首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Entelegyne spiders rarely show fusions yielding neo‐Y chromosomes, which M. J. D. White attributed to a constraint in spiders, namely their proximal chiasma localization acting to upset meiotic segregation in males with fusions. Of the 75 taxa of Habronattus and outgroups studied, 47 have X1X20 sex chromosomes in males, 10 have X1X2Y, 15 have X1X2X3Y, 2 have X0, and one has both X1X20 and X1X2X3Y. Chromosome numbers and behavior suggest neo‐Ys formed by an autosome‐X fusion to make X1X2Y, with a second fusion to an autosome to make X1X2X3Y. Phylogeny shows at least 8–15 gains (or possibly some losses) of neo‐Y (i.e., X‐autosome fusions), a remarkable number for such a small clade. In contrast to the many X‐autosome fusions, at most one autosome–autosome fusion is indicated. Origins of neo‐Y are correlated significantly with distal localization of chiasmata, supporting White's hypothesis that evolution of neo‐Y systems is facilitated by looser pairing (distal chiasmata) at meiosis. However, an alternative (or contributing) explanation for the correlation is that X‐autosome fusions were selected to permit isolation of male‐favored alleles to the neo‐Y chromosome, aided by distal chiasmata limiting recombination. This intralocus sexual conflict hypothesis could explain both the many X‐autosome fusions, and the stunning complexity of male Habronattus courtship displays.  相似文献   

2.
In sharp contrast with birds and mammals, sex‐determination systems in ectothermic vertebrates are often highly dynamic and sometimes multifactorial. Both environmental and genetic effects have been documented in common frogs (Rana temporaria). One genetic linkage group, mapping to the largest pair of chromosomes and harbouring the candidate sex‐determining gene Dmrt1, associates with sex in several populations throughout Europe, but association varies both within and among populations. Here, we show that sex association at this linkage group differs among populations along a 1500‐km transect across Sweden. Genetic differentiation between sexes is strongest (FST = 0.152) in a northern‐boreal population, where male‐specific alleles and heterozygote excesses (FIS = ?0.418 in males, +0.025 in females) testify to a male‐heterogametic system and lack of X‐Y recombination. In the southernmost population (nemoral climate), in contrast, sexes share the same alleles at the same frequencies (FST = 0.007 between sexes), suggesting unrestricted recombination. Other populations show intermediate levels of sex differentiation, with males falling in two categories: some cluster with females, while others display male‐specific Y haplotypes. This polymorphism may result from differences between populations in the patterns of X‐Y recombination, co‐option of an alternative sex‐chromosome pair, or a mixed sex‐determination system where maleness is controlled either by genes or by environment depending on populations or families. We propose approaches to test among these alternative models, to disentangle the effects of climate and phylogeography on the latitudinal trend, and to sort out how this polymorphism relates to the ‘sexual races’ described in common frogs in the 1930s.  相似文献   

3.
Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1 versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague‐related die‐offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67–0.87) in all colonies. Two other DRB1 alleles appear to be trans‐species polymorphisms shared with the black‐tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (FST = 0.033) than at microsatellite markers (FST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced the DRB1 locus because its level of differentiation was not different from that of microsatellites in an FST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60 C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.  相似文献   

4.
Sex‐determination mechanisms vary both within and among populations of common frogs, opening opportunities to investigate the molecular pathways and ultimate causes shaping their evolution. We investigated the association between sex‐chromosome differentiation (as assayed from microsatellites) and polymorphism at the candidate sex‐determining gene Dmrt1 in two Alpine populations. Both populations harboured a diversity of X‐linked and Y‐linked Dmrt1 haplotypes. Some males had fixed male‐specific alleles at all markers (“differentiated” Y chromosomes), others only at Dmrt1 (“proto‐” Y chromosomes), while still others were genetically indistinguishable from females (undifferentiated X chromosomes). Besides these XX males, we also found rare XY females. The several Dmrt1 Y haplotypes differed in the probability of association with a differentiated Y chromosome, which we interpret as a result of differences in the masculinizing effects of alleles at the sex‐determining locus. From our results, the polymorphism in sex‐chromosome differentiation and its association with Dmrt1, previously inferred from Swedish populations, are not just idiosyncratic features of peripheral populations, but also characterize highly diverged populations in the central range. This implies that an apparently unstable pattern has been maintained over long evolutionary times.  相似文献   

5.
Microsatellites are common in genomes of most eukaryotic species. Due to their high mutability, an adaptive role for microsatellites has been considered. However, little is known concerning the contribution of microsatellites towards phenotypic variation. We used populations of the common sunflower (Helianthus annuus) at two latitudes to quantify the effect of microsatellite allele length on phenotype at the level of gene expression. We conducted a common garden experiment with seed collected from sunflower populations in Kansas and Oklahoma followed by an RNA‐Seq experiment on 95 individuals. The effect of microsatellite allele length on gene expression was assessed across 3,325 microsatellites that could be consistently scored. Our study revealed 479 microsatellites at which allele length significantly correlates with gene expression (eSTRs). When irregular allele sizes not conforming to the motif length were removed, the number of eSTRs rose to 2,379. The percentage of variation in gene expression explained by eSTRs ranged from 1%–86% when controlling for population and allele‐by‐population interaction effects at the 479 eSTRs. Of these eSTRs, 70.4% are in untranslated regions (UTRs). A gene ontology (GO) analysis revealed that eSTRs are significantly enriched for GO terms associated with cis‐ and trans‐regulatory processes. Our findings suggest that a substantial number of transcribed microsatellites can influence gene expression.  相似文献   

6.
The flea beetle, Phyllotreta nemorum (L.) (Coleoptera: Chrysomelidae: Alticinae), is currently expanding its host plant range in Europe. The ability to utilize a novel host plant, Barbarea vulgaris R. Br. (Brassicaceae), is controlled by major dominant genes named R‐genes. The present study used extensive crossing experiments to illustrate a peculiar mode of inheritance of the R‐gene in a population from Delemont (Switzerland). When resistant males from Delemont are mated with recessive females from a laboratory line, the female F1 offspring contains the R‐allele and is able to utilize B. vulgaris, whereas the male offspring contains the r‐allele and is unable to utilize the plant. This outcome suggests X‐linkage of the R‐gene, but further crossing experiments demonstrated that this was not the case. When the R‐gene is present in offspring from males from a laboratory line that originates from Taastrup (Denmark), it is transmitted to female and male offspring in equal proportions as a normal autosomal gene. The results demonstrate a polymorphism in segregation patterns of an autosomal R‐gene in P. nemorum males. Males from Delemont contain a factor which causes non‐random segregation of the R‐gene (NRS‐factor). This factor is inherited patrilineally (from fathers to sons). Males with the NRS‐factor transmit the R‐gene to their female offspring, whereas males without the NRS‐factor transmit the R‐gene to female and male offspring in equal proportions. Various models for the non‐random segregation of autosomes in P. nemorum males are discussed – e.g., fusions between autosomes and sex chromosomes, and genomic imprinting. The implications of various modes of inheritance of R‐genes for the ability of P. nemorum populations to colonize novel patches of B. vulgaris are discussed.  相似文献   

7.
Epigenetic mechanisms play a major role in heterosis, partly as a result of the remodeling of epigenetic modifications in F1 hybrids. Based on chromatin immunoprecipitation‐sequencing (ChIP‐Seq) analyses, we show that at the allele level extensive histone methylation remodeling occurred for a subset of genomic loci in reciprocal F1 hybrids of Oryza sativa (rice) cultivars Nipponbare and 93‐11, representing the two subspecies japonica and indica. Globally, the allele modification‐altered loci in leaf or root of the reciprocal F1 hybrids involved ?12–43% or more of the genomic regions carrying either of two typical histone methylation markers, H3K4me3 (>21 000 genomic regions) and H3K27me3 (>11 000 genomic regions). Nevertheless, at the total modification level, the majority (from ?43 to >90%) of the modification‐altered alleles lay within the range of parental additivity in the hybrids because of concerted alteration in opposite directions, consistent with an overall attenuation of allelic differences in the modifications. Importantly, of the genomic regions that did show non‐additivity in total modification level by either marker in the two tissues of hybrids, >80% manifested transgressivity, which involved genes enriched in specific functional categories. Extensive allele‐level alteration of H3K4me3 alone was positively correlated with genome‐wide changes in allele‐level gene expression, whereas at the total level, both H3K4me3 and H3K27me3 remodeling, although affecting just a small number of genes, contributes to the overall non‐additive gene expression to variable extents, depending on tissue/marker combinations. Our results emphasize the importance of allele‐level analysis in hybrids to assess the remodeling of epigenetic modifications and their relation to changes in gene expression.  相似文献   

8.
We carried out a three‐tiered genetic analysis of egg‐to‐adult development time and viability in ancestral and derived populations of cactophilic Drosophila mojavensis to test the hypothesis that evolution of these life‐history characters has shaped premating reproductive isolation in this species. First, a common garden experiment with 11 populations from Baja California and mainland Mexico and Arizona reared on two host species revealed significant host plant X region and population interactions for viability and development time, evidence for host plant adaptation. Second, replicated line crosses with flies reared on both hosts revealed autosomal, X chromosome, cytoplasmic, and autosome X cactus influences on development time. Viability differences were influenced by host plants, autosomal dominance, and X chromosomal effects. Many of the F1, F2, and backcross generations showed evidence of heterosis for viability. Third, a QTL analysis of male courtship song and epicuticular hydrocarbon variation based on 1688 Baja × mainland F2 males also revealed eight QTL influencing development time differences. Mainland alleles at six of these loci were associated with longer development times, consistent with population‐level differences. Eight G × E interactions were also detected caused by longer development times of mainland alleles expressed on a mainland host with smaller differences among Baja genotypes reared on the Baja host plant. Four QTL influenced both development time and epicuticular hydrocarbon differences associated with courtship success, and there was a significant QTL‐based correlation between development time and cuticular hydrocarbon variation. Thus, the regional shifts in life histories that evolved once D. mojavensis invaded mainland Mexico from Baja California by shifting host plants were genetically correlated with variation in cuticular hydrocarbon‐based mate preferences.  相似文献   

9.
A new method is proposed to adjust allele frequencies when allelic drop‐out is common. This method assumes Hardy–Weinberg equilibrium (HWE), and treats the problematic alleles as a one‐locus two‐allele system with dominance. By assuming that the homozygote frequency of the ‘recessive’ allele is measured correctly, we can back calculate the allele frequency of the ‘dominant’ allele, and adjust the heterozygote frequency accordingly. The drawback is that multilocus genotypes cannot be constructed and tests that use deviations from Hardy–Weinberg such as tests for bottlenecks become impossible. An example is given where a large homozygote excess (FIS = 0.44) is adjusted to a reasonable level (FIS = 0.046). The effect of scoring error was set in relation to sampling error and while FIS values can be seriously biased, FST values are not necessarily so, if scoring error and sample size are both low. As sample size increases, the effect of scoring error increases.  相似文献   

10.
Nonamplified (null) alleles are a common feature of microsatellite genotyping and can bias estimates of allele and genotype frequencies, thereby hindering population genetic analyses. The frequency of microsatellite null alleles in diploid populations can be estimated for populations that are in Hardy–Weinberg equilibrium. However, many microsatellite data sets are from nonequilibrium populations, often with known inbreeding coefficients (F) or fixation indices (FIS or FST). Here, we propose a novel null allele estimator that can be used to estimate the null allele frequency and adjust visible allele frequencies in populations for which independent estimates of F, FIS or FST are available. The algorithm is currently available as an Excel macro that can be downloaded at no cost from http://www.microchecker.hull.ac.uk/ and will be incorporated into the software micro ‐checker .  相似文献   

11.
12.
13.
With its vast territory and complex natural environment, China boasts rich cattle genetic resources. To gain the further insight into the genetic diversity and paternal origins of Chinese cattle, we analyzed the polymorphism of Y‐SNPs (UTY19 and ZFY10) and Y‐STRs (INRA189 and BM861) in 34 Chinese cattle breeds/populations, including 606 males representative of 24 cattle breeds/populations collected in this study as well as previously published data for 302 bulls. Combined genotypic data identified 14 Y‐chromosome haplotypes that represented three haplogroups. Y2‐104‐158 and Y2‐102‐158 were the most common taurine haplotypes detected mainly in northern and central China, whereas the indicine haplotype Y3‐88‐156 predominates in southern China. Haplotypes Y2‐108‐158, Y2‐110‐158, Y2‐112‐158 and Y3‐92‐156 were private to Chinese cattle. The population structure revealed by multidimensional scaling analysis differentiated Tibetan cattle from the other three groups of cattle. Analysis of molecular variance showed that the majority of the genetic variation was explained by the genetic differences among groups. Overall, our study indicates that Chinese cattle retain high paternal diversity (= 0.607 ± 0.016) and probably much of the original lineages that derived from the domestication center in the Near East without strong admixture from commercial cattle carrying Y1 haplotypes.  相似文献   

14.
Microsatellite loci are ideal for testing hypotheses relating to genetic segregation at fine spatio‐temporal scales. They are also conserved among closely related species, making them potentially useful for clarifying interspecific relationships between recently diverged taxa. However, mutations at primer binding sites may lead to increased nonamplification, or disruptions that may result in decreased polymorphism in nontarget species. Furthermore, high mutation rates and constraints on allele size may also with evolutionary time, promote an increase in convergently evolved allele size classes, biasing measures of interspecific genetic differentiation. Here, we used next‐generation sequencing to develop microsatellite markers from a shotgun genome sequence of the sub‐Antarctic seabird, the thin‐billed prion (Pachyptila belcheri), that we tested for cross‐species amplification in other Pachyptila and related sub‐Antarctic species. We found that heterozygosity decreased and the proportion of nonamplifying loci increased with phylogenetic distance from the target species. Surprisingly, we found that species trees estimated from interspecific FST provided better approximations of mtDNA relationships among the studied species than those estimated using DC, even though FST was more affected by null alleles. We observed a significantly nonlinear second order polynomial relationship between microsatellite and mtDNA distances. We propose that the loss of linearity with increasing mtDNA distance stems from an increasing proportion of homoplastic allele size classes that are identical in state, but not identical by descent. Therefore, despite high cross‐species amplification success and high polymorphism among the closely related Pachyptila species, we caution against the use of microsatellites in phylogenetic inference among distantly related taxa.  相似文献   

15.
A major goal of evolutionary biology is to identify the genome‐level targets of natural and sexual selection. With the advent of next‐generation sequencing, whole‐genome selection components analysis provides a promising avenue in the search for loci affected by selection in nature. Here, we implement a genome‐wide selection components analysis in the sex role reversed Gulf pipefish, Syngnathus scovelli. Our approach involves a double‐digest restriction‐site associated DNA sequencing (ddRAD‐seq) technique, applied to adult females, nonpregnant males, pregnant males, and their offspring. An FST comparison of allele frequencies among these groups reveals 47 genomic regions putatively experiencing sexual selection, as well as 468 regions showing a signature of differential viability selection between males and females. A complementary likelihood ratio test identifies similar patterns in the data as the FST analysis. Sexual selection and viability selection both tend to favor the rare alleles in the population. Ultimately, we conclude that genome‐wide selection components analysis can be a useful tool to complement other approaches in the effort to pinpoint genome‐level targets of selection in the wild.  相似文献   

16.
The canonical model of sex‐chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto‐Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex‐determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex‐chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex‐linked SA genes. Among‐male variance in sex‐chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X‐Y recombination in XY females), independent of sex‐linked SA genes.  相似文献   

17.
Genomic studies of invasive species can reveal both invasive pathways and functional differences underpinning patterns of colonization success. The European green crab (Carcinus maenas) was initially introduced to eastern North America nearly 200 years ago where it expanded northwards to eastern Nova Scotia. A subsequent invasion to Nova Scotia from a northern European source allowed further range expansion, providing a unique opportunity to study the invasion genomics of a species with multiple invasions. Here, we use restriction‐site‐associated DNA sequencing‐derived SNPs to explore fine‐scale genomewide differentiation between these two invasions. We identified 9137 loci from green crab sampled from 11 locations along eastern North America and compared spatial variation to mitochondrial COI sequence variation used previously to characterize these invasions. Overall spatial divergence among invasions was high (pairwise FST ~0.001 to 0.15) and spread across many loci, with a mean FST ~0.052 and 52% of loci examined characterized by FST values >0.05. The majority of the most divergent loci (i.e., outliers, ~1.2%) displayed latitudinal clines in allele frequency highlighting extensive genomic divergence among the invasions. Discriminant analysis of principal components (both neutral and outlier loci) clearly resolved the two invasions spatially and was highly correlated with mitochondrial divergence. Our results reveal extensive cryptic intraspecific genomic diversity associated with differing patterns of colonization success and demonstrates clear utility for genomic approaches to delineating the distribution and colonization success of aquatic invasive species.  相似文献   

18.
Imprinting is an epigenetic phenomenon referring to allele‐biased expression of certain genes depending on their parent of origin. Accumulated evidence suggests that, while imprinting is a conserved mechanism across kingdoms, the identities of the imprinted genes are largely species‐specific. Using deep RNA sequencing of endosperm 14 days after pollination in sorghum, 5683 genes (29.27% of the total 19 418 expressed genes) were found to harbor diagnostic single nucleotide polymorphisms between two parental lines. The analysis of parent‐of‐origin expression patterns in the endosperm of a pair of reciprocal F1 hybrids between the two sorghum lines led to identification of 101 genes with ≥ fivefold allelic expression difference in both hybrids, including 85 maternal expressed genes (MEGs) and 16 paternal expressed genes (PEGs). Thirty of these genes were previously identified as imprinted in endosperm of maize (Zea mays), rice (Oryza sativa) or Arabidopsis, while the remaining 71 genes are sorghum‐specific imprinted genes relative to these three plant species. Allele‐biased expression of virtually all of the 14 tested imprinted genes (nine MEGs and five PEGs) was validated by pyrosequencing using independent sources of RNA from various developmental stages and dissected parts of endosperm. Forty‐six imprinted genes (30 MEGs and 16 PEGs) were assayed by quantitative RT–PCR, and the majority of them showed endosperm‐specific or preferential expression relative to embryo and other tissues. DNA methylation analysis of the 5’ upstream region and gene body for seven imprinted genes indicated that, while three of the four PEGs were associated with hypomethylation of maternal alleles, no MEG was associated with allele‐differential methylation.  相似文献   

19.
Genetic diversity at the S‐locus controlling self‐incompatibility (SI) is often high because of negative frequency‐dependent selection. In species with highly patchy spatial distributions, genetic drift can overwhelm balancing selection and cause stochastic loss of S‐alleles. Natural selection may favor the breakdown of SI in populations with few S‐alleles because low S‐allele diversity constrains the seed production of self‐incompatible plants. We estimated S‐allele diversity, effective population sizes, and migration rates in Leavenworthia alabamica, a self‐incompatible mustard species restricted to discrete habitat patches in rocky glades. Patterns of polymorphism were investigated at the S‐locus and 15 neutral microsatellites in three large and three small populations with 100‐fold variation in glade size. Populations on larger glades maintained more S‐alleles, but all populations were estimated to harbor at least 20 S‐alleles, and mate availabilities typically exceeded 0.80, which is consistent with little mate limitation in nature. Estimates of the effective size (Ne) in each population ranged from 600 to 1600, and estimated rates of migration (m) ranged from 3 × 10−4 to nearly 1 × 10−3. According to theoretical models, there is limited opportunity for genetic drift to reduce S‐allele diversity in populations with these attributes. Although pollinators or resources limit seed production in small glades, limited S‐allele diversity does not appear to be a factor promoting the incipient breakdown of SI in populations of this species that were studied.  相似文献   

20.
X-linked mutant alleles associated with prenatal male lethality are difficult to analyze because only heterozygous females are readily available for study. Genomic analysis of the mutant allele is facilitated by the construction of somatic cell hybrids because this enables the segregation of the X Chromosomes (Chrs) that carry the mutant and wild-type alleles. We describe here a method that ensures that the X Chr carrying the mutant allele is retained in somatic cell hybrids in an active selectable state. This is achieved by mating heterozygous females to males that carry a mutation at the hypoxanthine phosphoribosyl transferase (Hprt) locus. The resultant F1 females are compound heterozygotes, and when cells from these females are fused to HPRT− Chinese hamster cells and subjected to selection in HAT medium, the only survivors are those hybrid cells that retain an active X Chr carrying the mutant allele together with the wild-type Hprt allele. We use hybrids constructed by this method to demonstrate that there are no gross deletions or genomic rearrangements present in three mottled alleles associated with prenatal male lethality. Received: 8 January 1996 / Accepted: 29 February 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号