首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acacia loderi, the ecosystem engineer of the endangered Acacia loderi Shrublands in arid eastern Australia, spans a persistent (> 15 000 year) but poorly studied landscape feature, the Darling River. We investigated the genetic structure of 19 stands of eight to > 1000 plants separated by < 300 km to test for variation in life histories between semi‐arid and arid stands to the east and west of the Darling River, respectively. Eight of nine stands east of the Darling were exclusively sexual, whereas most of those to the west were clonal. Three western stands were monoclonal, two were polyploid, and one was a diverse mix of diploid and triploid phenotypes. Bayesian analysis revealed a complex genetic structure within the western stands, whereas the eastern stands formed only two genetic clusters. Conservation of small stands may require augmentation of genotypic diversity. However, most genotypic diversity resides within the eastern stands. Although arid zone stands of A. loderi are not always clonal, clonality and polyploidy are more common in the arid west. Clear demarcation of life histories either side of the Darling River may reflect ancient or contemporary effects of physical disturbance associated with the river channel, or cryptic environmental differences, with sexual and asexual reproduction, respectively, at a selective premium in the semi‐arid east and arid west. The restricted distribution of clones and variation in clonality and polyploidy suggests that smaller stands may be vulnerable and warrant individual management.  相似文献   

2.
Bonobos (Pan paniscus) inhabit regions south of the Congo River including all areas between its southerly tributaries. To investigate the genetic diversity and evolutionary relationship among bonobo populations, we sequenced mitochondrial DNA from 376 fecal samples collected in seven study populations located within the eastern and western limits of the species’ range. In 136 effective samples from different individuals (range: 7–37 per population), we distinguished 54 haplotypes in six clades (A1, A2, B1, B2, C, D), which included a newly identified clade (D). MtDNA haplotypes were regionally clustered; 83 percent of haplotypes were locality-specific. The distribution of haplotypes across populations and the genetic diversity within populations thus showed highly geographical patterns. Using population distance measures, seven populations were categorized in three clusters: the east, central, and west cohorts. Although further elucidation of historical changes in the geological setting is required, the geographical patterns of genetic diversity seem to be shaped by paleoenvironmental changes during the Pleistocene. The present day riverine barriers appeared to have a weak effect on gene flow among populations, except for the Lomami River, which separates the TL2 population from the others. The central cohort preserves a high genetic diversity, and two unique clades of haplotypes were found in the Wamba/Iyondji populations in the central cohort and in the TL2 population in the eastern cohort respectively. This knowledge may contribute to the planning of bonobo conservation.  相似文献   

3.
The identification of ecological and evolutionary mechanisms that might account for the elevated biotic diversity in tropical forests is a central theme in evolutionary biology. This issue is especially relevant in the Neotropical region, where biological diversity is the highest in the world, but where few studies have been conducted to test factors causing population differentiation and speciation. We used mtDNA sequence data to examine the genetic structure within white‐backed fire‐eye (Pyriglena leuconota) populations along the Tocantins River valley in the south‐eastern Amazon Basin, and we confront the predictions of the river and the Pleistocene refuge hypotheses with patterns of genetic variation observed in these populations. We also investigated whether these patterns reflect the recently detected shift in the course of the Tocantins River. We sampled a total of 32 individuals east of, and 52 individuals west of, the Tocantins River. Coalescent simulations and phylogeographical and population genetics analytical approaches revealed that mtDNA variation observed for fire‐eye populations provides little support for the hypothesis that populations were isolated in glacial forest refuges. Instead, our data strongly support a key prediction of the river hypothesis. Our study shows that the Tocantins River has probably been the historical barrier promoting population divergence in fire‐eye antbirds. Our results have important implications for a better understanding of the importance of large Amazonian rivers in vertebrate diversification in the Neotropics.  相似文献   

4.
Local adaptation is a dynamic process by which different allele combinations are selected in different populations at different times, and whose genetic signature can be inferred by genome‐wide outlier analyses. We combined gene flow estimates with two methods of outlier detection, one of them independent of population coancestry (CIOA) and the other one not (ROA), to identify genetic variants favored when ecology promotes phenotypic convergence. We analyzed genotyping‐by‐sequencing data from five populations of a lizard distributed over an environmentally heterogeneous range that has been changing since the split of eastern and western lineages ca. 3 mya. Overall, western lizards inhabit forest habitat and are unstriped, whereas eastern ones inhabit shrublands and are striped. However, one population (Lerma) has unstriped phenotype despite its eastern ancestry. The analysis of 73,291 SNPs confirmed the east–west division and identified nonoverlapping sets of outliers (12 identified by ROA and 9 by CIOA). ROA revealed ancestral adaptive variation in the uncovered outliers that were subject to divergent selection and differently fixed for eastern and western populations at the extremes of the environmental gradient. Interestingly, such variation was maintained in Lerma, where we found high levels of heterozygosity for ROA outliers, whereas CIOA uncovered innovative variants that were selected only there. Overall, it seems that both the maintenance of ancestral variation and asymmetric migration have counterbalanced adaptive lineage splitting in our model species. This scenario, which is likely promoted by a changing and heterogeneous environment, could hamper ecological speciation of locally adapted populations despite strong genetic structure between lineages.  相似文献   

5.
Although genetic diversity provides the basic substrate for evolution, there are a limited number of studies that assess the impact of recent climate change on intraspecific genetic variation. This study aims to unravel the degree to which historical and contemporary factors shape genetic diversity and structure across a large part of the range of the range‐expanding damselfly Coenagrion scitulum (Rambur, 1842). A total of 525 individuals from 31 populations were genotyped at nine microsatellites, and a subset was sequenced at two mitochondrial genes. We inferred the importance of geography, environmental factors, and recent range expansion on genetic diversity and structure. Genetic diversity decreased going westwards, suggesting a signature of historical post‐glacial expansion from east to west and the presence of eastern refugia. Although genetic differentiation decreased going northwards, it increased in the northern edge populations, suggesting a role of contemporary range expansion on the genetic make‐up of populations. The phylogeographical context was proven to be essential in understanding and identifying the genetic signatures of local contemporary processes. Within this framework, our results highlight that recent range expansion of a good disperser can decrease genetic diversity and increase genetic differentiation which should be considered when devising suitable conservation strategies.  相似文献   

6.
Intraspecific color variation has long fascinated evolutionary biologists. In species with bright warning coloration, phenotypic diversity is particularly compelling because many factors, including natural and sexual selection, contribute to intraspecific variation. To better understand the causes of dramatic phenotypic variation in Malagasy poison frogs, we quantified genetic structure and color and pattern variation across three closely related species, Mantella aurantiaca, Mantella crocea, and Mantella milotympanum. Although our restriction site‐associated DNA (RAD) sequencing approach identified clear genetic clusters, they do not align with current species designations, which has important conservation implications for these imperiled frogs. Moreover, our results suggest that levels of intraspecific color variation within this group have been overestimated, while species diversity has been underestimated. Within major genetic clusters, we observed distinct patterns of variation including: populations that are phenotypically similar yet genetically distinct, populations where phenotypic and genetic breaks coincide, and populations that are genetically similar but have high levels of within‐population phenotypic variation. We also detected admixture between two of the major genetic clusters. Our study suggests that several mechanisms—including hybridization, selection, and drift—are contributing to phenotypic diversity. Ultimately, our work underscores the need for a reevaluation of how polymorphic and polytypic populations and species are classified, especially in aposematic organisms.  相似文献   

7.
Aim The range of the subalpine species Hypochaeris uniflora covers the Alps, Carpathians and Sudetes Mountains. Whilst the genetic structure and post‐glacial history of many high‐mountain plant taxa of the Alps is relatively well documented, the Carpathian populations have often been neglected in phylogeographical studies. The aim of the present study is to compare the genetic variation of the species in two major European mountain systems – the Alps and the Carpathians. Location Alps and Carpathians. Methods The genetic variation of 77 populations, each consisting of three plants, was studied using amplified fragment length polymorphism (AFLP). Results Neighbour joining and principal coordinate analyses revealed three well‐supported phylogeographical groups of populations corresponding to three disjunct geographical regions – the Alps and the western and south‐eastern Carpathians. Moreover, two further clusters could be distinguished within the latter mountain range, one consisting of populations from the eastern Carpathians and the second consisting of populations from the southern Carpathians. Populations from the Apuseni Mountains had an intermediate position between the eastern and southern Carpathians. The genetic clustering of populations into four groups was also supported by an analysis of molecular variance, which showed that most genetic variation (almost 46%) was found among these four groups. By far the highest within‐population variation was found in the eastern Carpathians, followed by populations from the southern and western Carpathians. Generally, the populations from the Alps were considerably less variable and displayed substantially fewer region‐diagnostic markers than those from the south‐eastern Carpathians. Although no clear geographical structure was found within the Alps, based on neighbour joining or principal coordinate analyses, some trends were obvious: populations from the easternmost part were genetically more variable and, together with those from the south‐western part, exhibited a higher proportion of rare AFLP fragments than populations in other areas. Moreover, the total number of AFLP fragments per population, the percentage of polymorphic loci and the proportion of rare AFLP fragments significantly decreased from east to west. Main conclusions Deep infraspecific phylogeographical gaps between the populations from the Alps and the western and south‐eastern Carpathians suggest the survival of H. uniflora in three separate refugia during the last glaciation. Our AFLP data provide molecular evidence for a long‐term geographical disjunction between the eastern and western Carpathians, previously suggested from the floristic composition at the end of 19th century. It is likely that Alpine populations survived the Last Glacial in the eastern part of the Alps, from where they rapidly colonized the rest of the Alps after the ice sheet retreated. Multiple founder effects may explain a gradual loss of genetic variation during westward colonization of the Alps.  相似文献   

8.
Human population migrations, as well as long‐distance trade activities, have been responsible for the spread of many invasive organisms. The black rat, Rattus rattus, has colonized most of the world following ship‐mediated trade. Owing to its tight association with human infrastructures, this species has been able to survive in unfavourable environments, such as Sahelian Africa. In this work, we combined interview‐based and population genetic surveys to investigate the processes underlying the ongoing invasion of south‐western Niger by black rats, with special emphasis on the capital city, Niamey. Our trapping and interview data are quite congruent, and all together point towards a patchy, but rather widespread, current distribution of R. rattus. Genetic data strongly suggest that road network development for truck‐based commercial flow from/to international harbours located in neighbouring countries (Benin, Togo, and Nigeria) facilitates the passive dispersal of black rats over a long distance through unfavourable landscapes. Another potentially, more ancient, invasion route may be associated with boat transport along the Niger River. Human‐mediated dispersal thus probably allows the foundation of persisting populations within highly anthropized areas while population dynamics may be more unstable in remote areas and mostly depends on propagule pressure.  相似文献   

9.
Genetic diversity and population structure of 113 chicken populations from Africa, Asia and Europe were studied using 29 microsatellite markers. Among these, three populations of wild chickens and nine commercial purebreds were used as reference populations for comparison. Compared to commercial lines and chickens sampled from the European region, high mean numbers of alleles and a high degree of heterozygosity were found in Asian and African chickens as well as in Red Junglefowl. Population differentiation (FST) was higher among European breeds and commercial lines than among African, Asian and Red Junglefowl populations. Neighbour‐Net genetic clustering and structure analysis revealed two main groups of Asian and north‐west European breeds, whereas African populations overlap with other breeds from Eastern Europe and the Mediterranean region. Broilers and brown egg layers were situated between the Asian and north‐west European clusters. structure analysis confirmed a lower degree of population stratification in African and Asian chickens than in European breeds. High genetic differentiation and low genetic contributions to global diversity have been observed for single European breeds. Populations with low genetic variability have also shown a low genetic contribution to a core set of diversity in attaining maximum genetic variation present from the total populations. This may indicate that conservation measures in Europe should pay special attention to preserving as many single chicken breeds as possible to maintain maximum genetic diversity given that higher genetic variations come from differentiation between breeds.  相似文献   

10.
1 The RAPD method (Random Amplified Polymorphic DNA) was used to investigate genetic diversity of the green spruce aphid, Elatobium abietinum Walker, a pest introduced recently to Iceland. 2 This aphid in Iceland comprised two polymorphic populations, one in the east and the other in the west of the country. The genetic variation between sites within a population was continuous and appeared to be in good agreement with geographical distances. 3 In the eastern population the variation was greater between sites than within sites, whereas in the western population the pattern of variation appeared to be the opposite. This overall greater genetic variation in the eastern population could be due to its having been colonized earlier than the western one. 4 The study also demonstrated a close relationship between the green spruce aphid in Iceland and aphids from Denmark, which agrees with their assumed origin. The differences in introduction time, adaptation and competitiveness between the two Icelandic populations are discussed.  相似文献   

11.
The Cerrado is the largest South American savanna and encompasses substantial species diversity and environmental variation. Nevertheless, little is known regarding the influence of the environment on population divergence of Cerrado species. Here, we searched for climatic drivers of genetic (nuclear microsatellites) and leaf trait divergence in Annona crassiflora, a widespread tree in the Cerrado. The sampling encompassed all phytogeographic provinces of the continuous area of the Cerrado and included 397 individuals belonging to 21 populations. Populations showed substantial genetic and leaf trait divergence across the species' range. Our data revealed three spatially defined genetic groups (eastern, western and southern) and two morphologically distinct groups (eastern and western only). The east‐west split in both the morphological and genetic data closely mirrors previously described phylogeographic patterns of Cerrado species. Generalized linear mixed effects models and multiple regression analyses revealed several climatic factors associated with both genetic and leaf trait divergence among populations of A. crassiflora. Isolation by environment (IBE) was mainly due to temperature seasonality and precipitation of the warmest quarter. Populations that experienced lower precipitation summers and hotter winters had heavier leaves and lower specific leaf area. The southwestern area of the Cerrado had the highest genetic diversity of A. crassiflora, suggesting that this region may have been climatically stable. Overall, we demonstrate that a combination of current climate and past climatic changes have shaped the population divergence and spatial structure of A. crassiflora. However, the genetic structure of A. crassiflora reflects the biogeographic history of the species more strongly than leaf traits, which are more related to current climate.  相似文献   

12.
Lin LH  Qu YF  Li H  Zhou KY  Ji X 《PloS one》2012,7(4):e36334
An understanding of population structure and genetic diversity is crucial for wildlife conservation and for determining the integrity of wildlife populations. The vulnerable Chinese cobra (Naja atra) has a distribution from the mouth of the Yangtze River down to northern Vietnam and Laos, within which several large mountain ranges and water bodies may influence population structure. We combined 12 microsatellite loci and 1117 bp of the mitochondrial cytochrome b gene to explore genetic structure and demographic history in this species, using 269 individuals from various localities in Mainland China and Vietnam. High levels of genetic variation were identified for both mtDNA and microsatellites. mtDNA data revealed two main (Vietnam + southern China + southwestern China; eastern + southeastern China) and one minor (comprising only two individuals from the westernmost site) clades. Microsatellite data divided the eastern + southeastern China clade further into two genetic clusters, which include individuals from the eastern and southeastern regions, respectively. The Luoxiao and Nanling Mountains may be important barriers affecting the diversification of lineages. In the haplotype network of cytchrome b, many haplotypes were represented within a "star" cluster and this and other tests suggest recent expansion. However, microsatellite analyses did not yield strong evidence for a recent bottleneck for any population or genetic cluster. The three main clusters identified here should be considered as independent management units for conservation purposes. The release of Chinese cobras into the wild should cease unless their origin can be determined, and this will avoid problems arising from unnatural homogenization.  相似文献   

13.
Many ephemeral mudflat species, which rely on a soil seed bank to build up the next generation, are endangered in their natural habitat due to the widespread regulation of rivers. The aim of the present study was to elucidate the role of the soil seed bank and dispersal for the maintenance of genetic diversity in populations of near‐natural river habitats and anthropogenic habitats created by traditional fish farming practices using Cyperus fuscus as a model. Using microsatellite markers, we found no difference in genetic diversity levels between soil seed bank and above‐ground population and only moderate differentiation between the two fractions. One possible interpretation is the difference in short‐term selection during germination under specific conditions (glasshouse versus field) resulting in an ecological filtering of genotypes out of the reservoir in the soil. River populations harbored significantly more genetic diversity than populations from the anthropogenic pond types. We suggest that altered levels and patterns of dispersal together with stronger selection pressures and historical bottlenecks in anthropogenic habitats are responsible for the observed reduction in genetic diversity. Dispersal is also supposed to largely prohibit genetic structure across Europe, although there is a gradient in private allelic richness from southern Europe (high values) to northern, especially north‐western, Europe (low values), which probably relates to postglacial expansion out of southern and/or eastern refugia.  相似文献   

14.
An important goal of conservation genetics is to determine if the viability of small populations is reduced by a loss of adaptive variation due to genetic drift. Here, we assessed the impact of drift and selection on direct measures of adaptive variation (toxin loci encoding venom proteins) in the eastern massasauga rattlesnake (Sistrurus catenatus), a threatened reptile that exists in small isolated populations. We estimated levels of individual polymorphism in 46 toxin loci and 1,467 control loci across 12 populations of this species, and compared the results with patterns of selection on the same loci following speciation of S. catenatus and its closest relative, the western massasauga (S. tergeminus). Multiple lines of evidence suggest that both drift and selection have had observable impacts on standing adaptive variation. In support of drift effects, we found little evidence for selection on toxin variation within populations and a significant positive relationship between current levels of adaptive variation and long‐ and short‐term estimates of effective population size. However, we also observed levels of directional selection on toxin loci among populations that are broadly similar to patterns predicted from interspecific selection analyses that pre‐date the effects of recent drift, and that functional variation in these loci persists despite small short‐term effective sizes. This suggests that much of the adaptive variation present in populations may represent an example of “drift debt,” a nonequilibrium state where present‐day levels of variation overestimate the amount of functional genetic diversity present in future populations.  相似文献   

15.
Galaxiella pusilla is a small, non-migratory freshwater fish, endemic to south-eastern Australia and considered nationally threatened. To assist in the conservation of the species, microsatellite markers were developed and used to characterize genetic variation in 20 geographically distinct populations across its range. Substantial genetic differentiation was found between an eastern (Victoria east of the Otway Ranges and Tasmania) and western (South Australia and Victoria west of, and including, the Otway Ranges) region. This major separation was also observed in data from a mitochondrial gene and supports a previously proposed split. Populations from the eastern region had overall lower genetic diversity for both the microsatellite and mtDNA markers. There was substantial genetic differentiation between populations within the two regions, suggesting that gene flow is limited by the isolation of freshwater streams. Genetic structure, consistent with an isolation-by-distance model, was also evident in both regions. Patterns of genetic variation in this threatened species are compared to those obtained for other taxa across the same region. The need to consider separate conservation strategies for the two sets of populations is emphasized.  相似文献   

16.
We analysed 120 white‐tailed sea eagles Haliaeetus albicilla from eastern (Poland and Estonia) and southeastern (Serbian Danube population) Europe for genetic variability and structuring at the mitochondrial control region and seven nuclear microsatellite loci. We combined this new dataset with sequence and genotype data from previous analyses covering Greenland and Eurasia (total sample sizes of 420 and 186 individuals for mtDNA and microsatellites, respectively) to address the following questions: 1) does the large eastern population in Europe add significantly to the species‘ overall genetic diversity? 2) Do the new sequence data match the clinal distribution pattern (west to east) of the two major mtDNA lineages? 3) Does the preliminary hypothesis of two nuclear genetic clusters recently found in this species hold for the whole of Europe, and do these clusters show a geographic pattern? Our results confirmed Europe as a stronghold of genetic diversity in white‐tailed sea eagles, and the east of the continent contributed disproportionately to this, the reason being the admixture of eagles with different genetic background. As hypothesised, both mitochondrial lineages were recovered also in eastern Europe, but the globally more eastern lineage was dominant. The presence of two microsatellite clusters was also confirmed, and these groups, too, show a non‐random geographic distribution, with, except for Poland, a high proportion of ‘eastern‐type’ eagles in the populations of east–central and eastern Europe.  相似文献   

17.
Prior to 1900, coyotes (Canis latrans) were restricted to the western and central regions of North America, but by the early 2000s, coyotes became ubiquitous throughout the eastern United States. Information regarding morphological and genetic structure of coyote populations in the southeastern United States is limited, and where data exist, they are rarely compared to those from other regions of North America. We assessed geographic patterns in morphology and genetics of coyotes with special consideration of coyotes in the southeastern United States. Mean body mass of coyote populations increased along a west‐to‐east gradient, with southeastern coyotes being intermediate to western and northeastern coyotes. Similarly, principal component analysis of body mass and linear body measurements suggested that southeastern coyotes were intermediate to western and northeastern coyotes in body size but exhibited shorter tails and ears from other populations. Genetic analyses indicated that southeastern coyotes represented a distinct genetic cluster that differentiated strongly from western and northeastern coyotes. We postulate that southeastern coyotes experienced lower immigration from western populations than did northeastern coyotes, and over time, genetically diverged from both western and northeastern populations. Coyotes colonizing eastern North America experienced different selective pressures than did stable populations in the core range, and we offer that the larger body size of eastern coyotes reflects an adaptation that improved dispersal capabilities of individuals in the expanding range.  相似文献   

18.
A total of 723 accessions of oil palm (Elaeis guineensis Jacq.) from 26 populations representing ten countries in Africa and one Deli dura family were screened for allelic variation at seven enzyme loci from six enzyme systems using starch gel electrophoresis. On average, 54.5% of the loci were polymorphic (0.99 criterion). The average and effective number of alleles per locus was 1.80 and 1.35, respectively. Mean expected heterozygosity was 0.184, with values ranging from 0.109 (population 8, Senegal) to 0.261 (population 29, Cameroon). The genetic differentiation among populations was high (FST=0.301), indicating high genetic divergence. The calculation of FST by geographic zones revealed that the high FST was largely due to FST among populations in West Africa, suggesting diversifying selection in this region. The mean genetic distance across populations was 0.113. The lowest genetic distance (D) was observed between population 5 from Tanzania and population 7 from the Democratic Republic of the Congo (0.000) and the highest was found between population 4 from Madagascar and population 13 from Sierra Leone (0.568). The total gene flow across oil palm populations was low, with an Nm of 0.576, enhancing genetic structuring, as evident from the high FST values. UPGMA cluster analysis revealed three main clusters; the western outlying populations from Senegal and Sierra Leone were in one cluster but separated into two distinct sub-clusters; the eastern outlying populations from Madagascar were in one cluster; the populations from Angola, Cameroon, The Democratic Republic of the Congo, Ghana, Tanzania, Nigeria and Guinea were in one cluster. The Deli dura family seems to be closely related to population 6 from Guinea. Oil palm populations with high genetic diversity—i.e. all of the populations from Nigeria, Cameroon and Sierra Leone, population 6 of Guinea, population 1 of Madagascar and population 2 of Senegal should be used in improvement programmes, whereas for conservation purposes, oil palm populations with high allelic diversity (Ae), which include populations 22 and 29 from Cameroon, populations 39 and 45 from Nigeria, population 6 from Guinea, populations 5 and 13 from Sierra Leone and population 1 from Madagascar should be selected for capturing as much genetic variation as possible.Communicated by D.B. Neale  相似文献   

19.
The aim of this study was to assess the genetic variation and population structure of the geophyte Leucojum aestivum L. across the Po river valley (N-Italy), to inform conservation management actions with the selection of most suitable source populations for translocation purposes. L. aestivum is self-incompatible and occurs in S-Europe in fragmented wetlands and lowland forests along rivers. The species is particularly interesting for habitat restoration practices for its simplicity of ex situ conservation and cultivation. AFLP analyses were carried out on 16 fragmented populations, using four primer combinations. Correlations between genetic variation and demographic and ecological traits were tested. AFLP produced a total of 202 bands, 95.5% of which were polymorphic. Our results suggest that L. aestivum holds low to moderate levels of genetic diversity (mean Nei’s genetic diversity: H?=?0.125), mostly within-population. We found a gradient of two main biogeographic groups along western and eastern populations, while the STRUCTURE analysis found that the most likely number of clusters was K?=?3, shaping a partially consistent pattern. We explain the unusual negative correlation between genetic variation and population size with the high rate of vegetative reproduction. The levels of population differentiation suggest that fragmentation in L. aestivum populations has occurred, but that an active gene flow between fragmented populations still exists, maintained by flooding events or pollinators. Conservation management actions should improve habitat connectivity, especially for pollinators that vehicle upstream gene flow. Moreover, the west–east structure due to the lithological composition of the gravel and sand forming the alluvial plain of the Po river, should be considered when selecting source populations for translocation purposes.  相似文献   

20.
Biodiversity is the diversity of life at all scales, from genes to ecosystems. Predicting its patterns of variation across the globe is a fundamental issue in ecology and evolution. Diversity within species, that is, genetic diversity, is of prime importance for understanding past and present evolutionary patterns, and highlighting areas where conservation might be a priority. Using published data on the genetic diversity of species whose populations occur in the Mediterranean basin, we calculated a coefficient of correlation between within‐population genetic diversity indices and longitude. Using a meta‐analysis framework, we estimated the role of biological, ecological, biogeographic, and marker type factors on the strength and magnitude of this correlation in six phylla. Overall, genetic diversity increases from west to east in the Mediterranean basin. This correlation is significant for both animals and plants, but is not uniformly expressed for all groups. It is stronger in the southern than in the northern Mediterranean, in true Mediterranean plants than in plants found at higher elevations, in trees than in other plants, and in bi‐parentally and paternally than in maternally inherited DNA makers. Overall, this correlation between genetic diversity and longitude, and its patterns across biological and ecological traits, suggests the role of two non‐mutually exclusive major processes that shaped the genetic diversity in the Mediterranean during and after the cold periods of the Pleistocene: east‐west recolonization during the Holocene and population size contraction under local Last Glacial Maximum climate in resident western and low elevation Mediterranean populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号