首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) have been implicated in non-native plant invasion success and persistence. However, few studies have identified the AMF species associating directly with plant invaders, or how these associations differ from those of native plant species. Identifying changes to the AMF community due to plant invasion could yield key plant–AMF interactions necessary for the restoration of native plant communities. This research compared AMF associating with coexisting Bromus tectorum, an invasive annual grass, and Artemisia tridentata, the dominant native shrub in western North America. At three sites, soil and root samples from Bromus and Artemisia were collected. Sporulation was induced using trap cultures, and spores were identified using morphological characteristics. DNA was extracted from root and soil subsamples and amplified. Sequences obtained were aligned and analyzed to compare diversity, composition, and phylogenetic distance between hosts and sites. Richness of AMF species associated with Artemisia in cultures was higher than AMF species associated with Bromus. Gamma diversity was similar and beta diversity was higher in AMF associated with Bromus compared to Artemisia. AMF community composition differed between hosts in both cultures and roots. Two AMF species (Archaeospora trappei and Viscospora viscosum) associated more frequently with Artemisia than Bromus across multiple sites. AMF communities in Bromus roots were more phylogenetically dispersed than in Artemisia roots, indicating a greater competition for resources within the invasive grass. Bromus associated with an AMF community that differed from Artemisia in a number of ways, and these changes could restrict native plant establishment.  相似文献   

2.
Yoder  Carolyn  Caldwell  Martyn 《Plant Ecology》2002,158(1):77-84
An experiment was conducted to determine if growth and biomass responsesof the annual grass Bromus tectorum are affected by themagnitude and timing of nitrogen (N) pulses and if these responses areinfluenced by different perennial neighbor species. Nitrogen(NH4:NO3) was applied in three pulse treatments of varyinginterpulse length (3-d, 9-d, or 21-d between N additions). The total amount of Nadded was the same among treatments; hence, both the frequency and magnitude ofN pulses varied (i.e., the longer the interpulse period,the greater the amount of N added for a single pulse).Bromus showed little response to the different N-pulsetreatments. The only characteristic that varied among pulse treatments wasspecific leaf area (SLA), which was significantly greater whenBromus was grown under the 21-d N pulse than when grownunder the 3-d or 9-d N pulses. Bromus height, leaf andtiller numbers, leaf area and aboveground biomass were not affected by theN-pulse treatments nor were tissue-N contents and concentrations. However,Bromus production and tissue-N were significantly differentwhen Bromus was grown with different perennial neighborspecies. Tiller production, aboveground biomass, and seed numbers ofBromus were lowest when the perennial neighbor was thetussock grass Agropyron desertorum, intermediate when theneighbor was the evergreen shrub Artemisia tridentata, andgreatest when the neighbor was the deciduous shrub Chrysothamnusnauseosus. N contents of Bromus leaves were alsolowest when the neighbor was Agropyron. In contrast, root Nuptake capacities were greatest for Agropyron-Bromus rootmixes and lowest for Chrysothamnus-Bromus root mixes. Theseresults suggest that perennial neighbors affect growth, seed production, and Nuptake of Bromus to a greater extent than the timing andmagnitude of N pulses.  相似文献   

3.
All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2‐fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species‐dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2, RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2‐fixing ability of the rhizobia strains.  相似文献   

4.
Citrus plants strongly depend on mycorrhizal symbiosis because of less or no root hairs, but few reports have studied if their root traits and physiological status could be altered by different arbuscular mycorrhizal fungi (AMF). In a pot experiment we evaluated the effects of three AMF species, Glomus mosseae, G. versiforme and Paraglomus occultum on the root traits and physiological variables of the trifoliate orange (Poncirus trifoliata L. Raf.) seedlings. Root mycorrhizal colonization was 58–76% after 180 days of inoculation. AMF association significantly increased plant height, stem diameter, leaf number per plant, shoot and root biomass. Mycorrhizal seedlings also had higher total root length, total root projected area, total root surface area and total root volume but thinner root diameter. Among the three AMFs, greater positive effects on aboveground growth generally ranked as G. mosseae > P. occultum > G. versiforme, whilst on root traits as G. mosseae ≈ P. occultum > G. versiforme. Compared to the non-mycorrhizal seedlings, contents of chlorophyll, leaf glucose and sucrose, root soluble protein were significantly increased in the mycorrhizal seedlings. In contrast, root glucose and sucrose, leaf soluble protein, and activity of peroxidase (POD) in both leaves and roots were significantly decreased in the mycorrhizal seedlings. It suggested that the improvement of root traits could be dependent on AMF species and be related to the AMF-induced alteration of carbohydrates and POD.  相似文献   

5.

Background  

Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T.  相似文献   

6.
Due to their complementary roles in meeting plant nutritional needs, arbuscular mycorrhizal fungi (AMF) and nitrogen-fixing bacteria (N2-fixers) may have synergistic effects on plant communities. Using greenhouse microcosms, we tested the effects of AMF, N2-fixers (symbiotic: rhizobia, and associative: Azospirillum brasilense), and their potential interactions on the productivity, diversity, and species composition of diverse tallgrass prairie communities and on the productivity of Panicum virgatum in monoculture. Our results demonstrate the importance of AMF and N2-fixers as drivers of plant community structure and function. In the communities, we found a positive effect of AMF on diversity and productivity, but a negative effect of N2-fixers on productivity. Both AMF and N2-fixers affected relative abundances of species. AMF shifted the communities from dominance by Elymus canadensis to Sorghastrum nutans, and seven other species increased in abundance with AMF, accounting for the increased diversity. N2-fixers led to increases in Astragalus canadensis and Desmanthus illinoense, two legumes that likely benefited from the presence of the appropriate rhizobia symbionts. Sorghastrum nutans declined 44?% in the presence of N2-fixers, with the most likely explanation being increased competition from legumes. Panicum monocultures were more productive with AMF, but showed no response to N2-fixers, although inference was constrained by low Azospirillum treatment effectivity. We did not find interactions between AMF and N2-fixers in communities or Panicum monocultures, indicating that short-term effects of these microbial functional groups are additive.  相似文献   

7.
Little is known about direct and indirect effects of extreme weather events on arbuscular mycorrhizal fungi (AMF) under field conditions. In a field experiment, we investigated the response of mycorrhization to drought and heavy rain in grassland communities. We quantified AMF biomass in soil, mycorrhization of roots of the grass Holcus lanatus and the forb Plantago lanceolata, as well as plant performance. Plants were grown in four‐species communities with or without a legume. We hypothesised that drought increases and heavy rain decreases mycorrhization, and that higher mycorrhization will be linked to improved stress resistance and higher biomass production. Soil AMF biomass increased under both weather extremes. Heavy rain generally benefitted plants and increased arbuscules in P. lanceolata. Drought neither reduced plant performance nor root mycorrhization. Arbuscules increased in H. lanatus several weeks after drought, and in P. lanceolata several weeks after heavy rain spells. These long‐lasting effects of weather events on mycorrhization highlight the indirect influence of climate on AMF via their host plant. Legume presence increased plant community biomass, but had only minor effects on mycorrhization. Arbuscule colonisation was negatively correlated with senescence during the dry summer. Mycorrhization and biomass production in P. lanceolata were positively related. However, increased mycorrhization was related to less biomass in the grass. AMF mycelium in soil might generally increase under extreme events, root colonisation, however, is host species specific. This might amplify community shifts in grassland under climate change by further increasing stress resistance of species that already benefit from changed precipitation.  相似文献   

8.
Competition between native and non-native species can change the composition and structure of plant communities, but in deserts, the highly variable timing of resource availability also influences non-native plant establishment, thus modulating their impacts on native species. In a field experiment, we varied densities of the non-native annual grass Bromus madritensis ssp. rubens around individuals of three native Mojave Desert perennials—Larrea tridentata, Achnatherum hymenoides, and Pleuraphis rigida—in either winter or spring. For comparison, additional plots were prepared for the same perennial species and seasons, but with a mixture of native annual species as neighbors. Growth of perennials declined when Bromus was established in winter because Bromus stands had 2–3 months of growth and high water use before perennial growth began. However, water potentials for the perennials were not significantly reduced, suggesting that direct competition for water may not be the major mechanism driving reduced perennial growth. The impact of Bromus on Larrea was lower than for the two perennial grasses, likely because Larrea maintains low growth rates throughout the year, even after Bromus has completed its life cycle. This result contrasts with the perennial grasses, whose phenology completely overlaps with (Achnatherum) or closely follows (Pleuraphis) that of Bromus. In comparison, Bromus plants established in spring were smaller than those established in winter and thus did not effectively reduce growth of the perennials. Growth of perennials with mixed annuals as neighbors also did not differ from those with Bromus neighbors of equivalent biomass, but stands of these native annuals did not achieve the high biomass of Bromus stands that were necessary to reduce perennial growth. Seed dormancy and narrow requirements for seedling survivorship of native annuals produce densities and biomass lower than those achieved by Bromus; thus, impacts of native Mojave Desert annuals on perennials are expected to be lower than those of Bromus.  相似文献   

9.
Soil and roots associated with different tea clones and nearby weeds (Veronica sp., Setaria sp., Salvia sp., Senecio sp. and Tripogon sp.) were sampled for arbuscular mycorrhizal fungi (AMF) in the tea gardens of Northern Iran. Spores were searched for in the soil and AMF colonisation determined microscopically and fatty acid signatures in roots was determined. Root samples from mycorrhizal and non-mycorrhizal clover were used as positive and negative controls. AMF spores were abundant in the tea garden soils; the genera Glomus and Acaulospora dominated. Microscopic observations of stained tea roots showed no sign of AMF. To confirm this, the roots were analysed for fatty acid signature compounds. The average level of PLFA 16:1ω5 as signature molecule for AMF in tea roots was 2 nmol g−1 dry root, while the NLFA 16:1ω5 was not detectable. In mycorrhizal and non-mycorrhizal clover roots, the PLFA 16:1ω5 was 141and 5.74 nmol g−1 dry root, respectively. In roots of weeds in tea plantations, the amount of PLFA 16:1ω5 was in the range 4.9 to 31.1 nmol g−1 dry root. Thus, there was no evidence for AMF association in tea roots and weeds are thought to be the source of the spores in the soils. Finally, no mycorrhizal colonisation was found when tea plant seedlings were inoculated with AMF in pot cultures.  相似文献   

10.
We describe the occurrence of arbuscular mycorrhizae in the roots ofZamia pumila andDioon edule. Seedlings were grown on native, unsterilized soil taken from local pinelands of south Florida, whereZ. pumila occurs naturally. Arbuscules, hyphae, hyphal coils, and vesicles occur in the parenchyma cells of the root cortex, especially the half of the cortex next to the stele. Hyphae of the arbuscular mycorrhizal fungi (AMF) occur mainly in longitudinal intercellular spaces and conform to theAcorus type. The finest, ultimate roots have AMF, but these roots are extremely brittle, detach with the slightest disturbance, and are usually lost when plants are uprooted from the ground. No AMF were found in the cortex of coralloid roots. Vovides (1991) previously reported that AMF occur onDioon edule and Ceratozamia mexicana, and we reconfirm this inD. edule. In this species, AMF appear to be mostly associated with the outer and to a lesser extent the inner cortex. However, roots of a potted plant of C.hildae growing in native soil lacked AMF. When grown on low phosphorus soils, legumes are known to require AMF in order for theirRhizobium nodules to fix nitrogen. Without AMF, the legumes are deficient in phosphorus, which inhibits nodule production and nitrogen fixation. It is probable that cycads, with their nitrogen-fixing coralloid roots containingNostoc, may also require AMF for successful nitrogen fixation when phosphorus is limiting.  相似文献   

11.
Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass–clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant.  相似文献   

12.
Greenhouse experiment was conducted to evaluate the potential effectiveness of a legume (Sesbania cannabina), arbuscular mycorrhizal fungi (AMF) (Glomus mosseae), and rhizobia (Ensifer sp.) symbiosis for remediation of Polycyclic aromatic hydrocarbons (PAHs) in spiked soil. AMF and rhizobia had a beneficial impact on each other in the triple symbiosis. AMF and/or rhizobia significantly increased plant biomass and PAHs accumulation in plants. The highest PAHs dissipation was observed in plant + AMF + rhizobia treated soil, in which >97 and 85–87% of phenanthrene and pyrene, respectively, had been degraded, whereas 81–85 and 72–75% had been degraded in plant-treated soil. During the experiment, a relatively large amount of water-soluble phenolic compounds was detected in soils of AMF and/or rhizobia treatment. It matches well with the high microbial activity and soil enzymes activity. These results suggest that the mutual interactions in the triple symbiosis enhanced PAHs degradation via stimulating both microbial development and soil enzyme activity. The mutual interactions between rhizobia and AMF help to improve phytoremediation efficiency of PAHs by S. cannabina.  相似文献   

13.
以疏叶骆驼刺为研究对象,设定3个水分梯度正常水分(土壤相对含水量(70±5)%)、干旱胁迫(土壤相对含水量(20±5)%)和复水处理(干旱胁迫60天后恢复至正常水分)与四组接种处理(单接种丛枝菌根真菌(AMF)、单接种根瘤菌、双接种AMF+根瘤菌和不接种),分析不同水分条件下双接种丛枝菌根真菌和根瘤菌对疏叶骆驼刺的生长以及供、受体疏叶骆驼刺之间氮素转移的影响。结果表明,正常水分处理时,双接种疏叶骆驼刺的AMF侵染率、地上生物量、地下生物量、总生物量以及氮含量均要高于单接种处理;根瘤数量、最大荧光(Fm)、初始荧光(Fo)、最大光化学效率(Fv/Fm)与单接种处理之间无差异;在遭遇干旱胁迫时,双接种疏叶骆驼刺的AMF侵染率、总生物量、Fv/Fm均小于单接种处理;地上生物量、地下生物量、根瘤数、Fm、Fo以及氮含量与单接种之间无差异。复水后,双接种疏叶骆驼刺的地上生物量、地下生物量、总生物量、根瘤数均优于单接种;AMF侵染率、氮含量低于单接种;Fm、Fo、Fv/Fm均与单接种之间无差异。在氮素转移方面,正常水分时,双接种与单接种的氮素转移率无差异,在遭遇干旱胁迫时,双接种疏叶骆驼刺的氮素转...  相似文献   

14.
The controlled disposal of tannery sludge in agricultural soils is a viable alternative for recycling such waste; however, the impact of this practice on the arbuscular mycorrhizal fungi (AMF) communities is not well understood. We studied the effects of low-chromium tannery sludge amendment in soils on AMF spore density, species richness and diversity, and root colonization levels. Sludge was applied at four doses to an agricultural field in Rolandia, Paraná state, Brazil. The sludge was left undisturbed on the soil surface and then the area was harrowed and planted with corn. The soil was sampled at four intervals and corn roots once within a year (2007/2008). AMF spore density was low (1 to 49 spores per 50 cm3 of soil) and decreased as doses of tannery sludge increased. AMF root colonization was high (64%) and unaffected by tannery sludge. Eighteen AMF species belonging to six genera (Acaulospora, Glomus, Gigaspora, Scutellospora, Paraglomus, and Ambispora) were recorded. At the sludge doses of 9.0 and 22.6 Mg ha−1, we observed a decrease in AMF species richness and diversity, and changes in their relative frequencies. Hierarchical grouping analysis showed that adding tannery waste to the soil altered AMF spore community in relation to the control, modifying the mycorrhizal status of soil and selectively favoring the sporulation of certain species.  相似文献   

15.
Alnus acuminata is a keystone tree species in the Yungas forests and host to a wide range of fungal symbionts. While species distribution models (SDMs) are routinely used for plants and animals to study the effects of climate change on montane forest communities, employing SDMs in fungi has been hindered by the lack of data on their geographic distribution. The well‐known host specificity and common biogeographic history of A. acuminata and associated ectomycorrhizal (ECM) fungi provide an exceptional opportunity to model the potential habitat for this symbiotic assemblage and to predict possible climate‐driven changes in the future. We (1) modeled the present and future distributions of suitable habitats for A. acuminata; (2) characterized fungal communities in different altitudinal zones of the Yungas using DNA metabarcoding of soil and root samples; and (3) selected fungi that were significant indicators of Alnus. Fungal communities were strongly structured according to altitudinal forest types and the presence of Alnus. Fungal indicators of Alnus, particularly ECM and root endophytic fungi, were also detected in Alnus roots. Current and future (year 2050) habitat models developed for A. acuminata predict a 25–50 percent decrease in suitable area and an upslope shift of the suitable habitat by ca. 184–380 m, depending on the climate change scenario. Although A. acuminata is considered to be an effective disperser, recent studies suggest that Andean grasslands are remarkably resistant to forest invasion, and future range contraction for A. acuminata may be even more pronounced than predicted by our models.  相似文献   

16.
In the past few decades, it has been widely accepted that forest loss due to human actions alter the interactions between organisms. We studied the relationship between forest fragment size and arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSE) colonization, and the AMF spore communities in the rhizosphere of two congeneric Euphorbia species (native and exotic/invasive). We hypothesized that these fungal variables will differ with fragment size and species status, and predicted that (a) AMF and DSE colonization together with AMF spore abundance and diversity would be positively related to forest fragment size; (b) these relationships will differ between the exotic and the native species; and (c) there will be a negative relationship between forest fragment size and the availability of soil nutrients (NH4 +, NO3 , and phosphorus). This study was performed in the eight randomly selected forest fragments (0.86–1000 ha), immersed in an agricultural matrix from the Chaquean region in central Argentina. AMF root colonization in the native and exotic species was similar, and was positively related with forest fragment size. Likewise, AMF spore diversity and spore abundance were higher in the larger fragments. While DSE root colonization in the native host was positively related with forest fragment size, DSE colonization in the exotic host showed no relationship. Soil nutrients contents were negatively related with forest fragment size. In addition, NH4 + and NO3 were negatively correlated with AMF spores abundance and root colonization and with DSE colonization in the native species. The results observed in this study show how habitat fragmentation might affect the interaction between key soil components, such as rhizospheric plant-fungal symbiosis and nutrient availability. These environmental changes may have important consequences on plant community composition and nutrient dynamics in this fragmented landscape.  相似文献   

17.
The significance of arbuscular mycorrhizal fungi (AMF) in the process of plant invasion is still poorly understood. We hypothesize that invasive plants would change local AMF community structure in a way that would benefit themselves but confer less advantages to native plants, thus influencing the extent of plant interactions. An AMF spore community composed of five morphospecies of Glomus with equal density (initial AMF spore community, I-AMF) was constructed to test this hypothesis. The results showed that the invasive species, Solidago canadensis, significantly increased the relative abundance of G. geosperum and G. etunicatum (altered AMF spore community, A-AMF) compared to G. mosseae, which was a dominant morphospecies in the monoculture of native Kummerowia striata. The shift in AMF spore community composition driven by S. canadensis generated functional variation between I-AMF and A-AMF communities. For example, I-AMF increased biomass and nutrient uptake of K. striata in both monocultures and mixtures of K. striata and S. canadensis compared to A-AMF. In contrast, A-AMF significantly enhanced root nitrogen (N) acquisition of S. canadensis grown in mixture. Moreover, mycorrhizal-mediated 15N uptake provided direct evidence that I-AMF and A-AMF differed in their affinities with native and invading species. The non-significant effect of A-AMF on K. striata did not result from allelopathy as root exudates of S. canadensis exhibited positive effects on seed germination and biomass of K. striata under naturally occurring concentrations. When considered together, we found that A-AMF facilitated the invasion of S. canadensis through decreasing competitiveness of the native plant K. striata. The results supported our hypothesis and can be used to improve our understanding of an ecosystem-based perspective towards exotic plant invasion.  相似文献   

18.
19.
Nod factors of Rhizobium are a key to the legume door   总被引:7,自引:3,他引:4  
Symbiotic interactions between rhizobia and legumes are largely controlled by reciprocal signal exchange. Legume roots excrete flavonoids which induce rhizobial nodulation genes to synthesize and excrete lopo-oligosaccharide Nod factors. In turn, Nod factors provoke deformation of the root hairs and nodule primordium formation. Normally, rhizobia enter roots through infection threads in markedly curled root hairs. If Nod factors are responsible for symbiosis-specific root hair deformation, they could also be the signal for entry of rhizobia into legume roots. We tested this hypothesis by adding, at inoculation, NodNGR-factors to signal-production-deficient mutants of the broad-host-range Rhizobium sp. NGR234 and Bradyrhizobium japorticum strain USDA110. Between 10 −7 M and 10−6 M NodNGR factors permitted these NodABC mutants to penetrate, nodulate and fix nitrogen on Vigna unguiculata and Glycine max, respectively. NodNGR factors also allowed Rhizobium fredii strain USDA257 to enter and fix nitrogen on Calopogonium caeruleum, a non-host. Detailed cytological investigations of V. unguiculata showed that the NodABC mutant UGR AnodABC, in the presence of NodNGR factors, entered roots in the same way as the wild-type bacterium. Since infection threads were also present in the resulting nodules, we conclude that Nod factors are the signals that permit rhizobia to penetrate legume roots via infection threads.  相似文献   

20.
Legume roots in nature are usually colonized with rhizobia and different arbuscular mycorrhizal fungi (AMF) species. Light microscopy that visualizes the presence of AMF in roots is not able to differentiate the ratio of each AMF species in the root and nodule tissues in mixed fungal inoculation. The purpose of this study was to characterize the dominant species of mycorrhiza in roots and nodules of plants co-inoculated with mycorrhizal fungi and rhizobial strains. Glomus intraradices (GI), Glomus mosseae (GM), their mix (GI + GM), and six Mesorhizobium ciceri strains were used to inoculate chickpea. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess occupancy of these fungal species in roots and nodules. Results showed that GI molecular ratio and relative density were higher than GM in both roots and nodules. These differences in molecular ratio and density between GI and GM in nodules were three folds higher than roots. The results suggested that M. ciceri strains have different effects on nodulation and mycorrhizal colonization pattern. Plants with bacterial S3 and S1 strains produced the highest root nodulation and higher fungal density in both the roots and nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号