history and ecology of this semiaquatic species using this isolation‐by‐distance method. The results we obtained may have crucial implications for the conservation of the Pyrenean desman because they reinforce the importance of interbasin dispersal for this species in the studied area and the need to protect the whole riverine ecosystem, including rivers, upland streams and terrestrial corridors between basins.  相似文献   

20.
Recent and historical species' associations with climate can be inferred using molecular markers. This knowledge of population and species‐level responses to climatic variables can then be used to predict the potential consequences of ongoing climate change. The aim of this study was to predict responses of Rana temporaria to environmental change in Scotland by inferring historical and contemporary patterns of gene flow in relation to current variation in local thermal conditions. We first inferred colonization patterns within Europe following the last glacial maximum by combining new and previously published mitochondrial DNA sequences. We found that sequences from our Scottish samples were identical to (92%), or clustered with, the common haplotype previously identified from Western Europe. This clade showed very low mitochondrial variation, which did not allow inference of historical colonization routes but did allow interpretation of patterns of current fine‐scale population structure without consideration of confounding historical variation. Second, we assessed fine‐scale microsatellite‐based patterns of genetic variation in relation to current altitudinal temperature gradients. No population structure was found within altitudinal gradients (average FST = 0.02), despite a mean annual temperature difference of 4.5 °C between low‐ and high‐altitude sites. Levels of genetic diversity were considerable and did not vary between sites. The panmictic population structure observed, even along temperature gradients, is a potentially positive sign for R. temporaria persistence in Scotland in the face of a changing climate. This study demonstrates that within taxonomic groups, thought to be at high risk from environmental change, levels of vulnerability can vary, even within species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号