首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to gather genetic information using DNA metabarcoding of bulk samples obtained directly from the environment is crucial to determine biodiversity baselines and understand population dynamics in the marine realm. While DNA metabarcoding is effective in evaluating biodiversity at community level, genetic patterns within species are often concealed in metabarcoding studies and overlooked for marine invertebrates. In the present study, we implement recently developed bioinformatics tools to investigate intraspecific genetic variability for invertebrate taxa in the Mediterranean Sea. Using metabarcoding samples from Autonomous Reef Monitoring Structures (ARMS) deployed in three locations, we present haplotypes and diversity estimates for 145 unique species. While overall genetic diversity was low, we identified several species with high diversity records and potential cryptic lineages. Further, we emphasize the spatial scale of genetic variability, which was observed from locations to individual sampling units (ARMS). We carried out a population genetic analysis of several important yet understudied species, which highlights the current knowledge gap concerning intraspecific genetic patterns for the target taxa in the Mediterranean basin. Our approach considerably enhances biodiversity monitoring of charismatic and understudied Mediterranean species, which can be incorporated into ARMS surveys.  相似文献   

2.
Ecological restoration is a globally important and well‐financed management intervention used to combat biodiversity declines and land degradation. Most restoration aims to increase biodiversity towards a reference state, but there are concerns that intended outcomes are not reached due to unsuccessful interventions and land‐use legacy issues. Monitoring biodiversity recovery is essential to measure success; however, most projects remain insufficiently monitored. Current field‐based methods are hard to standardize and are limited in their ability to assess important components of ecosystems, such as bacteria. High‐throughput amplicon sequencing of environmental DNA (metabarcoding of eDNA) has been proposed as a cost‐effective, scalable and uniform ecological monitoring solution, but its application in restoration remains largely untested. Here we show that metabarcoding of soil eDNA is effective at demonstrating the return of the native bacterial community in an old field following native plant revegetation. Bacterial composition shifted significantly after 8 years of revegetation, where younger sites were more similar to cleared sites and older sites were more similar to remnant stands. Revegetation of the native plant community strongly impacted on the belowground bacterial community, despite the revegetated sites having a long and dramatically altered land‐use history (i.e. >100 years grazing). We demonstrate that metabarcoding of eDNA provides an effective way of monitoring changes in bacterial communities that would otherwise go unchecked with conventional monitoring of restoration projects. With further development, awareness of microbial diversity in restoration has significant scope for improving the efficacy of restoration interventions more broadly.  相似文献   

3.
冯芸芝  孙栋  邵倩文  王春生 《生态学报》2022,42(21):8544-8554
浮游动物是海洋生态系统的关键类群,其覆盖门类广泛,多样性高。传统形态鉴定技术需要检测人员具备专业的形态鉴定知识,且费时费力。宏条形码技术无需分离生物个体,而是提取拖网采集到的浮游动物混合样本的总DNA,或者水体中的环境DNA (eDNA),依托高通量测序平台测序,能够实现对大规模样本快速、准确、经济的分析,在海洋浮游动物生态学研究中得到越来越广泛的应用。分析了DNA宏条形码技术常用的核糖体和线粒体分子标记,在浮游动物多样性和数量研究中的可靠性和不足,并给出在海洋浮游动物群落监测,食物关系分析及生物入侵早期预警等研究中的应用。未来,开发多基因片段组合条形码,发展完备的参考数据库及实现准确的量化研究是DNA宏条形码技术发展的重要方向。  相似文献   

4.
5.
Current monitoring methods to assess benthic impacts of marine finfish aquaculture are based on complex biological indices and/or geochemistry data. The former requires benthic macrofauna morpho‐taxonomic characterization that is time‐ and cost‐intensive, while the latter provides rapid assessment of the organic enrichment status of sediments but does not directly measure biotic impacts. In this study, sediment samples were collected from seven stations at six salmon farms in British Columbia, Canada, and analyzed for geochemical parameters and by eDNA metabarcoding to investigate linkages between geochemistry and foraminifera. Sediment texture across farm sites ranged from sand to silty loam, while the maximum sediment pore‐water sulphide concentration at each site ranged from 1,000 to 13,000 μM. Foraminifera alpha diversity generally increased with distance from cage edge. Adonis analyses revealed that farm site explained the most variation in foraminifera community, followed by sediment type, enrichment status, and distance from cage edge. Farm‐specific responses were observed in diversity analyses, taxonomic difference analyses, and correlation analyses. Results demonstrated that species diversity and composition of foraminifera characterized by eDNA metabarcoding generated signals consistent with benthic biodiversity being impacted by finfish farming activities. This substantiates the validity of eDNA metabarcoding for augmenting current approaches to benthic impact assessments by providing more cost‐effective and practicable biotic measures than traditional morpho‐taxonomy. To capitalize on this potential, further work is needed to design a new nomogram that combines eDNA metabarcoding data and geochemistry data to enable accurate monitoring of benthic impacts of fish farming in a time‐ and cost‐efficient way.  相似文献   

6.
Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.  相似文献   

7.
8.
Determining the species compositions of local assemblages is a prerequisite to understanding how anthropogenic disturbances affect biodiversity. However, biodiversity measurements often remain incomplete due to the limited efficiency of sampling methods. This is particularly true in freshwater tropical environments that host rich fish assemblages, for which assessments are uncertain and often rely on destructive methods. Developing an efficient and nondestructive method to assess biodiversity in tropical freshwaters is highly important. In this study, we tested the efficiency of environmental DNA (eDNA) metabarcoding to assess the fish diversity of 39 Guianese sites. We compared the diversity and composition of assemblages obtained using traditional and metabarcoding methods. More than 7,000 individual fish belonging to 203 Guianese fish species were collected by traditional sampling methods, and ~17 million reads were produced by metabarcoding, among which ~8 million reads were assigned to 148 fish taxonomic units, including 132 fish species. The two methods detected a similar number of species at each site, but the species identities partially matched. The assemblage compositions from the different drainage basins were better discriminated using metabarcoding, revealing that while traditional methods provide a more complete but spatially limited inventory of fish assemblages, metabarcoding provides a more partial but spatially extensive inventory. eDNA metabarcoding can therefore be used for rapid and large‐scale biodiversity assessments, while at a local scale, the two approaches are complementary and enable an understanding of realistic fish biodiversity.  相似文献   

9.
DNA metabarcoding is routinely used for biodiversity assessment, in particular targeting highly diverse groups for which limited taxonomic expertise is available. Various protocols are currently in use, although standardization is key to its application in large-scale monitoring. DNA metabarcoding of arthropod bulk samples can be conducted either destructively from sample tissue, or nondestructively from sample fixative or lysis buffer. Nondestructive methods are highly desirable for the preservation of sample integrity but have yet to be experimentally evaluated in detail. Here, we compare diversity estimates from 14 size-sorted Malaise trap samples processed consecutively with three nondestructive approaches (one using fixative ethanol and two using lysis buffers) and one destructive approach (using homogenized tissue). Extraction from commercial lysis buffer yielded comparable species richness and high overlap in species composition to the ground tissue extracts. A significantly divergent community was detected from preservative ethanol-based DNA extraction. No consistent trend in species richness was found with increasing incubation time in lysis buffer. These results indicate that nondestructive DNA extraction from incubation in lysis buffer could provide a comparable alternative to destructive approaches with the added advantage of preserving the specimens for postmetabarcoding taxonomic work but at a higher cost per sample.  相似文献   

10.
研究使用环境DNA宏条形码技术(eDNA metabarcoding)检测辽东湾东北部河口区围海养殖池塘水母种类多样性,探索适用于水母种类物种鉴定和监测的新方法。利用环境DNA宏条形码技术,分别基于18S rDNA和COI宏条形码检测了辽东湾东北部河口区围海养殖池塘水母种类多样性,通过水样采集、过滤、eDNA提取、遗传标记扩增、测序与生物信息分析的环境DNA宏条形码标准化分析流程,从围海养殖池塘7个采样点中获得可检测的采样点数据。结果显示,基于18S rDNA宏条形码检测出8种水母种类,其中钵水母纲大型水母2种、水螅水母总纲小型水母6种;基于COI宏条形码技术共检测出19种水母种类,其中钵水母纲大型水母5种、水螅水母总纲小型水母14种;两种DNA条形码标记都显示养殖种类海蜇(Rhopilema esculentum)为优势种。研究结果表明,环境DNA宏条形码技术作为一种新兴的生物多样性监测手段可用于快速检测水母种类多样性,在水母类物种鉴定、监测及早期预警中有较大的应用潜能。  相似文献   

11.
Given their positioning and biological productivity, estuaries have long represented key providers of ecosystem services and consequently remain under remarkable pressure from numerous forms of anthropogenic impact. The monitoring of fish communities in space and time is one of the most widespread and established approaches to assess the ecological status of estuaries and other coastal habitats, but traditional fish surveys are invasive, costly, labour intensive and highly selective. Recently, the application of metabarcoding techniques, on either sediment or aqueous environmental DNA, has rapidly gained popularity. Here, we evaluate the application of a novel, high‐throughput DNA‐based monitoring tool to assess fish diversity, based on the analysis of the gut contents of a generalist predator/scavenger, the European brown shrimp, Crangon crangon. Sediment and shrimp samples were collected from eight European estuaries, and DNA metabarcoding (using both 12S and COI markers) was carried out to infer fish assemblage composition. We detected 32 teleost species (16 and 20, for 12S and COI, respectively). Twice as many species were recovered using metabarcoding than by traditional net surveys. By comparing and interweaving trophic, environmental DNA and traditional survey‐based techniques, we show that the DNA‐assisted gut content analysis of a ubiquitous, easily accessible, generalist species may serve as a powerful, rapid and cost‐effective tool for large‐scale, routine estuarine biodiversity monitoring.  相似文献   

12.
DNA extraction from environmental samples (environmental DNA; eDNA) for metabarcoding‐based biodiversity studies is gaining popularity as a noninvasive, time‐efficient, and cost‐effective monitoring tool. The potential benefits are promising for marine conservation, as the marine biome is frequently under‐surveyed due to its inaccessibility and the consequent high costs involved. With increasing numbers of eDNA‐related publications have come a wide array of capture and extraction methods. Without visual species confirmation, inconsistent use of laboratory protocols hinders comparability between studies because the efficiency of target DNA isolation may vary. We determined an optimal protocol (capture and extraction) for marine eDNA research based on total DNA yield measurements by comparing commonly employed methods of seawater filtering and DNA isolation. We compared metabarcoding results of both targeted (small taxonomic group with species‐level assignment) and universal (broad taxonomic group with genus/family‐level assignment) approaches obtained from replicates treated with the optimal and a low‐performance capture and extraction protocol to determine the impact of protocol choice and DNA yield on biodiversity detection. Filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit outperformed other combinations of capture and extraction methods, showing a ninefold improvement in DNA yield over the poorest performing methods. Use of optimized protocols resulted in a significant increase in OTU and species richness for targeted metabarcoding assays. However, changing protocols made little difference to the OTU and taxon richness obtained using universal metabarcoding assays. Our results demonstrate an increased risk of false‐negative species detection for targeted eDNA approaches when protocols with poor DNA isolation efficacy are employed. Appropriate optimization is therefore essential for eDNA monitoring to remain a powerful, efficient, and relatively cheap method for biodiversity assessments. For seawater, we advocate filtration through cellulose‐nitrate membranes and extraction with Qiagen's DNeasy Blood & Tissue Kit or phenol‐chloroform‐isoamyl for successful implementation of eDNA multi‐marker metabarcoding surveys.  相似文献   

13.
The number of species in a local habitat depends on local and regional processes. One common approach to explore ecological saturation of local richness has been to plot local versus regional richness. We expand this approach by incorporating two dimensions of diversity – taxonomic and functional – and different successional ages of marine fouling communities. In four different biogeographic regions (Mediterranean Sea, NE Atlantic, Western Baltic Sea and North Sea) 60 experimental units made from artificial substratum were deployed for colonization. Local richness was assessed as the average number of species and functional groups (FG) per unit area while regional richness was estimated as the estimated (Jack 2) asymptote of the accumulation curves for species or FG in local panel communities. Our findings indicate that the nature of the relationship between local and regional diversity is sensitive to successional stage and the dimension of diversity considered. However, as a general pattern, for taxonomic and functional richness, the slope of the local–regional relationship increased in the course of succession. We discuss how this pattern could have been produced by a combination of low number of recruiting species and incomplete competitive exclusion as is typical for early succession.  相似文献   

14.
Biogeography of the marine birds of a confined sea, the Mediterranean   总被引:3,自引:0,他引:3  
Aim The Mediterranean sea is a winter productive oligotrophic basin where Atlantic water replaces water lost through evaporation, this influx being a major source of productivity and fertility. The long coastlines and the large number of islands cause high oceanographic heterogeneity. Moreover, during its geological history, it has dried out several times. So we describe the consequences of these particular features on species richness, distribution, and breeding ecology of marine birds. Location The Mediterranean sea (including the Black Sea and the Sea of Azov) communicates with the Atlantic Ocean only through a 14 km wide channel (Straits of Gibraltar), and since 1869, with the Red Sea through the Suez Canal. Methods The Mediterranean was subdivided into different areas, according to physical oceanographic entities and productivity, linked to numbers and distribution of both breeding and wintering marine birds (defined as species strongly dependent on marine resources, breeding only on islands and/or the coastline). Results The total marine bird biomass, and species diversity, are lower in the Mediterranean than in the near Atlantic. The eastern Mediterranean, with lowest primary productivity, contains fewer marine bird taxa than the more productive western part. Taxa which mainly occur in the western and southern parts of the Mediterranean migrate through the Straits of Gibraltar to winter in the southern Atlantic, while those inhabiting the northern and eastern parts are sedentary, as a result of differences in species composition. Northern coastal basin communities (i.e. the Tyrrhenian and the Balearic Seas), are composed of less pelagic, and earlier breeding species, that rear chicks during the productive season. These latter taxa are actually the most typical Mediterranean taxa, in terms of endemism. Main conclusions The Mediterranean marine bird community is not tropical, but rather, shows the highest affinity with the Atlantic temperate community. Its level of endemism is however high and comparable to other confined basins such as the Red Sea.  相似文献   

15.
Effective biomonitoring is critical for driving management outcomes that ensure long‐term sustainability of the marine environment. In recent years, environmental DNA (eDNA), coupled with metabarcoding methodologies, has emerged as a promising tool for generating biotic surveys of marine ecosystems, including those under anthropogenic pressure. However, more empirical data are needed on how to best implement eDNA field sampling approaches to maximize their utility for each specific application. The effect of the substrate chosen for eDNA sampling on the diversity of marine taxa detected by DNA metabarcoding has not yet been systematically analysed, despite aquatic systems being those most commonly targeted for eDNA studies. We investigated the effect of four commonly used eDNA substrates to explore taxonomic diversity: (a) surface water, (b) marine sediment, (c) settlement plates and (d) planktonic tows. With a focus on coastal ports, 332 eDNA samples from Australia (Indian and Southern oceans) and Kazakhstan (Caspian Sea) were collected and analysed by multi‐assay DNA metabarcoding. Across study locations, between 30% and 52% of eukaryotic families detected were unique to a particular substrate and <6% of families were found in all four substrates. Taxonomic composition varied significantly depending on the substrate sampled implying that the suitability (and bias) of an eDNA substrate will depend on the focal taxa. These findings demonstrate that single substrate eDNA metabarcoding likely underestimates the total eukaryotic diversity. Future eDNA experimental design should consider incorporating multiple substrates or select substrate(s) best suited to the specific detection of target taxa.  相似文献   

16.
Increasing anthropogenic pressures urge enhanced knowledge and understanding of the current state of marine biodiversity. This baseline information is pivotal to explore present trends, detect future modifications and propose adequate management actions for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still poorly understood. There is currently no single sampling method that has been demonstrated to be sufficiently representative to ensure adequate community assessment and monitoring in this habitat. Therefore, we propose a rapid non-destructive protocol for biodiversity assessment and monitoring of coralligenous outcrops providing good estimates of its structure and species composition, based on photographic sampling and the determination of presence/absence of macrobenthic species. We used an extensive photographic survey, covering several spatial scales (100s of m to 100s of km) within the NW Mediterranean and including 2 different coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum assemblage (CRA). This approach allowed us to determine the minimal sampling area for each assemblage (5000 cm(2) for PCA and 2500 cm(2) for CRA). In addition, we conclude that 3 replicates provide an optimal sampling effort in order to maximize the species number and to assess the main biodiversity patterns of studied assemblages in variability studies requiring replicates. We contend that the proposed sampling approach provides a valuable tool for management and conservation planning, monitoring and research programs focused on coralligenous outcrops, potentially also applicable in other benthic ecosystems.  相似文献   

17.
文章采用环境DNA宏条码和底拖网对珠江河口鱼类多样性进行了研究, 并对两种方法进行了比较。利用环境DNA宏条码检测到了175种鱼类, 而利用底拖网采集到了47种鱼类, 结合两种方法共检测出179种鱼类, 隶属于15 目63科128属。其中两种方法共同识别了鱼类43种, 占总检测物种的24.02%, 基于底拖网的调查未能收集到基于环境DNA宏条码检测到的大多数物种。根据Shannon指数和Simpson指数显示, DNA宏条码所检测珠江河口鱼类群落α多样性显著高于底拖网方法(P<0.05)。两种方法的PCoA结果均显示珠江河口鱼类群落存在空间结构, 基于环境DNA宏条码的分析显示空间重叠更多。两种方法基于冗余分析均显示溶解氧和盐度是影响鱼类群落结构的主要环境因子。研究表明, 环境DNA 宏条形码是一种环保且可靠的评估方法, 将其搭载到现有调查可以更好地了解河口鱼类多样性。  相似文献   

18.
The composition of sterols, volatiles and some polar compounds from three Corallina samples (C. granifera and C. mediterranea from the Black Sea and C. mediterranea from the Mediterranean Sea) was established. The sterol composition of the Black Sea samples was similar but it differs from that of the Mediterranean sample. The composition of the volatiles was very complex. The main groups of constituent were hydrocarbons, alcohols, carbonyl compounds, acids and their esters, terpenes. The composition of the polar components, soluble in n-butanol, was also established. There were some differences in the chemical composition of the two Black Sea species, which may be due to the biodiversity between them, while the differences in the composition of the two C. mediterranea samples could be due to the differences in the environment (salinity, temperature, pollution, etc.).  相似文献   

19.
Coastal benthic biodiversity is under increased pressure from climate change, eutrophication, hypoxia, and changes in salinity due to increase in river runoff. The Baltic Sea is a large brackish system characterized by steep environmental gradients that experiences all of the mentioned stressors. As such it provides an ideal model system for studying the impact of on‐going and future climate change on biodiversity and function of benthic ecosystems. Meiofauna (animals < 1 mm) are abundant in sediment and are still largely unexplored even though they are known to regulate organic matter degradation and nutrient cycling. In this study, benthic meiofaunal community structure was analysed along a salinity gradient in the Baltic Sea proper using high‐throughput sequencing. Our results demonstrate that areas with higher salinity have a higher biodiversity, and salinity is probably the main driver influencing meiofauna diversity and community composition. Furthermore, in the more diverse and saline environments a larger amount of nematode genera classified as predators prevailed, and meiofauna‐macrofauna associations were more prominent. These findings show that in the Baltic Sea, a decrease in salinity resulting from accelerated climate change will probably lead to decreased benthic biodiversity, and cause profound changes in benthic communities, with potential consequences for ecosystem stability, functions and services.  相似文献   

20.
While in recent years environmental DNA (eDNA) metabarcoding surveys have shown great promise as an alternative monitoring method, the integration into existing marine monitoring programs may be confounded by the dispersal of the eDNA signal. Currents and tidal influences could transport eDNA over great distances, inducing false‐positive species detection, leading to inaccurate biodiversity assessments and, ultimately, mismanagement of marine environments. In this study, we determined the ability of eDNA metabarcoding surveys to distinguish localized signals obtained from four marine habitats within a small spatial scale (<5 km) subject to significant tidal and along‐shore water flow. Our eDNA metabarcoding survey detected 86 genera, within 77 families and across 11 phyla using three established metabarcoding assays targeting fish (16S rRNA gene), crustacean (16S rRNA gene) and eukaryotic (cytochrome oxidase subunit 1) diversity. Ordination and cluster analyses for both taxonomic and OTU data sets show distinct eDNA signals between the sampled habitats, suggesting dispersal of eDNA among habitats was limited. Individual taxa with strong habitat preferences displayed localized eDNA signals in accordance with their respective habitat, whereas taxa known to be less habitat‐specific generated more ubiquitous signals. Our data add to evidence that eDNA metabarcoding surveys in marine environments detect a broad range of taxa that are spatially discrete. Our work also highlights that refinement of assay choice is essential to realize the full potential of eDNA metabarcoding surveys in marine biodiversity monitoring programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号