首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Environmental DNA (eDNA) techniques refer to utilizing the organisms’ DNA extracted from environment samples to genetically identify target species without capturing actual organisms. eDNA metabarcoding via high‐throughput sequencing can simultaneously detect multiple fish species from a single water sample, which is a powerful tool for the qualitative detection and quantitative estimates of multiple fish species. However, sequence counts obtained from eDNA metabarcoding may be influenced by many factors, of which primer bias is one of the foremost causes of methodological error. The performance of 18 primer pairs for COI, cytb, 12S rRNA, and 16S rRNA mitochondrial genes, which are all frequently used in fish eDNA metabarcoding, were evaluated in the current study. The ribosomal gene markers performed better than the protein‐coding gene markers during in silico screening, resulting in higher taxonomic coverage and appropriate barcode lengths. Four primer pairs—AcMDB07, MiFish‐U, Ve16S1, and Ve16S3—designed for various regions of the 12S and 16S rRNA genes were screened for tank metabarcoding in a case study targeting six freshwater fish species. The four primer pairs were able to accurately detect all six species in different tanks, while only MiFish‐U, Ve16S1, and Ve16S3 revealed a significant positive relationship between species biomass and read count for the pooled tank data. The positive relationship could not be found in all species within the tanks. Additionally, primer efficiency differed depending on the species while primer preferential species varied in different fish assemblages. This case study supports the potential for eDNA metabarcoding to assess species diversity in natural ecosystems and provides an alternative strategy to evaluate the performance of candidate primers before application of eDNA metabarcoding in natural ecosystems.  相似文献   

2.
底栖动物是淡水生态系统中物种多样性最高的类群,也是应用最广泛的水质监测指示生物之一。传统的底栖动物监测以形态学为基础,耗时费力,无法满足流域尺度大规模监测的需求。环境DNA-宏条形码技术是一种新兴的生物监测方法,其与传统方法相比优势在于采样方法简单、低成本、高灵敏度,不受生物样本和环境状况的影响,不依赖分类专家和鉴定资料,能够快速准确地对多个类群进行大规模、高通量的物种鉴定。然而,在实际应用中该方法的效果受诸多因素的影响,不同的方法、流程往往会产生差异较大的结果。鉴于此,着重分析总结了应用环境DNA-宏条形码技术监测底栖动物的关键影响因素,包括样品采集与处理流程、分子标记选择、引物设计、PCR偏好性、参考数据库的完整性及相应的优化。并基于此探讨了提高环境DNA-宏条形码技术在底栖动物监测效率和准确率的途径,以期为底栖动物环境DNA-宏条形码监测方案的制定提供可靠的参考。最后对该技术在底栖动物监测和水质评价中的最新发展方向进行了展望。  相似文献   

3.
Environmental DNA studies targeting multiple taxa using metabarcoding provide remarkable insights into levels of species diversity in any habitat. The main drawbacks are the presence of primer bias and difficulty in identifying rare species. We tested a DNA sequence‐capture method in parallel with the metabarcoding approach to reveal possible advantages of one method over the other. Both approaches were performed using the same eDNA samples and the same 18S and COI regions, followed by high throughput sequencing. Metabarcoded eDNA libraries were PCR amplified with one primer pair from 18S and COI genes. DNA sequence‐capture libraries were enriched with 3,639 baits targeting the same gene regions. We tested amplicon sequence variants (ASVs) and operational taxonomic units (OTUs) in silico approaches for both markers and methods, using for this purpose the metabarcoding data set. ASVs methods uncovered more species for the COI gene, whereas the opposite occurred for the 18S gene, suggesting that clustering reads into OTUs could bias diversity richness especially using 18S with relaxed thresholds. Additionally, metabarcoding and DNA sequence‐capture recovered 80%–90% of the control sample species. DNA sequence‐capture was 8x more expensive, nonetheless it identified 1.5x more species for COI and 13x more genera for 18S than metabarcoding. Both approaches offer reliable results, sharing ca. 40% species and 72% families and retrieve more taxa when nuclear and mitochondrial markers are combined. eDNA metabarcoding is quite well established and low‐cost, whereas DNA‐sequence capture for biodiversity assessment is still in its infancy, is more time‐consuming but provides more taxonomic assignments.  相似文献   

4.
During the most recent decade, environmental DNA metabarcoding approaches have been both developed and improved to minimize the biological and technical biases in these protocols. However, challenges remain, notably those relating to primer design. In the current study, we comprehensively assessed the performance of ten COI and two 16S primer pairs for eDNA metabarcoding, including novel and previously published primers. We used a combined approach of in silico, in vivo‐mock community (33 arthropod taxa from 16 orders), and guano‐based analyses to identify primer sets that would maximize arthropod detection and taxonomic identification, successfully identify the predator (bat) species, and minimize the time and financial costs of the experiment. We focused on two insectivorous bat species that live together in mixed colonies: the greater horseshoe bat (Rhinolophus ferrumequinum) and Geoffroy's bat (Myotis emarginatus). We found that primer degeneracy is the main factor that influences arthropod detection in silico and mock community analyses, while amplicon length is critical for the detection of arthropods from degraded DNA samples. Our guano‐based results highlight the importance of detecting and identifying both predator and prey, as guano samples can be contaminated by other insectivorous species. Moreover, we demonstrate that amplifying bat DNA does not reduce the primers' capacity to detect arthropods. We therefore recommend the simultaneous identification of predator and prey. Finally, our results suggest that up to one‐third of prey occurrences may be unreliable and are probably not of primary interest in diet studies, which may decrease the relevance of combining several primer sets instead of using a single efficient one. In conclusion, this study provides a pragmatic framework for eDNA primer selection with respect to scientific and methodological constraints.  相似文献   

5.
Global biodiversity in freshwater and the oceans is declining at high rates. Reliable tools for assessing and monitoring aquatic biodiversity, especially for rare and secretive species, are important for efficient and timely management. Recent advances in DNA sequencing have provided a new tool for species detection from DNA present in the environment. In this study, we tested whether an environmental DNA (eDNA) metabarcoding approach, using water samples, can be used for addressing significant questions in ecology and conservation. Two key aquatic vertebrate groups were targeted: amphibians and bony fish. The reliability of this method was cautiously validated in silico, in vitro and in situ. When compared with traditional surveys or historical data, eDNA metabarcoding showed a much better detection probability overall. For amphibians, the detection probability with eDNA metabarcoding was 0.97 (CI = 0.90–0.99) vs. 0.58 (CI = 0.50–0.63) for traditional surveys. For fish, in 89% of the studied sites, the number of taxa detected using the eDNA metabarcoding approach was higher or identical to the number detected using traditional methods. We argue that the proposed DNA‐based approach has the potential to become the next‐generation tool for ecological studies and standardized biodiversity monitoring in a wide range of aquatic ecosystems.  相似文献   

6.
The genomic revolution has fundamentally changed how we survey biodiversity on earth. High‐throughput sequencing (“HTS”) platforms now enable the rapid sequencing of DNA from diverse kinds of environmental samples (termed “environmental DNA” or “eDNA”). Coupling HTS with our ability to associate sequences from eDNA with a taxonomic name is called “eDNA metabarcoding” and offers a powerful molecular tool capable of noninvasively surveying species richness from many ecosystems. Here, we review the use of eDNA metabarcoding for surveying animal and plant richness, and the challenges in using eDNA approaches to estimate relative abundance. We highlight eDNA applications in freshwater, marine and terrestrial environments, and in this broad context, we distill what is known about the ability of different eDNA sample types to approximate richness in space and across time. We provide guiding questions for study design and discuss the eDNA metabarcoding workflow with a focus on primers and library preparation methods. We additionally discuss important criteria for consideration of bioinformatic filtering of data sets, with recommendations for increasing transparency. Finally, looking to the future, we discuss emerging applications of eDNA metabarcoding in ecology, conservation, invasion biology, biomonitoring, and how eDNA metabarcoding can empower citizen science and biodiversity education.  相似文献   

7.
While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.  相似文献   

8.
Because significant global changes are currently underway in the Arctic, creating a large‐scale standardized database for Arctic marine biodiversity is particularly pressing. This study evaluates the potential of aquatic environmental DNA (eDNA) metabarcoding to detect Arctic coastal biodiversity changes and characterizes the local spatio‐temporal distribution of eDNA in two locations. We extracted and amplified eDNA using two COI primer pairs from ~80 water samples that were collected across two Canadian Arctic ports, Churchill and Iqaluit, based on optimized sampling and preservation methods for remote regions surveys. Results demonstrate that aquatic eDNA surveys have the potential to document large‐scale Arctic biodiversity change by providing a rapid overview of coastal metazoan biodiversity, detecting nonindigenous species, and allowing sampling in both open water and under the ice cover by local northern‐based communities. We show that DNA sequences of ~50% of known Canadian Arctic species and potential invaders are currently present in public databases. A similar proportion of operational taxonomic units was identified at the species level with eDNA metabarcoding, for a total of 181 species identified at both sites. Despite the cold and well‐mixed coastal environment, species composition was vertically heterogeneous, in part due to river inflow in the estuarine ecosystem, and differed between the water column and tide pools. Thus, COI‐based eDNA metabarcoding may quickly improve large‐scale Arctic biomonitoring using eDNA, but we caution that aquatic eDNA sampling needs to be standardized over space and time to accurately evaluate community structure changes.  相似文献   

9.
Taxon‐specific DNA tests are applied to many ecological and management questions, increasingly using environmental DNA (eDNA). eDNA facilitates noninvasive ecological studies but introduces additional risks of bias and error. For effective application, PCR primers must be developed for each taxon and validated in each system. We outline a nine step framework for the development and validation of taxon‐specific primers for eDNA analysis in ecological studies, involving reference database construction, phylogenetic evaluation of the target gene, primer design, primer evaluation in silico, and laboratory evaluation of primer specificity, sensitivity and utility. Our framework makes possible a rigorous evaluation of likely sources of error. The first five steps can be conducted relatively rapidly and (where reference DNA sequences are available) require minimal laboratory resources, enabling assessment of primer suitability before investing in further work. Steps six to eight require more costly laboratory analyses but are essential to evaluate risks of false‐positive and false‐negative results, while step 9 relates to field implementation. As an example, we have developed and evaluated primers to specifically amplify part of the mitochondrial ND2 gene from Australian bandicoots. If adopted during the early stages of primer development, our framework will facilitate large‐scale implementation of well‐designed DNA tests to detect specific wildlife from eDNA samples. This will provide researchers and managers with an understanding of the strengths and limitations of their data and the conclusions that can be drawn from them.  相似文献   

10.
Current methods for monitoring marine fish (including bony fishes and elasmobranchs) diversity mostly rely on trawling surveys, which are invasive, costly, and time‐consuming. Moreover, these methods are selective, targeting a subset of species at the time, and can be inaccessible to certain areas. Here, we used environmental DNA (eDNA), the DNA present in the water column as part of shed cells, tissues, or mucus, to provide comprehensive information about fish diversity in a large marine area. Further, eDNA results were compared to the fish diversity obtained in pelagic trawls. A total of 44 5 L‐water samples were collected onboard a wide‐scale oceanographic survey covering about 120,000 square kilometers in Northeast Atlantic Ocean. A short region of the 12S rRNA gene was amplified and sequenced through metabarcoding generating almost 3.5 million quality‐filtered reads. Trawl and eDNA samples resulted in the same most abundant species (European anchovy, European pilchard, Atlantic mackerel, and blue whiting), but eDNA metabarcoding resulted in more detected bony fish and elasmobranch species (116) than trawling (16). Although an overall correlation between fishes biomass and number of reads was observed, some species deviated from the common trend, which could be explained by inherent biases of each of the methods. Species distribution patterns inferred from eDNA metabarcoding data coincided with current ecological knowledge of the species, suggesting that eDNA has the potential to draw sound ecological conclusions that can contribute to fish surveillance programs. Our results support eDNA metabarcoding for broad‐scale marine fish diversity monitoring in the context of Directives such as the Common Fisheries Policy or the Marine Strategy Framework Directive.  相似文献   

11.
Assessment of fish biodiversity in freshwater environments is challenging, especially when rare species or species with low population densities exist. Environmental DNA is becoming a common tool in molecular ecology to detect target species found in the environment. Moreover, eDNA metabarcoding is now used to determine a complete list of target organisms without any prior knowledge on the species inhabiting the environment. This study is the first environmental DNA study designed to assess complete ichthyofauna of the largest lake in Marmara Region of Turkey. For this purpose, an eDNA metabarcoding approach enhanced with tagged primers according to sampling stations for a station specific species listing was used to revise the ichthyofauna of Lake Iznik. Results of pyrosequencing data indicate the presence of 23 species in the lake, five of which are reported for the first time. Short fragment of cytochrome b gene sequences amplified in this study were able to make identifications at species level and the eDNA metabarcoding approach was more cost effective and precise compared to conventional surveys. More molecular data from further studies will enhance the reference databases and eDNA metabarcoding could be used more efficiently as an important molecular tool in biodiversity assessment studies.  相似文献   

12.
13.
Environmental DNA (eDNA) metabarcoding surveys enable rapid, noninvasive identification of taxa from trace samples with wide‐ranging applications from characterizing local biodiversity to identifying food‐web interactions. However, the technique is prone to error from two major sources: (a) contamination through foreign DNA entering the workflow, and (b) misidentification of DNA within the workflow. Both types of error have the potential to obscure true taxon presence or to increase taxonomic richness by incorrectly identifying taxa as present at sample sites, but multiple error sources can remain unaccounted for in metabarcoding studies. Here, we use data from an eDNA metabarcoding study designed to detect vertebrate species at waterholes in Australia's arid zone to illustrate where and how in the workflow errors can arise, and how to mitigate those errors. We detected the DNA of 36 taxa spanning 34 families, 19 orders and five vertebrate classes in water samples from waterholes, demonstrating the potential for eDNA metabarcoding surveys to provide rapid, noninvasive detection in remote locations, and to widely sample taxonomic diversity from aquatic through to terrestrial taxa. However, we initially identified 152 taxa in the samples, meaning there were many false positive detections. We identified the sources of these errors, allowing us to design a stepwise process to detect and remove error, and provide a template to minimize similar errors that are likely to arise in other metabarcoding studies. Our findings suggest eDNA metabarcoding surveys need to be carefully conducted and screened for errors to ensure their accuracy.  相似文献   

14.
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large‐scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.  相似文献   

15.
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long‐term gill‐net data set available in the UK. Seventy‐eight 2L water samples were collected along depth profile transects, gill‐net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill‐net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods.  相似文献   

16.
Freshwater fauna are particularly sensitive to environmental change and disturbance. Management agencies frequently use fish and amphibian biodiversity as indicators of ecosystem health and a way to prioritize and assess management strategies. Traditional aquatic bioassessment that relies on capture of organisms via nets, traps and electrofishing gear typically has low detection probabilities for rare species and can injure individuals of protected species. Our objective was to determine whether environmental DNA (eDNA) sampling and metabarcoding analysis can be used to accurately measure species diversity in aquatic assemblages with differing structures. We manipulated the density and relative abundance of eight fish and one amphibian species in replicated 206‐L mesocosms. Environmental DNA was filtered from water samples, and six mitochondrial gene fragments were Illumina‐sequenced to measure species diversity in each mesocosm. Metabarcoding detected all nine species in all treatment replicates. Additionally, we found a modest, but positive relationship between species abundance and sequencing read abundance. Our results illustrate the potential for eDNA sampling and metabarcoding approaches to improve quantification of aquatic species diversity in natural environments and point the way towards using eDNA metabarcoding as an index of macrofaunal species abundance.  相似文献   

17.
Environmental DNA (eDNA) analysis has seen rapid development in the last decade, as a novel biodiversity monitoring method. Previous studies have evaluated optimal strategies, at several experimental steps of eDNA metabarcoding, for the simultaneous detection of fish species. However, optimal sampling strategies, especially the season and the location of water sampling, have not been evaluated thoroughly. To identify optimal sampling seasons and locations, we performed sampling monthly or at two‐monthly intervals throughout the year in three dam reservoirs. Water samples were collected from 15 and nine locations in the Miharu and Okawa dam reservoirs in Fukushima Prefecture, respectively, and five locations in the Sugo dam reservoir in Hyogo Prefecture, Japan. One liter of water was filtered with glass‐fiber filters, and eDNA was extracted. By performing MiFish metabarcoding, we successfully detected a total of 21, 24, and 22 fish species in Miharu, Okawa, and Sugo reservoirs, respectively. From these results, the eDNA metabarcoding method had a similar level of performance compared to conventional long‐term data. Furthermore, it was found to be effective in evaluating entire fish communities. The number of species detected by eDNA survey peaked in May in Miharu and Okawa reservoirs, and in March and June in Sugo reservoir, which corresponds with the breeding seasons of many of fish species inhabiting the reservoirs. In addition, the number of detected species was significantly higher in shore, compared to offshore samples in the Miharu reservoir, and a similar tendency was found in the other two reservoirs. Based on these results, we can conclude that the efficiency of species detection by eDNA metabarcoding could be maximized by collecting water from shore locations during the breeding seasons of the inhabiting fish. These results will contribute in the determination of sampling seasons and locations for fish fauna survey via eDNA metabarcoding, in the future.  相似文献   

18.
DNA extraction from environmental samples (environmental DNA; eDNA) for metabarcoding‐based biodiversity studies is gaining popularity as a noninvasive, time‐efficient, and cost‐effective monitoring tool. The potential benefits are promising for marine conservation, as the marine biome is frequently under‐surveyed due to its inaccessibility and the consequent high costs involved. With increasing numbers of eDNA‐related publications have come a wide array of capture and extraction methods. Without visual species confirmation, inconsistent use of laboratory protocols hinders comparability between studies because the efficiency of target DNA isolation may vary. We determined an optimal protocol (capture and extraction) for marine eDNA research based on total DNA yield measurements by comparing commonly employed methods of seawater filtering and DNA isolation. We compared metabarcoding results of both targeted (small taxonomic group with species‐level assignment) and universal (broad taxonomic group with genus/family‐level assignment) approaches obtained from replicates treated with the optimal and a low‐performance capture and extraction protocol to determine the impact of protocol choice and DNA yield on biodiversity detection. Filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit outperformed other combinations of capture and extraction methods, showing a ninefold improvement in DNA yield over the poorest performing methods. Use of optimized protocols resulted in a significant increase in OTU and species richness for targeted metabarcoding assays. However, changing protocols made little difference to the OTU and taxon richness obtained using universal metabarcoding assays. Our results demonstrate an increased risk of false‐negative species detection for targeted eDNA approaches when protocols with poor DNA isolation efficacy are employed. Appropriate optimization is therefore essential for eDNA monitoring to remain a powerful, efficient, and relatively cheap method for biodiversity assessments. For seawater, we advocate filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit or phenol‐chloroform‐isoamyl for successful implementation of eDNA multi‐marker metabarcoding surveys.  相似文献   

19.
DNA analysis of predator faeces using high‐throughput amplicon sequencing (HTS) enhances our understanding of predator–prey interactions. However, conclusions drawn from this technique are constrained by biases that occur in multiple steps of the HTS workflow. To better characterize insectivorous animal diets, we used DNA from a diverse set of arthropods to assess PCR biases of commonly used and novel primer pairs for the mitochondrial gene, cytochrome oxidase C subunit 1 (COI). We compared diversity recovered from HTS of bat guano samples using a commonly used primer pair “ZBJ” to results using the novel primer pair “ANML.” To parameterize our bioinformatics pipeline, we created an arthropod mock community consisting of single‐copy (cloned) COI sequences. To examine biases associated with both PCR and HTS, mock community members were combined in equimolar amounts both pre‐ and post‐PCR. We validated our system using guano from bats fed known diets and using composite samples of morphologically identified insects collected in pitfall traps. In PCR tests, the ANML primer pair amplified 58 of 59 arthropod taxa (98%), whereas ZBJ amplified 24–40 of 59 taxa (41%–68%). Furthermore, in an HTS comparison of field‐collected samples, the ANML primers detected nearly fourfold more arthropod taxa than the ZBJ primers. The additional arthropods detected include medically and economically relevant insect groups such as mosquitoes. Results revealed biases at both the PCR and sequencing levels, demonstrating the pitfalls associated with using HTS read numbers as proxies for abundance. The use of an arthropod mock community allowed for improved bioinformatics pipeline parameterization.  相似文献   

20.
文章采用环境DNA宏条码和底拖网对珠江河口鱼类多样性进行了研究, 并对两种方法进行了比较。利用环境DNA宏条码检测到了175种鱼类, 而利用底拖网采集到了47种鱼类, 结合两种方法共检测出179种鱼类, 隶属于15 目63科128属。其中两种方法共同识别了鱼类43种, 占总检测物种的24.02%, 基于底拖网的调查未能收集到基于环境DNA宏条码检测到的大多数物种。根据Shannon指数和Simpson指数显示, DNA宏条码所检测珠江河口鱼类群落α多样性显著高于底拖网方法(P<0.05)。两种方法的PCoA结果均显示珠江河口鱼类群落存在空间结构, 基于环境DNA宏条码的分析显示空间重叠更多。两种方法基于冗余分析均显示溶解氧和盐度是影响鱼类群落结构的主要环境因子。研究表明, 环境DNA 宏条形码是一种环保且可靠的评估方法, 将其搭载到现有调查可以更好地了解河口鱼类多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号