首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 0 毫秒
1.
Indirect interactions driven by livestock and wild herbivores are increasingly recognized as important aspects of community dynamics in savannas and rangelands. Large ungulate herbivores can both directly and indirectly impact the reproductive structures of plants, which in turn can affect the pollinators of those plants. We examined how wild herbivores and cattle each indirectly affect the abundance of a common pollinator butterfly taxon, Colotis spp., at a set of long‐term, large herbivore exclosure plots in a semiarid savanna in central Kenya. We also examined effects of herbivore exclusion on the main food plant of Colotis spp., which was also the most common flowering species in our plots: the shrub Cadaba farinosa. The study was conducted in four types of experimental plots: cattle‐only, wildlife‐only, cattle and wildlife (all large herbivores), and no large herbivores. Across all plots, Colotis spp. abundances were positively correlated with both Cadaba flower numbers (adult food resources) and total Cadaba canopy area (larval food resources). Structural equation modeling (SEM) revealed that floral resources drove the abundance of Colotis butterflies. Excluding browsing wildlife increased the abundances of both Cadaba flowers and Colotis butterflies. However, flower numbers and Colotis spp. abundances were greater in plots with cattle herbivory than in plots that excluded all large herbivores. Our results suggest that wild browsing herbivores can suppress pollinator species whereas well‐managed cattle use may benefit important pollinators and the plants that depend on them. This study documents a novel set of ecological interactions that demonstrate how both conservation and livelihood goals can be met in a working landscape with abundant wildlife and livestock.  相似文献   

2.
3.
Major histocompatibility complex genes (MHC), a gene cluster that controls the immune response to parasites, are regarded as an important determinant of mate choice. However, MHC‐based mate choice studies are especially rare for endangered animals. The giant panda (Ailuropoda melanoleuca), a flagship species, has suffered habitat loss and fragmentation. We investigated the genetic variation of three MHC class II loci, including DRB1, DQA1, and DQA2, for 19 mating‐pairs and 11 parent‐pairs of wild giant pandas based on long‐term field behavior observations and genetic samples. We tested four hypotheses of mate choice based on this MHC variation. We found no supporting evidence for the MHC‐based heterosis, genetic diversity, genetic compatibility and “good gene” hypotheses. These results suggest that giant pandas may not use MHC‐based signals to select mating partners, probably because limited mating opportunities or female‐biased natal dispersal restricts selection for MHC‐based mate choice, acknowledging the caveat of the small sample size often encountered in endangered animal studies. Our study provides insight into the mate choice mechanisms of wild giant pandas and highlights the need to increase the connectivity and facilitate dispersal among fragmented populations and habitats.  相似文献   

4.
There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter‐ and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow‐release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua. Temporal variation in patch nutrient level had little effect on the species’ competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda, growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis. L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda. This flexibility gave L. styraciflua an advantage in interspecific competition.  相似文献   

5.
Predators affect ecosystems not only through direct mortality of prey, but also through risk effects on prey behavior, which can exert strong influences on ecosystem function and prey fitness. However, how functionally different prey species respond to predation risk and how prey strategies vary across ecosystems and in response to predator reintroduction are poorly understood. We investigated the spatial distributions of six African herbivores varying in foraging strategy and body size in response to environmental factors and direct predation risk by recently reintroduced lions in the thicket biome of the Addo Elephant National Park, South Africa, using camera trap surveys, GPS telemetry, kill site locations and Light Detection and Ranging. Spatial distributions of all species, apart from buffalo, were driven primarily by environmental factors, with limited responses to direct predation risk. Responses to predation risk were instead indirect, with species distributions driven by environmental factors, and diel patterns being particularly pronounced. Grazers were more responsive to the measured variables than browsers, with more observations in open areas. Terrain ruggedness was a stronger predictor of browser distributions than was vegetation density. Buffalo was the only species to respond to predator encounter risk, avoiding areas with higher lion utilization. Buffalo therefore behaved in similar ways to when lions were absent from the study area. Our results suggest that direct predation risk effects are relatively weak when predator densities are low and the time since reintroduction is short and emphasize the need for robust, long‐term monitoring of predator reintroductions to place such events in the broader context of predation risk effects.  相似文献   

6.
Understanding behavioral strategies employed by animals to maximize fitness in the face of environmental heterogeneity, variability, and uncertainty is a central aim of animal ecology. Flexibility in behavior may be key to how animals respond to climate and environmental change. Using a mechanistic modeling framework for simultaneously quantifying the effects of habitat preference and intrinsic movement on space use at the landscape scale, we investigate how movement and habitat selection vary among individuals and years in response to forage quality–quantity tradeoffs, environmental conditions, and variable annual climate. We evaluated the association of dynamic, biotic forage resources and static, abiotic landscape features with large grazer movement decisions in an experimental landscape, where forage resources vary in response to prescribed burning, grazing by a native herbivore, the plains bison (Bison bison bison), and a continental climate. Our goal was to determine how biotic and abiotic factors mediate bison movement decisions in a nutritionally heterogeneous grassland. We integrated spatially explicit relocations of GPS‐collared bison and extensive vegetation surveys to relate movement paths to grassland attributes over a time period spanning a regionwide drought and average weather conditions. Movement decisions were affected by foliar crude content and low stature forage biomass across years with substantial interannual variation in the magnitude of selection for forage quality and quantity. These differences were associated with interannual differences in climate and growing conditions from the previous year. Our results provide experimental evidence for understanding how the forage quality–quantity tradeoff and fine‐scale topography drives fine‐scale movement decisions under varying environmental conditions.  相似文献   

7.
Refuge‐mediated apparent competition was recently suggested as a mechanism that enables plant invasions. The refuge characteristics of introduced plants are predicted to enhance impacts of generalist herbivores on native competitors and thereby result in an increased abundance of the invader. However, this prediction has so far not been experimentally verified. This study tested if the invasion of a chemically defended seaweed is promoted by native generalist herbivores via refuge‐mediated apparent competition. The invader was shown to offer herbivores a significantly better refuge against fish predation compared with native seaweeds. Furthermore, in an experimental community, the presence of herbivores decreased the performance of neighbouring native seaweeds, but increased growth and relative abundance of the invader. These results provides the first experimental evidence that native generalist herbivores can shift a community towards a dominance of a well‐defended invader, inferior to native species in direct competitive interactions, by means of refuge‐mediated apparent competition.  相似文献   

8.
When abundant, seeds of the high‐elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone‐producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One‐third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high‐elevation WBP habitat may be diminishing for bears residing in multiple‐use areas.  相似文献   

9.
Virus infection may change not only the host‐plant phenotypic (morphological and physiological) characteristics, but can also modify the behavior of their insect vector in a mutualistic or rather antagonistic manner, to promote their spread to new hosts. Viruses differ in their modes of transmission and depend on vector behavior for successful spread. Here, we investigated the effects of the semi‐persistently transmitted Tomato chlorosis virus (ToCV, Crinivirus) and the persistent circulative Tomato severe rugose virus (ToSRV, Begomovirus) on alighting preferences and arrestment behavior of their whitefly vector Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East Asia Minor 1 (MEAM1) on tomato plants (Solanum lycopersicum L. cv. Santa Clara, Solanaceae). The vector alighting preferences between infected and uninfected plants in choice assays were apparently influenced by the presence of ToCV and ToSRV in the whiteflies or by their previous exposure to infected plants. The observed changes in vector behavior do not seem to benefit the spread of ToCV: non‐viruliferous insects clearly preferred mock‐inoculated plants, whereas ToCV‐viruliferous insects landed on mock‐inoculated and ToCV‐infected plants, indicating a partial change in insect behavior – ToCV was able to directly affect the preference of its vector B. tabaci, but this change in insect behavior did not affect the virus spread because viruliferous insects landed on mock‐inoculated and infected plants indistinctly. In contrast, ToSRV‐viruliferous insects preferred to land on mock‐inoculated plants, a behavior that increases the probability of spread to new host plants. In the arresting behavior assay, the majority of the insects remained on mock‐inoculated plants when released on them. A greater number of insects moved toward mock‐inoculated plants when initially released on ToCV‐ or ToSRV‐infected plants, suggesting that these viruses may repel or reduce the nutritional quality of the host plants for B. tabaci MEAM1.  相似文献   

10.
The social environment may be a key mediator of selection that operates on animals. In many cases, individuals may experience selection not only as a function of their phenotype, but also as a function of the interaction between their phenotype and the phenotypes of the conspecifics they associate with. For example, when animals settle after dispersal, individuals may benefit from arriving early, but, in many cases, these benefits will be affected by the arrival times of other individuals in their local environment. We integrated a recently described method for calculating assortativity on weighted networks, which is the correlation between an individual's phenotype and that of its associates, into an existing framework for measuring the magnitude of social selection operating on phenotypes. We applied this approach to large‐scale data on social network structure and the timing of arrival into the breeding area over three years. We found that late‐arriving individuals had a reduced probability of breeding. However, the probability of breeding was also influenced by individuals’ social networks. Associating with late‐arriving conspecifics increased the probability of successfully acquiring a breeding territory. Hence, social selection could offset the effects of nonsocial selection. Given parallel theoretical developments of the importance of local network structure on population processes, and increasing data being collected on social networks in free‐living populations, the integration of these concepts could yield significant insights into social evolution.  相似文献   

11.
Anthropogenic disturbances are known to modify plant–animal interactions such as those involving the leaf‐cutting ants, the most voracious and proliferating herbivore across human‐modified landscapes in the Neotropics. Here, we evaluate the effect of chronic anthropogenic disturbance (e.g., firewood collection, livestock grazing) and vegetation seasonality on foraging area, foliage availability in the foraging area, leaf consumption and herbivory rate of the leaf‐cutting ant Atta opaciceps in the semiarid Caatinga, a mosaic of dry forest and scrub vegetation in northeast Brazil. Contrary to our initial expectation, the foraging area was not affected by either disturbance intensity or the interaction between season and disturbance intensity. However, leaf consumption and herbivory rate were higher in more disturbed areas. We also found a strong effect of seasonality, with higher leaf consumption and herbivory rate in the dry season. Our results suggest that the foraging ecology of leaf‐cutting ants is modulated by human disturbance and seasonality as these two drivers affect the spectrum and the amount of resources available for these ants in the Caatinga. Despite the low productivity of Caatinga vegetation, the annual rates of biomass consumption by A. opaciceps are similar to those reported from other leaf‐cutting ants in rain forests and savannas. This is made possible by maintaining high foraging activity even in the peak of the dry season and taking benefit from any resource available, including low‐quality items. Such compensation highlights the adaptive capacity of LCA to persist or even proliferate in human‐modified landscapes from dry to rain forests.  相似文献   

12.
Plant–plant interactions are among the fundamental processes that shape structure and functioning of arid and semi‐arid plant communities. Despite the large amount of studies that have assessed the relationship between plant–plant interactions (i.e., facilitation and competition) and diversity, often researchers forget a third kind of interaction, known as allelopathy. We examined the effect of plant–plant interactions of three dominant species: the perennial grass Lygeum spartum, the allelopathic dwarf shrub Artemisia herba‐alba, and the nurse shrub Salsola vermiculata, on plant diversity and species composition in a semi‐arid ecosystem in NE Spain. Specifically, we quantified the interaction outcome (IO) based on species co‐occurrence, we analyzed diversity by calculation of the individual species–area relationship (ISAR), and compositional changes by calculation of the Chao‐Jaccard similarity index. We found that S. vermiculata had more positive IO values than L. spartum, and A. herba‐alba had values between them. Lygeum spartum and A. herba‐alba acted as diversity repellers, whereas S. vermiculata acted as a diversity accumulator. As aridity increased, A. herba‐alba transitioned from diversity repeller to neutral and S. vermiculata transitioned from neutral to diversity accumulator, while L. spartum remained as diversity repeller. Artemisia herba‐alba had more perennial grass species in its local neighborhood than expected by the null model, suggesting some tolerance of this group to its “chemical neighbor”. Consequently, species that coexist with A. herba‐alba were very similar among different A. herba‐alba individuals. Our findings highlight the role of the nurse shrub S. vermiculata as ecosystem engineer, creating and maintaining patches of diversity, as well as the complex mechanism that an allelopathic plant may have on diversity and species assemblage. Further research is needed to determine the relative importance of allelopathy and competition in the overall interference of allelopathic plants.  相似文献   

13.
Coinfections with multiple pathogens can result in complex within‐host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different‐species coinfections. Here, it decreased overall pathogen sporulation success while increasing co‐sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast‐germinating, thus less grooming‐sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.  相似文献   

14.
Identifying the genes underlying rapid evolutionary changes, describing their function and ascertaining the environmental pressures that determine fitness are the central elements needed for understanding of evolutionary processes and phenotypic changes that improve the fitness of populations. It has been hypothesized that rapid adaptive changes in new environments may contribute to the rapid spread and success of invasive plants and animals. As yet, studies of adaptation during invasion are scarce, as is knowledge of the genes underlying adaptation, especially in multiple replicated invasions. Here, we quantified how genotype frequencies change during invasions, resulting in rapid evolution of naturalized populations. We used six fully replicated common garden experiments in Brazil where Pinus taeda (loblolly pine) was introduced at the same time, in the same numbers, from the same seed sources, and has formed naturalized populations expanding outward from the plantations. We used a combination of nonparametric, population genetics and multivariate statistics to detect changes in genotype frequencies along each of the six naturalization gradients and their association with climate as well as shifts in allele frequencies compared to the source populations. Results show 25 genes with significant shifts in genotype frequencies. Six genes had shifts in more than one population. Climate explained 25% of the variation in the groups of genes under selection across all locations, but specific genes under strong selection during invasions did not show climate‐related convergence. In conclusion, we detected rapid evolutionary changes during invasive range expansions, but the particular gene‐level patterns of evolution may be population specific.  相似文献   

15.
Parasite transmission is determined by the rate of contact between a susceptible host and an infective stage and susceptibility to infection given an exposure event. Attempts to measure levels of variation in exposure in natural populations can be especially challenging. The level of exposure to a major class of parasites, trophically transmitted parasites, can be estimated by investigating the host's feeding behaviour. Since the parasites rely on the ingestion of infective intermediate hosts for transmission, the potential for exposure to infection is inherently linked to the definitive host's feeding ecology. Here, we combined epidemiological data and molecular analyses (polymerase chain reaction) of the diet of the definitive host, the white‐footed mouse (Peromyscus leucopus), to investigate temporal and individual heterogeneities in exposure to infection. Our results show that the consumption of cricket intermediate hosts accounted for much of the variation in infection; mice that had consumed crickets were four times more likely to become infected than animals that tested negative for cricket DNA. In particular, pregnant female hosts were three times more likely to consume crickets, which corresponded to a threefold increase in infection compared with nonpregnant females. Interestingly, males in breeding condition had a higher rate of infection even though breeding males were just as likely to test positive for cricket consumption as nonbreeding males. These results suggest that while heterogeneity in host diet served as a strong predictor of exposure risk, differential susceptibility to infection may also play a key role, particularly among male hosts. By combining PCR analyses with epidemiological data, we revealed temporal variation in exposure through prey consumption and identified potentially important individual heterogeneities in parasite transmission.  相似文献   

16.

Questions

What is the general pattern of species co‐occurrence in managed heathlands? Is the pattern consistent among functional groups? Is it ruled by species competition, or by contrasting environments at a fine scale? Does grazing pressure and herbivore species condition species interactions?

Location

Erica mackayana wet heaths, Galicia, NW Iberian Peninsula.

Methods

A null model approach was used to compare species co‐occurrence with generated random matrices from 54 10‐m transects. The C‐score was obtained from the multispecies presence/absence matrix for each transect of shrubs and graminoids recorded at 25‐cm intervals. Differences in canopy height were recorded to assess the importance of the environment compared to inter‐specific competition. Results were linked to different levels of grazing pressure and herbivore species.

Results

Species segregation was the main pattern for all species, but mainly among graminoid species compared to shrubs. Graminoids showed an even proportion of segregated pairs explained by different canopy heights and competition. These differences were mainly species environmental requirements of canopy height. Levels of grazing pressure enhanced species segregation in graminoids but had no effect on shrubs or the total species set.

Conclusions

Competition and canopy height affect the E. mackayana heathland composition, but differently for functional groups. A heterogeneous vegetation profile with shrub mats and open gaps created by light grazing promotes species co‐existence within mats and competition in gaps. I suggest this is an optimum structure for the habitat to be targeted through management.
  相似文献   

17.
18.
Whereas warming enhances plant nutrient status and photosynthesis in most terrestrial ecosystems, dryland vegetation is vulnerable to the likely increases in evapotranspiration and reductions in soil moisture caused by elevated temperatures. Any warming‐induced declines in plant primary production and cover in drylands would increase erosion, land degradation, and desertification. We conducted a four‐year manipulative experiment in a semi‐arid Mediterranean ecosystem to evaluate the impacts of a ~2°C warming on the photosynthesis, transpiration, leaf nutrient status, chlorophyll content, isotopic composition, biomass growth, and postsummer survival of the native shrub Helianthemum squamatum. We predicted that warmed plants would show reduced photosynthetic activity and growth, primarily due to the greater stomatal limitation imposed by faster and more severe soil drying under warming. On average, warming reduced net photosynthetic rates by 36% across the study period. Despite this strong response, warming did not affect stomatal conductance and transpiration. The reduction of peak photosynthetic rates with warming was more pronounced in a drought year than in years with near‐average rainfall (75% and 25–40% reductions relative to controls, respectively), with no indications of photosynthetic acclimation to warming through time. Warmed plants had lower leaf N and P contents, δ13C, and sparser and smaller leaves than control plants. Warming reduced shoot dry mass production by 31%. However, warmed plants were able to cope with large reductions in net photosynthesis, leaf area, and shoot biomass production without changes in postsummer survival rates. Our findings highlight the key role of nonstomatal factors (biochemical and/or nutritional) in reducing net carbon assimilation rates and growth under warming, which has important implications for projections of plant carbon balance under the warmer and drier climatic scenario predicted for drylands worldwide. Projected climate warming over the coming decades could reduce net primary production by about one‐third in semi‐arid gypsum shrublands dominated by H. squamatum.  相似文献   

19.
  1. Food ingestion is one of the most basic features of all organisms. However, obtaining precise—and high‐throughput—estimates of feeding rates remains challenging, particularly for small, aquatic herbivores such as zooplankton, snails, and tadpoles. These animals typically consume low volumes of food that are time‐consuming to accurately measure.
  2. We extend a standard high‐throughput fluorometry technique, which uses a microplate reader and 96‐well plates, as a practical tool for studies in ecology, evolution, and disease biology. We outline technical and methodological details to optimize quantification of individual feeding rates, improve accuracy, and minimize sampling error.
  3. This high‐throughput assay offers several advantages over previous methods, including i) substantially reduced time allotments per sample to facilitate larger, more efficient experiments; ii) technical replicates; and iii) conversion of in vivo measurements to units (mL‐1 hr‐1 ind‐1) which enables broad‐scale comparisons across an array of taxa and studies.
  4. To evaluate the accuracy and feasibility of our approach, we use the zooplankton, Daphnia dentifera, as a case study. Our results indicate that this procedure accurately quantifies feeding rates and highlights differences among seven genotypes.
  5. The method detailed here has broad applicability to a diverse array of aquatic taxa, their resources, environmental contaminants (e.g., plastics), and infectious agents. We discuss simple extensions to quantify epidemiologically relevant traits, such as pathogen exposure and transmission rates, for infectious agents with oral or trophic transmission.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号