首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Rickettsia genus is a group of obligate intracellular α-proteobacteria representing a paradigm of reductive evolution. Here, we investigate the evolutionary processes that shaped the genomes of the genus. The reconstruction of ancestral genomes indicates that their last common ancestor contained more genes, but already possessed most traits associated with cellular parasitism. The differences in gene repertoires across modern Rickettsia are mainly the result of differential gene losses from the ancestor. We demonstrate using computer simulation that the propensity of loss was variable across genes during this process. We also analyzed the ratio of nonsynonymous to synonymous changes (Ka/Ks) calculated as an average over large sets of genes to assay the strength of selection acting on the genomes of Rickettsia, Anaplasmataceae, and free-living γ-proteobacteria. As a general trend, Ka/Ks were found to decrease with increasing divergence between genomes. The high Ka/Ks for closely related genomes are probably due to a lag in the removal of slightly deleterious nonsynonymous mutations by natural selection. Interestingly, we also observed a decrease of the rate of gene loss with increasing divergence, suggesting a similar lag in the removal of slightly deleterious pseudogene alleles. For larger divergence (Ks > 0.2), Ka/Ks converge toward similar values indicating that the levels of selection are roughly equivalent between intracellular α-proteobacteria and their free-living relatives. This contrasts with the view that obligate endocellular microorganisms tend to evolve faster as a consequence of reduced effectiveness of selection, and suggests a major role of enhanced background mutation rates on the fast protein divergence in the obligate intracellular α-proteobacteria.  相似文献   

2.
Sankar Subramanian 《Genetics》2013,193(3):995-1002
Previous studies observed a higher ratio of divergences at nonsynonymous and synonymous sites (ω = dN/dS) in species with a small population size compared to that estimated for those with a large population size. Here we examined the theoretical relationship between ω, effective population size (Ne), and selection coefficient (s). Our analysis revealed that when purifying selection is high, ω of species with small Ne is much higher than that of species with large Ne. However the difference between the two ω reduces with the decline in selection pressure (s → 0). We examined this relationship using primate and rodent genes and found that the ω estimated for highly constrained genes of primates was up to 2.9 times higher than that obtained for their orthologous rodent genes. Conversely, for genes under weak purifying selection the ω of primates was only 17% higher than that of rodents. When tissue specificity was used as a proxy for selection pressure we found that the ω of broadly expressed genes of primates was up to 2.1-fold higher than that of their rodent counterparts and this difference was only 27% for tissue specific genes. Since most of the nonsynonymous mutations in constrained or broadly expressed genes are deleterious, fixation of these mutations is influenced by Ne. This results in a higher ω of these genes in primates compared to those from rodents. Conversely, the majority of nonsynonymous mutations in less-constrained or tissue-specific genes are neutral or nearly neutral and therefore fixation of them is largely independent of Ne, which leads to the similarity of ω in primates and rodents.  相似文献   

3.
4.
 Forty-six immunoglobulin VH gene sequences of rainbow trout were compiled to analyze the extent of variations and the frequency of nucleotide changes in CDRs and FRs. The results show that the frequency of nonsynonymous (amino acid replacing) changes (Ka) are on average 4.9 times higher in complementarity determining regions (CDRs) than in FRs, thus contributing more diversity in CDRs. Unexpectedly, however, the frequency of synonymous (silent) changes (Ks) show the same tendency: it was 5.3 times higher in CDRs than in framework regions (FRs). The distribution of Ks/Ka ratios of each comparison shows no segregation between CDRs and FRs. The same analysis applied to five germline VH genes of Heterodontus francisci shows the same result as was found with the rainbow trout. In contrast, the results from mouse data show that, while the CDR/FR ratio for Ka is much higher (7.4), the CDR/FR ratio for Ks is only slightly higher (1.8). The distribution of Ks/Ka ratios in mouse indicates clear segregation between CDRs and FRs. This suggests that CDR germline diversity is largely generated by gene conversion in VHs of lower vertebrates such as rainbow trout or shark. This mechanism might be advantageous to lower vertebrates in generating V gene diversity faster than other mechanisms such as point mutation and selection. Received: 10 July 1996 / Revised: 9 September 1996  相似文献   

5.
The transition from outcrossing to selfing is predicted to reduce the genome-wide efficacy of selection because of the lower effective population size (Ne) that accompanies this change in mating system. However, strongly recessive deleterious mutations exposed in the homozygous backgrounds of selfers should be under strong purifying selection. Here, we examine estimates of the distribution of fitness effects (DFE) and changes in the magnitude of effective selection coefficients (Nes) acting on mutations during the transition from outcrossing to selfing. Using forward simulations, we investigated the ability of a DFE inference approach to detect the joint influence of mating system and the dominance of deleterious mutations on selection efficacy. We investigated predictions from our simulations in the annual plant Eichhornia paniculata, in which selfing has evolved from outcrossing on multiple occasions. We used range-wide sampling to generate population genomic datasets and identified nonsynonymous and synonymous polymorphisms segregating in outcrossing and selfing populations. We found that the transition to selfing was accompanied by a change in the DFE, with a larger fraction of effectively neutral sites (Nes < 1), a result consistent with the effects of reduced Ne in selfers. Moreover, an increased proportion of sites in selfers were under strong purifying selection (Nes > 100), and simulations suggest that this is due to the exposure of recessive deleterious mutations. We conclude that the transition to selfing has been accompanied by the genome-wide influences of reduced Ne and strong purifying selection against deleterious recessive mutations, an example of purging at the molecular level.  相似文献   

6.
Social insects are the target of numerous pathogens. This is because the high density of closely‐related individuals frequently interacting with each other enhances the transmission and establishment of pathogens. This high selective pressure results in the rapid evolution of immune genes, which might be counteracted by a reduced effective population size (Ne) lowering the effectiveness of selection. We tested the effect of Ne on the evolutionary rate of an important immune gene for the antimicrobial peptide Hymenoptaecin in two common central European bumblebee species: Bombus terrestris and Bombus lapidarius. Both species are similar in their biology and are expected to be under similar selective pressures because pathogen prevalence does not differ between species. However, previous studies indicated a higher Ne in B. terrestris compared to B. lapidarius. We found high intraspecific variability in the coding sequence but low variability for silent polymorphisms in B. lapidarius. Estimates of long‐ and short‐term Ne were three‐ to four‐fold higher Ne in B. terrestris, although the species did not differ in census population sizes. The difference in Ne might result in less efficient selection and suboptimal adaptation of immune genes (e.g. hymenoptaecin) in B. lapidarius, and thus this species might become less resistant and more tolerant, turning into a superspreader of diseases.  相似文献   

7.
Introgressive hybridization offers a unique platform for studying the molecular basis of natural selection acting on mitogenomes. Most of the mtDNA protein‐coding genes are extremely conserved; however, some of the observed variations have potentially adaptive significance. Here, we evaluated whether the evolution of mtDNA in closely related roe deer species affected by widespread mtDNA introgression is neutral or adaptive. We characterized and compared 16 complete mitogenomes of European (Capreolus capreolus) and Siberian (C. pygargus) roe deer, including four of Siberian origin introgressed into European species. The average sequence divergence of species‐specific lineages was estimated at 2.8% and varied across gene classes. Only 21 of 315 fixed differences identified in protein‐coding genes represented nonsynonymous changes. Only three of them were determined to have arisen in the C. pygargus lineage since the time to the most recent common ancestor (TMRCA) of both Capreolus species, reflecting a decelerated evolutionary ratio. The almost four‐fold higher dN/dS ratio described for the European roe deer lineage is constrained by overall purifying selection, especially pronounced in the ND4 and ND5 genes. We suggest that the highly divergent C. capreolus lineage could have maintained a capability for genomic incorporation of the well‐preserved and almost ancestral type of mtDNA present in C. pygargus. Our analyses did not indicate any signs of positive selection for Siberian roe deer mtDNA, suggesting that the present widespread introgression is evolutionarily neutral.  相似文献   

8.
SRY基因在人猿超科和旧大陆猴中具有不同的进化规律   总被引:1,自引:0,他引:1  
王晓霞  吕雪梅  张亚平 《遗传学报》2000,27(10):847-852
通过PCR扩增、测序,得到了白臀叶猴和红面猴的SRY基因全序列。结合现有的灵长类其他物种序列进行分析,验证了HMG盒的保守性。通过构建系统发育树,比较旧大陆猴和人猿超科两个类群内和类群间HMG盒侧翼序列Ka/Ks的比率。有趣的是,人猿超科两物种比较呈现较高的Ka/Ks比值,但在旧大陆猴中及旧大陆猴与狨猴间的Ka/Ks比值显著低于人猿超科的,呈现很不同的格局。同时,对于HMG盒序列,Ka/Ks比值在  相似文献   

9.
Genomewide screens of genetic variation within and between populations can reveal signatures of selection implicated in adaptation and speciation. Genomic regions with low genetic diversity and elevated differentiation reflective of locally reduced effective population sizes (Ne) are candidates for barrier loci contributing to population divergence. Yet, such candidate genomic regions need not arise as a result of selection promoting adaptation or advancing reproductive isolation. Linked selection unrelated to lineage‐specific adaptation or population divergence can generate comparable signatures. It is challenging to distinguish between these processes, particularly when diverging populations share ancestral genetic variation. In this study, we took a comparative approach using population assemblages from distant clades assessing genomic parallelism of variation in Ne. Utilizing population‐level polymorphism data from 444 resequenced genomes of three avian clades spanning 50 million years of evolution, we tested whether population genetic summary statistics reflecting genomewide variation in Ne would covary among populations within clades, and importantly, also among clades where lineage sorting has been completed. All statistics including population‐scaled recombination rate (ρ), nucleotide diversity (π) and measures of genetic differentiation between populations (FST, PBS, dxy) were significantly correlated across all phylogenetic distances. Moreover, genomic regions with elevated levels of genetic differentiation were associated with inferred pericentromeric and subtelomeric regions. The phylogenetic stability of diversity landscapes and stable association with genomic features support a role of linked selection not necessarily associated with adaptation and speciation in shaping patterns of genomewide heterogeneity in genetic diversity.  相似文献   

10.
Finding genes that are under positive selection is a difficult task, especially in non-model organisms. Here, we have analyzed expressed sequence tag (EST) data from 4 species (Pinus pinaster, Pinus taeda, Picea glauca, and Pseudotsuga menziesii) to investigate selection patterns during their evolution and to identify genes likely to be under positive selection. To confirm selection, population samples of these genes have been sequenced in Pinus sylvestris, a species that was not included in the EST data set. The estimates of branch-specific Ka/Ks (nonsynonymous/synonymous substitution rates) across all genes in the EST data set were similar or smaller than estimates from other higher plant species. There was no evidence for the traditional indication of positive selection, Ka/Ks above 1. However, several lines of evidence based on polymorphism patterns suggest that genes with high Ka/Ks (0.20-0.52) in the EST data set are in fact more affected by positive selection in P. sylvestris than genes with low Ka/Ks (0.01-0.04). The high Ka/Ks genes have a lower level of polymorphism and more negative Tajima's D than the low Ka/Ks genes. Further, in the high Ka/Ks group, the Hudson-Kreitman-Aguade test is significant. This suggests that the EST data set is a good starting point for finding genes under positive selection in conifers and that even moderate Ka/Ks values could be indicative of selection. A group of 5 genes with high Ka/Ks collectively show evidence for positive selection within P. sylvestris.  相似文献   

11.
Liu J  Zhang Y  Lei X  Zhang Z 《Genome biology》2008,9(4):R69-17

Background

The rates of molecular evolution for protein-coding genes depend on the stringency of functional or structural constraints. The Ka/Ks ratio has been commonly used as an indicator of selective constraints and is typically calculated from interspecies alignments. Recent accumulation of single nucleotide polymorphism (SNP) data has enabled the derivation of Ka/Ks ratios for polymorphism (SNP A/S ratios).

Results

Using data from the dbSNP database, we conducted the first large-scale survey of SNP A/S ratios for different structural and functional properties. We confirmed that the SNP A/S ratio is largely correlated with Ka/Ks for divergence. We observed stronger selective constraints for proteins that have high mRNA expression levels or broad expression patterns, have no paralogs, arose earlier in evolution, have natively disordered regions, are located in cytoplasm and nucleus, or are related to human diseases. On the residue level, we found higher degrees of variation for residues that are exposed to solvent, are in a loop conformation, natively disordered regions or low complexity regions, or are in the signal peptides of secreted proteins. Our analysis also revealed that histones and protein kinases are among the protein families that are under the strongest selective constraints, whereas olfactory and taste receptors are among the most variable groups.

Conclusion

Our study suggests that the SNP A/S ratio is a robust measure for selective constraints. The correlations between SNP A/S ratios and other variables provide valuable insights into the natural selection of various structural or functional properties, particularly for human-specific genes and constraints within the human lineage.  相似文献   

12.
The gene for a male ejaculatory protein, Acp26Aa, in four sibling species of the Drosophila melanogaster subgroup has previously been shown to have a nonsynonymous rate (Ka) of nucleotide substitution that is indistinguishable from the synonymous rate (Ks). By examining this gene in two other species of this subgroup, we found that Ka is generally large and can sometimes be more than twice as large as Ks. This suggests that positive selection may be operating at this locus of male reproduction.   相似文献   

13.
Estimates from molecular data for the fraction of new nonsynonymous mutations that are adaptive vary strongly across plant species. Much of this variation is due to differences in life history strategies as they influence the effective population size (Ne). Ample variation for these estimates, however, remains even when comparisons are made across species with similar values of Ne. An open question thus remains as to why the large disparity for estimates of adaptive evolution exists among plant species. Here, we have estimated the distribution of deleterious fitness effects (DFE) and the fraction of adaptive nonsynonymous substitutions (α) for 11 species of soft pines (subgenus Strobus) using DNA sequence data from 167 orthologous nuclear gene fragments. Most newly arising nonsynonymous mutations were inferred to be so strongly deleterious that they would rarely become fixed. Little evidence for long‐term adaptive evolution was detected, as all 11 estimates for α were not significantly different from zero. Nucleotide diversity at synonymous sites, moreover, was strongly correlated with attributes of the DFE across species, thus illustrating a strong consistency with the expectations from the Nearly Neutral Theory of molecular evolution. Application of these patterns to genome‐wide expectations for these species, however, was difficult as the loci chosen for the analysis were a biased set of conserved loci, which greatly influenced the estimates of the DFE and α. This implies that genome‐wide parameter estimates will need truly genome‐wide data, so that many of the existing patterns documented previously for forest trees (e.g. little evidence for signature of selection) may need revision.  相似文献   

14.
Following cessation of recombination during sex chromosome evolution, the nonrecombining sex chromosome is affected by a number of degenerative forces, possibly resulting in the fixation of deleterious mutations. This might take place because of weak selection against recessive or partly recessive deleterious mutations due to permanent heterozygosity of nonrecombining chromosomes. Furthermore, population genetic processes, such as selective sweeps, background selection, and Muller’s ratchet, result in a reduction in Ne, which increase the likelihood of fixation of deleterious mutations. Theory thus predicts that nonrecombining genes should show increased levels of nonsynonymous (dN) to synonymous substitutions (dS). We tested this in an avian system by estimating the ratio between dN and dS in six gametologous gene pairs located on the Z chromosome and the nonrecombining, female-specific W chromosome. In comparisons, we found a significantly higher dN/dS ratio for the W-linked than the Z-linked copy in three of the investigated genes. In a concatenated alignment of all six genes, the dN/dS ratio was six times higher for W-linked than Z-linked genes. By using human and mouse as outgroup in maximum likelihood analyses, W-linked genes were found to evolve differently compared with their Z-linked gametologues and outgroup sequences. This seems not to be a consequence of functional diversification because dN/dS ratios between gametologous gene copies were consistently low. We conclude that deleterious mutations are accumulating at a high rate on the avian W chromosome, probably as a result of the lack of recombination in this female-specific chromosome. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Deborah Charlesworth]  相似文献   

15.
Summary The karyotypes of the 80 wild boars of the four subspecies, Sus scrofa ussuricus Heude from the Far East of USSR, S. s. nigripes Blanf. from Kirghizia (the Middle Asia), S. s. attila Thos. from Azerbaijan, S. s. ferus from Lithuania, Byelorussia and Central Russia, and the 44 domestic pigs of the five different breeds (Vietnamese Black, Siberian Omskaja Gray, Kakhethian-aborigen Georgian, Mangalica Hungarian, Landrace Swedish), were studied by the Giemsa Banding Method. Differential staining by the G-Method made it possible to identify all the homologous chromosomes of the wild and domestic pig karyotypes as well as to reveal the polymorphism of wild boar karyotypes (2n = 36, 37 and 38), which are determined by the two types of chromosome translocation. Crosses between domestic pigs (2n = 38) and wild boars (2n = 36 and 37) with different chromosome rearrangements might help to clarify the genetic function of the chromosomes A4, B3, B4, B5 and allow their use as genetic markers.  相似文献   

16.
The consequences of mutations for population fitness depends on their individual selection coefficients and the effective population size. An earlier study of Caenorhabditis elegans spontaneous mutation accumulation lines evolved for 409 generations at three population sizes found that Ne  = 1 populations declined significantly in fitness whereas the fitness of larger populations (Ne  = 5, 50) was indistinguishable from the ancestral control under benign conditions. To test if larger MA populations harbor a load of cryptic deleterious mutations that are obscured under benign laboratory conditions, we measured fitness under osmotic stress via exposure to hypersaline conditions. The fitness of Ne  = 1 lines exhibited a further decline under osmotic stress compared to benign conditions. However, the fitness of larger populations remained indistinguishable from that of the ancestral control. The average effects of deleterious mutations in Ne  = 1 lines were estimated to be 22% for productivity and 14% for survivorship, exceeding values previously detected under benign conditions. Our results suggest that fitness decline is due to large effect mutations that are rapidly removed via selection even in small populations, with implications for conservation practices. Genetic stochasticity may not be as potent and immediate a threat to the persistence of small populations as other demographic and environmental stochastic factors.  相似文献   

17.
18.
Gene duplication and loss are predicted to be at least of the order of the substitution rate and are key contributors to the development of novel gene function and overall genome evolution. Although it has been established that proteins evolve more rapidly after gene duplication, we were interested in testing to what extent this reflects causation or association. Therefore, we investigated the rate of evolution prior to gene duplication in chordates. Two patterns emerged; firstly, branches, which are both preceded by a duplication and followed by a duplication, display an elevated rate of amino acid replacement. This is reflected in the ratio of nonsynonymous to synonymous substitution (mean nonsynonymous to synonymous nucleotide substitution rate ratio [Ka:Ks]) of 0.44 compared with branches preceded by and followed by a speciation (mean Ka:Ks of 0.23). The observed patterns suggest that there can be simultaneous alteration in the selection pressures on both gene duplication and amino acid replacement, which may be consistent with co-occurring increases in positive selection, or alternatively with concurrent relaxation of purifying selection. The pattern is largely, but perhaps not completely, explained by the existence of certain families that have elevated rates of both gene duplication and amino acid replacement. Secondly, we observed accelerated amino acid replacement prior to duplication (mean Ka:Ks for postspeciation preduplication branches was 0.27). In some cases, this could reflect adaptive changes in protein function precipitating a gene duplication event. In conclusion, the circumstances surrounding the birth of new proteins may frequently involve a simultaneous change in selection pressures on both gene-copy number and amino acid replacement. More precise modeling of the relative importance of preduplication, postduplication, and simultaneous amino acid replacement will require larger and denser genomic data sets from multiple species, allowing simultaneous estimation of lineage-specific fluctuations in mutation rates and adaptive constraints.  相似文献   

19.
Arbuscular mycorrhizal fungi (phylum Glomeromycota) are among the oldest and most successful symbionts of land plants. With no evidence of sexual reproduction, their evolutionary success is inconsistent with the prediction that asexual taxa are vulnerable to extinction due to accumulation of deleterious mutations. To explore why Glomeromycota defy this prediction, we studied ribosomal RNA (rRNA) gene evolution in the Claroideoglomus lineage and estimated effective population size, Ne, in C. etunicatum. We found that rRNA genes of these fungi exhibit unusual and complex patterns of molecular evolution. In C. etunicatum, these patterns can be collectively explained by an unexpectedly large Ne combined with imperfect genome‐wide and population‐level rRNA gene repeat homogenization. The mutations accumulated in rRNA gene sequences indicate that natural selection is effective at purging deleterious mutations in the Claroideoglomus lineage, which is also consistent with the large Ne of C. etunicatum. We propose that in the near absence of recombination, asexual reproduction involving massively multinucleate spores typical for Glomeromycota is responsible for the improved efficacy of selection relative to drift. We postulate that large effective population sizes contribute to the evolutionary longevity of Glomeromycota.  相似文献   

20.
The number of effective breeders (Nb) and effective population size (Ne) are population parameters reflective of evolutionary potential, susceptibility to stochasticity, and viability. We have estimated these parameters using the linkage disequilibrium‐based approach with LDNE through the latest phase of population recovery of the brown bears (Ursus arctos) in Finland (1993–2010; = 621). This phase of the recovery was recently documented to be associated with major changes in genetic composition. In particular, differentiation between the northern and the southern genetic cluster declined rapidly within 1.5 generations. Based on this, we have studied effects of the changing genetic structure on Nb and Ne, by comparing estimates for whole Finland with the estimates for the two genetic clusters. We expected a potentially strong relationship between estimate sizes and genetic differentiation, which should disappear as the population recovers and clusters merge. Consistent with this, our estimates for whole Finland were lower than the sum of the estimates of the two genetic clusters and both approaches produced similar estimates in the end. Notably, we also found that admixed genotypes strongly increased the estimates. In all analyses, our estimates for Ne were larger than Nb and likely reflective for brown bears of the larger region of Finland and northwestern Russia. Conclusively, we find that neglecting genetic substructure may lead to a massive underestimation of Nb and Ne. Our results also suggest the need for further empirical analysis focusing on individuals with admixed genotypes and their potential high influence on Nb and Ne.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号