首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the IPCC, the global average temperature is likely to increase by 1.4–5.8 °C over the period from 1990 to 2100. In Polar regions, the magnitude of such climatic changes is even larger than in temperate and tropical biomes. This amplified response is particularly worrisome given that the so‐far moderate warming is already impacting Arctic ecosystems. Predicting species responses to rapid warming in the near future can be informed by investigating past responses, as, like the rest of the planet, the Arctic experienced recurrent cycles of temperature increase and decrease (glacial–interglacial changes) in the past. In this study, we compare the response of two important prey species of the Arctic ecosystem, the collared lemming and the narrow‐skulled vole, to Late Quaternary climate change. Using ancient DNA and Ecological Niche Modeling (ENM), we show that the two species, which occupy similar, but not identical ecological niches, show markedly different responses to climatic and environmental changes within broadly similar habitats. We empirically demonstrate, utilizing coalescent model‐testing approaches, that collared lemming populations decreased substantially after the Last Glacial Maximum; a result consistent with distributional loss over the same period based on ENM results. Given this strong association, we projected the current niche onto future climate conditions based on IPCC 4.0 scenarios, and forecast accelerating loss of habitat along southern range boundaries with likely associated demographic consequences. Narrow‐skulled vole distribution and demography, by contrast, was only moderately impacted by past climatic changes, but predicted future changes may begin to affect their current western range boundaries. Our work, founded on multiple lines of evidence suggests a future of rapidly geographically shifting Arctic small mammal prey communities, some of whom are on the edge of existence, and whose fate may have ramifications for the whole Arctic food web and ecosystem.  相似文献   

2.
Alpine lizards living in restricted areas might be particularly sensitive to climate change. We studied thermal biology of Iberolacerta cyreni in high mountains of central Spain. Our results suggest that I. cyreni is a cold‐adapted thermal specialist and an effective thermoregulator. Among ectotherms, thermal specialists are more threatened by global warming than generalists. Alpine lizards have no chance to disperse to new suitable habitats. In addition, physiological plasticity is unlikely to keep pace with the expected rates of environmental warming. Thus, lizards might rely on their behavior in order to deal with ongoing climate warming. Plasticity of thermoregulatory behavior has been proposed to buffer the rise of environmental temperatures. Therefore, we studied the change in body and environmental temperatures, as well as their relationships, for I. cyreni between the 1980s and 2012. Air temperatures have increased more than 3.5°C and substrate temperatures have increased by 6°C in the habitat of I. cyreni over the last 25 years. However, body temperatures of lizards have increased less than 2°C in the same period, and the linear relationship between body and environmental temperatures remains similar. These results show that alpine lizards are buffering the potential impact of the increase in their environmental temperatures, most probably by means of their behavior. Body temperatures of I. cyreni are still cold enough to avoid any drop in fitness. Nonetheless, if warming continues, behavioral buffering might eventually become useless, as it would imply spending too much time in shelter, losing feeding, and mating opportunities. Eventually, if body temperature exceeds the thermal optimum in the near future, fitness would decrease abruptly.  相似文献   

3.
Many previous studies have attempted to assess ecological niche modeling performance using receiver operating characteristic (ROC) approaches, even though diverse problems with this metric have been pointed out in the literature. We explored different evaluation metrics based on independent testing data using the Darwin's Fox (Lycalopex fulvipes) as a detailed case in point. Six ecological niche models (ENMs; generalized linear models, boosted regression trees, Maxent, GARP, multivariable kernel density estimation, and NicheA) were explored and tested using six evaluation metrics (partial ROC, Akaike information criterion, omission rate, cumulative binomial probability), including two novel metrics to quantify model extrapolation versus interpolation (E‐space index I) and extent of extrapolation versus Jaccard similarity (E‐space index II). Different ENMs showed diverse and mixed performance, depending on the evaluation metric used. Because ENMs performed differently according to the evaluation metric employed, model selection should be based on the data available, assumptions necessary, and the particular research question. The typical ROC AUC evaluation approach should be discontinued when only presence data are available, and evaluations in environmental dimensions should be adopted as part of the toolkit of ENM researchers. Our results suggest that selecting Maxent ENM based solely on previous reports of its performance is a questionable practice. Instead, model comparisons, including diverse algorithms and parameterizations, should be the sine qua non for every study using ecological niche modeling. ENM evaluations should be developed using metrics that assess desired model characteristics instead of single measurement of fit between model and data. The metrics proposed herein that assess model performance in environmental space (i.e., E‐space indices I and II) may complement current methods for ENM evaluation.  相似文献   

4.
5.
Preserving biodiversity under current and future climates: a case study   总被引:2,自引:0,他引:2  
Aim The conservation of biological and genetic diversity is a major goal of reserve systems at local, regional, and national levels. The International Union for the Conservation of Nature and Natural Resources suggests a 12% threshold (area basis) for adequate protection of biological and genetic diversity of a plant community. However, thresholds based on area may protect only a small portion of the total diversity if the locations are chosen without regard to the variation within the community. The objectives of this study were to demonstrate methods to apply a coarse‐filter approach for identifying gaps in the current reserve system of the Psuedotsuga menziesii (Douglas‐fir) forest type group based on current climatic conditions and a global climate change scenario. Location Western United States. Method We used an ecological envelope approach that was based on seven bioclimatic factors, two topographic factors, and two edaphic factors. Multivariate factor analysis was then used to reduce the envelope to two dimensions. The relative density of habitat and protected areas were identified in each part of the envelope based on the current climate and potential future climate. We used this information to identify gaps in the reserve system. Results Although the protected areas occurred in all parts of the envelope, most existed in colder and drier areas. This was true for both the current climate and potential future climate. Main conclusion To protect more of the ecological envelope, future conservation efforts would be most effective in western Oregon, north‐western Washington, and north‐western California.  相似文献   

6.
Trophic generalists tolerate greater habitat change than specialists; however, few studies explore how generalist trophic ecology is affected. We established how the trophic ecology of an extreme generalist, Rhabdomys pumilio, changed in relation to a directionally changing woody‐encroached savannah in Eastern Cape, South Africa by investigating (a) foraging behaviour, (b) trophic niche and (c) feedback effects. (a) Giving‐up densities showed that R. pumilio preferred foraging in subcanopy microhabitat during the night as a result of lower thermoregulatory costs, but had similar preferences for sub‐ and intercanopy microhabitats during the day. (b) An isotope analysis revealed that the dietary composition and trophic niche occupied by R. pumilio differed among tree canopy cover levels (0%, 30% and 80%), which appeared to be related to changes in C4 grass material and invertebrate availability. (c) Artificial seed patches suggested that R. pumilio was a potentially important postdispersal seed predator of the woody‐encroaching species, Vachellia karroo. Thus, an increase in tree canopy cover altered the trophic niche of R. pumilio by reducing foraging costs at night and providing alternative food resources in terms of availability and source. These findings demonstrate how an extreme generalist adapted to human‐induced habitat change through changes in its trophic ecology.  相似文献   

7.
8.
This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982–2006) and three SRES scenarios (B1, B2 and A1B, 2040–2064) under rainfed and irrigated conditions, using a process‐based crop model, SIMPLACE . We found that projected climate change decreased NIR of the three winter crops in northern Europe (up to 81 mm), but increased NIR of all the six crops in the Mediterranean regions (up to 182 mm yr?1). Climate change increased yields of the three winter crops and sugar beet in middle and northern regions (up to 36%), but decreased their yields in Mediterranean countries (up to 81%). Consideration of CO2 effects can alter the direction of change in NIR for irrigated crops in the south and of yields for C3 crops in central and northern Europe. Constraining the model to rainfed conditions for spring crops led to a negative bias in simulating climate change impacts on yields (up to 44%), which was proportional to the irrigation ratio of the simulation unit. Impacts on NIR and yields were generally consistent across the three SRES scenarios for the majority of regions in Europe. We conclude that due to the magnitude of irrigation and CO2 effects, they should both be considered in the simulation of climate change impacts on crop production and water availability, particularly for crops and regions with a high proportion of irrigated crop area.  相似文献   

9.
10.
Correlative ecological niche models are increasingly used to estimate potential distributions during the Last Glacial Maximum (LGM) for biogeographical research. In the case of presence‐background/pseudoabsences techniques, cold environments that are poorly represented in existing geography can complicate the process of model calibration and transfer into more extreme cold environments that were very common during the LGM (non‐analog conditions). This may lead to biologically unrealistic estimations. Using one cold‐adapted North American mammal, we explore a real scenario to better understand the effect of restricting the range of environmental conditions over which niche models are calibrated and then transferred to LGM conditions. We performed two sets of experiments in Maxent: 1) we calibrated models in the context of only present‐day climate conditions, which is the most common practice, and compared predictions under LGM conditions based on two extrapolation methods (clamping versus unconstrained); 2) we calibrated single models using both present‐day and LGM conditions as part of the same background in order to include more extreme environments in the model calibration. Our experiments led to dramatically different estimates of species’ potential distributions, showing notable differences with respect to latitudinal and elevational shifts during the LGM. Models calibrated using present‐day climates yielded biologically unrealistic estimations, suggesting that species survived in the glaciers during the LGM. Even more unrealistic estimations were achieved when clamping was enforced as the method to extrapolate. Models calibrated in the context of both modern and past climates reduced the required degree of extrapolation and allowed more realistic potential distributions, suggesting that the species avoided extremely cold conditions during the LGM. This study alerts to the possibility of obtaining implausible potential distributions during the LGM due to restricted background datasets and offers recommendations that should promote better strategies to estimate distributional changes during glaciations.  相似文献   

11.
12.
The climate‐driven dynamics of species ranges is a critical research question in evolutionary ecology. We ask whether present intraspecific diversity is determined by the imprint of past climate. This is an ongoing debate requiring interdisciplinary examination of population genetic pools and persistence patterns across global ranges. Previously, contrasting inferences and predictions have resulted from distinct genomic coverage and/or geographical information. We aim to describe and explain the causes of geographical contrasts in genetic diversity and their consequences for the future baseline of the global genetic pool, by comparing present geographical distribution of genetic diversity and differentiation with predictive species distribution modelling (SDM) during past extremes, present time and future climate scenarios for a brown alga, Fucus vesiculosus. SDM showed that both atmospheric and oceanic variables shape the global distribution of intertidal species, revealing regions of persistence, extinction and expansion during glacial and postglacial periods. These explained the distribution and structure of present genetic diversity, consisting of differentiated genetic pools with maximal diversity in areas of long‐term persistence. Most of the present species range comprises postglacial expansion zones and, in contrast to highly dispersive marine organisms, expansions involved only local fronts, leaving distinct genetic pools at rear edges. Besides unravelling a complex phylogeographical history and showing congruence between genetic diversity and persistent distribution zones, supporting the hypothesis of niche conservatism, range shifts and loss of unique genetic diversity at the rear edge were predicted for future climate scenarios, impoverishing the global gene pool.  相似文献   

13.
14.
The eastern‐Mediterranean Abies taxa, which include both widely distributed species and taxa with minuscule ranges, represent a good model to study the impacts of range size and fragmentation on the levels of genetic diversity and differentiation. To assess the patterns of genetic diversity and phylogenetic relationships among eastern‐Mediterranean Abies taxa, genetic variation was assessed by eight nuclear microsatellite loci in 52 populations of Abies taxa with a focus on those distributed in Turkey and the Caucasus. Both at the population and the taxon level, the subspecies or regional populations of Abies nordmanniana s.l. exhibited generally higher allelic richness, private allelic richness, and expected heterozygosity compared with Abies cilicica s.l. Results of both the Structure analysis and distance‐based approaches showed a strong differentiation of the two A. cilicica subspecies from the rest as well as from each other, whereas the subspecies of A. nordmanniana were distinct but less differentiated. ABC simulations were run for a set of scenarios of phylogeny and past demographic changes. For A. ×olcayana, the simulation gave a poor support for the hypothesis of being a taxon resulting from a past hybridization, the same is true for Abies equi‐trojani: both they represent evolutionary branches of Abies bornmuelleriana.  相似文献   

15.
16.
17.
Temperature is one of the leading factors that drive adaptation of organisms and ecosystems. Remarkably, many closely related species share the same habitat because of their different temporal or micro‐spatial thermal adaptation. In this study, we seek to find the underlying molecular mechanisms of the cold‐tolerant phenotype of closely related yeast species adapted to grow at different temperatures, namely S. kudriavzevii CA111 (cryo‐tolerant) and S. cerevisiae 96.2 (thermo‐tolerant). Using two different systems approaches, i. thermodynamic‐based analysis of a genome‐scale metabolic model of S. cerevisiae and ii. large‐scale competition experiment of the yeast heterozygote mutant collection, genes and pathways important for the growth at low temperature were identified. In particular, defects in lipid metabolism, oxidoreductase and vitamin pathways affected yeast fitness at cold. Combining the data from both studies, a list of candidate genes was generated and mutants for two predicted cold‐favouring genes, GUT2 and ADH3, were created in two natural isolates. Compared with the parental strains, these mutants showed lower fitness at cold temperatures, with S. kudriavzevii displaying the strongest defect. Strikingly, in S. kudriavzevii, these mutations also significantly improve the growth at warm temperatures. In addition, overexpression of ADH3 in S. cerevisiae increased its fitness at cold. These results suggest that temperature‐induced redox imbalances could be compensated by increased glycerol accumulation or production of cytosolic acetaldehyde through the deletion of GUT2 or ADH3, respectively.  相似文献   

18.
19.
20.
There is an urgent need for more ecologically realistic models for better predicting the effects of climate change on species’ potential geographic distributions. Here we build ecological niche models using MAXENT and test whether selecting predictor variables based on biological knowledge and selecting ecologically realistic response curves can improve cross‐time distributional predictions. We also evaluate how the method chosen for extrapolation into nonanalog conditions affects the prediction. We do so by estimating the potential distribution of a montane shrew (Mammalia, Soricidae, Cryptotis mexicanus) at present and the Last Glacial Maximum (LGM). Because it is tightly associated with cloud forests (with climatically determined upper and lower limits) whose distributional shifts are well characterized, this species provides clear expectations of plausible vs. implausible results. Response curves for the MAXENT model made using variables selected via biological justification were ecologically more realistic compared with those of the model made using many potential predictors. This strategy also led to much more plausible geographic predictions for upper and lower elevational limits of the species both for the present and during the LGM. By inspecting the modeled response curves, we also determined the most appropriate way to extrapolate into nonanalog environments, a previously overlooked factor in studies involving model transfer. This study provides intuitive context for recommendations that should promote more realistic ecological niche models for transfer across space and time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号