首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
An outstanding goal in speciation research is to trace the mode and tempo of the evolution of barriers to gene flow. Such research benefits from studying incipient speciation, in which speciation between populations has not yet occurred, but where multiple potential mechanisms of reproductive isolation (RI: i.e., premating, postmating‐prezygotic (PMPZ), and postzygotic barriers) may act. We used such a system to investigate these barriers among allopatric populations of Drosophila montana. In all heteropopulation crosses we found premating (sexual) isolation, which was either symmetric or asymmetric depending on the population pair compared. Postmating isolation was particularly strong in crosses involving males from one of the study populations, and while sperm were successfully transferred, stored, and motile, we experimentally demonstrated that the majority of eggs produced were unfertilized. Thus, we identified the nature of a PMPZ incompatibility. There was no evidence of intrinsic postzygotic effects. Measures of absolute and relative strengths of pre‐ and postmating barriers showed that populations differed in the mode and magnitude of RI barriers. Our results indicate that incipient RI among populations can be driven by different contributions of both premating and PMPZ barriers occurring between different population pairs and without the evolution of postzygotic barriers.  相似文献   

4.
5.
A central tenet of speciation research is the need to identify reproductive isolating barriers. One approach to this line of research is to identify the phenotypes that lead to reproductive isolation. Several studies on flowering plants have shown that differences in style length contribute to reproductive isolation between species, leading us to consider whether style length could act as a reproductive barrier among populations of a single species. This could occur if style length varied sufficiently and pollen size covaried with style length. Populations of Silene latifolia exhibit variation in flower size, including style length, that is negatively correlated with annual precipitation. We show that this divergence in style length has a genetic basis and acts as a reproductive barrier: males from small‐flowered populations produced relatively small pollen grains that were poor at fertilizing ovules when crossed to females from large‐flowered populations, leading to a significant reduction in seed production. Manipulating the distance pollen tubes had to travel revealed that this failure was purely mechanical and not the result of other incompatibilities. These results show that style length acts as a postmating‐prezygotic reproductive barrier and indicate a potential link between ecotypic differentiation and reproductive isolation within a species.  相似文献   

6.
Postmating reproductive isolation can help maintain species boundaries when premating barriers to reproduction are incomplete. The strength and identity of postmating reproductive barriers are highly variable among diverging species, leading to questions about their genetic basis and evolutionary drivers. These questions have been tackled in model systems but are less often addressed with broader phylogenetic resolution. In this study we analyse patterns of genetic divergence alongside direct measures of postmating reproductive barriers in an overlooked group of sympatric species within the model monkeyflower genus, Mimulus. Within this Mimulus brevipes species group, we find substantial divergence among species, including a cryptic genetic lineage. However, rampant gene discordance and ancient signals of introgression suggest a complex history of divergence. In addition, we find multiple strong postmating barriers, including postmating prezygotic isolation, hybrid seed inviability and hybrid male sterility. M. brevipes and M. fremontii have substantial but incomplete postmating isolation. For all other tested species pairs, we find essentially complete postmating isolation. Hybrid seed inviability appears linked to differences in seed size, providing a window into possible developmental mechanisms underlying this reproductive barrier. While geographic proximity and incomplete mating isolation may have allowed gene flow within this group in the distant past, strong postmating reproductive barriers today have likely played a key role in preventing ongoing introgression. By producing foundational information about reproductive isolation and genomic divergence in this understudied group, we add new diversity and phylogenetic resolution to our understanding of the mechanisms of plant speciation.  相似文献   

7.
Sexual conflict is predicted to generate more rapid reproductive isolation between larger populations. While there is some empirical support for this, the data are inconsistent and, additionally, there has been criticism of some of the evidence. Here we reanalyse two experimental-evolution datasets using an isolation index widely applied in the speciation literature. We find evidence for reproductive isolation through sexual conflict in Sepsis cynipsea, but not in Drosophila melanogaster, and this occurred to a greater degree in larger populations, which is consistent with previous findings.  相似文献   

8.
Prezygotic mating isolation has been a major interest of evolutionary biologists during the past several decades because it is likely to represent one of the first stages in the transition from populations to species. Mate discrimination is one of the most commonly measured forms of prezygotic isolation and appears to be relatively common among closely related species. In some cases, it has been used as a measure to distinguish populations from subspecies, races, and sister species, yet the influences of various evolutionary mechanisms that may generate mate discrimination are largely unknown. In this study, we measured the level and pattern of mate discrimination among 18 populations of a cosmopolitan drosophilid species, Drosophila ananassae , from throughout its geographical range and its sister species, Drosophila pallidosa, which has a restricted geographical distribution in the South Pacific Islands. In addition, we measured genetic differentiation between all 18 populations using mitochondrial DNA polymorphism data. Mate discrimination varies considerably throughout the species range, being higher among populations outside the ancestral Indonesian range, and highest in the South Pacific. Our results suggest that colonization and genetic differentiation may have an influence on the evolutionary origin of mate discrimination. Our phylogeographical approach clarifies the ancestral relationships of several populations from the South Pacific that show particularly strong mate discrimination and suggests that they may be in the early stages of speciation. Furthermore, both the genetic and behavioral results cast doubt on the status of D. pallidosa as a good species.  相似文献   

9.
Two morphs (ecotypes) of the marine snail Littorina saxatilis coexist along Galician exposed rocky shores. They hybridize, but gene flow is impeded by a partial prezygotic reproductive barrier, and we have earlier suggested that this is a case of incipient sympatric speciation. To assess the mechanisms of prezygotic reproductive isolation, we estimated deviations from random mating (sexual selection and sexual isolation) of sympatric snails in 13 localities on the shore, and performed mate choice experiments in the laboratory. We also investigated the microdistribution of both morphs over patches of barnacles and blue mussels in the hybridization zone. We used computer simulations to separate the mechanisms contributing to reproductive isolation. On the shores sampled, male–female pairs were strongly assortative both with respect to morphs (mean Yule's V = 0.77) and size (mean Pearson's r = 0.47). In the laboratory, males of both morphs mounted other snails and mated other males and juveniles at random. However, mature females of equal sizes mated assortatively with respect to morph. The two morphs were nonrandomly distributed over barnacle and mussel patches in the hybridization zone. Monte Carlo simulations showed that this microdistribution could explain about half the morph and size relationships in male–female pairs, while a simple rejection mechanism, rejecting the first 1–3 mates if they were of contrasting morphs, accounted for the remaining part of the reproductive isolation, and for parts of the size relationships found between mates. A size discriminant mate choice mechanism may also, to a lesser extent, contribute to the sexual isolation. Sexual selection was observed for female size (larger ones being favoured) and among certain morphs, but distinct biological mechanisms may cause these processes.  相似文献   

10.
The reproductive barriers that prevent gene flow between closely related species are a major topic in evolutionary research. Insect clades with parasitoid lifestyle are among the most species‐rich insects and new species are constantly described, indicating that speciation occurs frequently in this group. However, there are only very few studies on speciation in parasitoids. We studied reproductive barriers in two lineages of Lariophagus distinguendus (Chalcidoidea: Hymenoptera), a parasitoid wasp of pest beetle larvae that occur in human environments. One of the two lineages occurs in households preferably attacking larvae of the drugstore beetle Stegobium paniceum (“DB‐lineage”), the other in grain stores with larvae of the granary weevil Sitophilus granarius as main host (“GW‐lineage”). Between two populations of the DB‐lineage, we identified slight sexual isolation as intraspecific barrier. Between populations from both lineages, we found almost complete sexual isolation caused by female mate choice, and postzygotic isolation, which is partially caused by cytoplasmic incompatibility induced by so far undescribed endosymbionts which are not Wolbachia or Cardinium. Because separation between the two lineages is almost complete, they should be considered as separate species according to the biological species concept. This demonstrates that cryptic species within parasitoid Hymenoptera also occur in Central Europe in close contact to humans.  相似文献   

11.
Ecological speciation occurs when reproductive isolation evolves ultimately as a result of divergent natural selection between populations inhabiting different environments or exploiting alternative resources. I tested a prediction of the ecological model concerning the fitness of hybrids between two young, sympatric species of threespine sticklebacks (Benthics and Limnetics). The two species are ecologically and morphologically divergent: the Benthic is adapted to feeding on invertebrates in the littoral zone of the lake whereas the Limnetic is adapted to feeding on zooplankton in the open water. The growth rate of two types of hybrids, the Benthic backcross and the Limnetic backcross, as well as both parent species, was evaluated in enclosures in both parental habitats in the lake. The use of backcrosses is ideal because a comparison of their growth rates in the two habitats estimates an ecologically dependent component of their fitness while controlling for any intrinsic genetic incompatibilities that may exist between the Benthic and Limnetic genomes. The backcross results revealed a striking pattern of ecological dependence: in the littoral zone, Benthic backcrosses grew at approximately twice the rate of Limnetic backcrosses, while in the open water, Limnetic backcrosses grew at approximately twice the rate of Benthic backcrosses. Such a reversal of relative fitness of the two cross-types in the two environments provides strong evidence that divergent natural selection has played a central role in the evolution of postmating isolation between Benthics and Limnetics. Although the rank order of growth rates of all cross-types in the littoral zone was Benthic > Benthic backcross > Limnetic backcross > Limnetic, neither backcross differed significantly from the parent from which it was mainly derived. Implications of this result are discussed in terms of ecological speciation and possible introgressive hybridization between the species. Results in the open water were less clear and were not fully consistent with the ecological model of speciation, mainly as a result of the low growth rate of Limnetics. However, analysis of the diet of the fish in the open water suggests that these enclosures may not have been fully successful at replicating the food regimes characteristic of this habitat.  相似文献   

12.
Ecological character displacement takes place when two closely related species co-occur in only part of their geographical range, and selection to minimize competition between them promotes divergence in resource-use traits in sympatry but not in allopatry. Because populations sympatric with the heterospecific competitor will experience a different competitive environment than conspecific populations in allopatry, conspecific populations from these two competitive environments will also diverge in resource traits as an indirect consequence of interspecific ecological character displacement. Ultimately, ecologically dependent postmating isolation may arise between conspecific populations from these divergent competitive environments if offspring produced by matings between them are competitively inferior in either type of competitive environment. Yet, there are no direct tests of character displacement's role in initiating such postmating isolation. Here, we present a test by comparing the phenotypes and performances of spadefoot toad tadpoles produced from between-competitive-environment (BCE) matings versus those produced from within-competitive-environment (WCE) matings. When raised with naturally occurring competitors, BCE offspring grew significantly less and were significantly smaller than WCE offspring. BCE offspring generally performed worse even when raised alone, suggesting that they may have harbored intrinsic genetic incompatibilities. Moreover, the difference in growth and body size of BCE versus WCE offspring was significantly greater when each was raised with competitors than when each was raised alone, suggesting that BCE tadpoles were competitively inferior to WCE tadpoles. Presumably, this enhanced difference arose because BCE tadpoles produced an intermediate resource-use phenotype that is less well adapted to either competitive environment. Because larval size is under strong, positive, directional selection, reduced growth and size of BCE offspring may diminish gene flow between populations in divergent competitive environments, thereby generating postmating isolation. Thus, postmating isolation between conspecific populations, and possibly even speciation, may arise as a by-product of interactions between species.  相似文献   

13.
Models of speciation by sexual selection propose that male–female coevolution leads to the rapid evolution of behavioural reproductive isolation. Here, we compare the strength of behavioural isolation to ecological isolation, gametic incompatibility and hybrid inviability in a group of dichromatic stream fishes. In addition, we examine whether any of these individual barriers, or a combined measure of total isolation, is predicted by body shape differences, male colour differences, environmental differences or genetic distance. Behavioural isolation reaches the highest values of any barrier and is significantly greater than ecological isolation. No individual reproductive barrier is associated with any of the predictor variables. However, marginally significant relationships between male colour and body shape differences with ecological and behavioural isolation are discussed. Differences in male colour and body shape predict total reproductive isolation between species; hierarchical partitioning of these two variables' effects suggests a stronger role for male colour differences. Together, these results suggest an important role for divergent sexual selection in darter speciation but raise new questions about the mechanisms of sexual selection at play and the role of male nuptial ornaments.  相似文献   

14.
Sexual conflict has been predicted to drive reproductive isolation by generating arbitrary but rapid coevolutionary changes in reproductive traits among allopatric populations. A testable prediction of this proposal is that allopatric populations experiencing different levels of sexual conflict should exhibit different levels of reproductive isolation. We tested this prediction using experimentally evolved populations of the promiscuous Drosophila pseudoobscura. We manipulated sexual conflict by enforcing either monogamy, maintaining natural levels of promiscuity, or elevating promiscuity. Within each treatment, we carried out sympatric and allopatric crosses using replicated populations and examined pre-zygotic (number of mating pairs, mating speed and copulation duration) and post-zygotic (hybrid inviability and sterility) indicators of reproductive isolation. After 50 generations of selection, none of the measures conformed to predictions of sexual conflict driving reproductive isolation. Our results cannot be explained by lack of genetic variation or weak selection and suggest that sexual conflict may not be a widespread engine of speciation.  相似文献   

15.
We show that two complementary asymmetric isolating mechanisms, likely mediated by divergence in body size, underlie the evolution of incipient reproductive isolation between a set of Drosophila melanogaster populations selected for rapid development and their ancestral controls. Selection has led to great reduction in body size in the fast developing lines. Small males belonging to fast developing lines obtain few matings with large control females, both in presence and absence of large control line males, giving rise to unidirectional, premating isolation caused by sexual selection. Conversely, small selected line females suffer greatly increased mortality following mating with large control males, causing unidirectional postcopulatory prezygotic isolation. We discuss preliminary evidence for evolution of reduced male harm caused to females upon mating in the fast developing lines, and speculate that the females from these lines have coevolved reduced resistance to male harm such that they can no longer resist the harm caused by males from control lines. This potentially implicates differing levels of sexual conflict in creating reproductive barrier between the selected line females and the control males. We also show that a large difference in development time is not sufficient to cause postzygotic incompatibilities in the two sets of populations reaffirming the belief that prezygotic isolation can evolve much earlier than postzygotic isolation.  相似文献   

16.
The impact of different reproductive barriers on species or population isolation may vary in different stages of speciation depending on evolutionary forces acting within species and through species’ interactions. Genetic incompatibilities between interacting species are expected to reinforce prezygotic barriers in sympatric populations and lead to cascade reinforcement between conspecific populations living within and outside the areas of sympatry. We tested these predictions and studied whether and how the strength and target of reinforcement between Drosophila montana and Drosophila flavomontana vary between sympatric populations with different histories and species abundances. All barriers between D. montana females and D. flavomontana males were nearly complete, while in the reciprocal cross strong postzygotic isolation was accompanied by prezygotic barriers whose strength varied according to population composition. Sexual isolation between D. flavomontana females and D. montana males was increased in long‐established sympatric populations, where D. flavomontana is abundant, while postmating prezygotic (PMPZ) barriers were stronger in populations where this species is a new invader and still rare and where female discrimination against heterospecific males was lower. Strengthening of sexual and PMPZ barriers in this cross also induced cascade reinforcement of respective barriers between D. flavomontana populations, which is a classic signature of reinforcement process.  相似文献   

17.
The process of speciation involves the accumulation of reproductive isolation (RI) between diverging lineages. Selection can favor increased RI via the process of reinforcement, whereby costs to hybridization impose selection for increased prezygotic RI. Reinforcement results in phenotypic divergence within at least one taxon, as a result of costly hybridization between sympatric taxa. The strength of selection driving reinforcement is determined by the cost of hybridization and the frequency of hybridization. We investigated the cost of hybridization by quantifying postmating RI barriers among Phlox species that comprise one of the best‐studied cases of reinforcement. We determined if the strength of RI differs among lineages that have and have not undergone reinforcement, how much variability there is within species in RI, and whether RI is associated with phylogenetic relatedness. We found high RI for the species that underwent phenotypic divergence due to reinforcement; however, RI was also high between other species pairs. We found extensive variability in RI among individuals within species, and no evidence that the strength of RI was associated with phylogenetic relatedness. We suggest that phenotypic divergence due to reinforcement is associated with the frequency of hybridization and introgression, and not the cost of hybridization in this clade.  相似文献   

18.
Theory suggests that, under some circumstances, sexual conflict over mating can lead to divergent sexually antagonistic coevolution among populations for traits associated with mating, and that this can promote reproductive isolation and hence speciation. However, sexual conflict over mating may also select for traits (e.g. male willingness to mate) that enhance gene flow between populations, limiting population divergence. In the present study, we compare pre‐ and post‐mating isolation within and between two species characterized by male–female conflict over mating rate. We quantify sexual isolation among five populations of the seed bug Lygaeus equestris collected from Italy and Sweden, and two replicates of a population of the sister‐species Lygaeus simulans, also collected from Italy. We find no evidence of reproductive isolation amongst populations of L. equestris, suggesting that sexual conflict over mating has not led to population divergence in relevant mating traits in L. equestris. However, there was strong asymmetric pre‐mating isolation between L. equestris and L. simulans: male L. simulans were able to mate successfully with female L. equestris, whereas male L. equestris were largely unable to mate with female L. simulans. We found little evidence for strong post‐mating isolation between the two species, however, with hybrid F2 offspring being produced. Our results suggest that sexual conflict over mating has not led to population divergence, and indeed perhaps supports the contrary theoretical prediction that male willingness to mate may retard speciation by promoting gene flow.  相似文献   

19.
Postmating but prezygotic (PMPZ) interactions are increasingly recognized as a potentially important early‐stage barrier in the evolution of reproductive isolation. A recent study described a potential example between populations of the same species: single matings between Drosophila montana populations resulted in differential fertilisation success because of the inability of sperm from one population (Vancouver) to penetrate the eggs of the other population (Colorado). As the natural mating system of D. montana is polyandrous (females remate rapidly), we set up double matings of all possible crosses between the same populations to test whether competitive effects between ejaculates influence this PMPZ isolation. We measured premating isolation in no‐choice tests, female fecundity, fertility and egg‐to‐adult viability after single and double matings as well as second‐male paternity success (P2). Surprisingly, we found no PMPZ reproductive isolation between the two populations under a competitive setting, indicating no difficulty of sperm from Vancouver males to fertilize Colorado eggs after double matings. While there were subtle differences in how P2 changed over time, suggesting that Vancouver males’ sperm are somewhat less competitive in a first‐male role within Colorado females, these effects did not translate into differences in overall P2. Fertilisation success can thus differ dramatically between competitive and noncompetitive conditions, perhaps because the males that mate second produce higher quality ejaculates in response to sperm competition. We suggest that unlike in more divergent species comparisons, where sperm competition typically increases reproductive isolation, ejaculate tailoring can reduce the potential for PMPZ isolation when recently diverged populations interbreed.  相似文献   

20.
Speciation depends on the establishment of reproductive isolation between populations of the same species. Whether assortative mating evolves as a by-product of adaptation is a major question relevant to the origin of species by reproductive isolation. The long-term selection populations used here were originally established 30 years ago from a single cage population (originating from a maternal one) and subsequently subjected to divergent selection for tolerance of toxins in food (heavy metals versus ethanol) to investigate this question. Those populations now differ in sexual isolation and Wolbachia infection status. Wolbachia are common and widespread bacteria infecting arthropods and nematodes. Attention has recently focused on their potential role in insect speciation, due to post-mating sperm-egg incompatibilities induced by the bacteria. In this paper we examine the potential effect of Wolbachia on the level of sexual isolation. By antibiotic curing, we show that removal of Wolbachia decreases levels of mate discrimination (sexual isolation index) between populations by about 50%. Backcrossing experiments confirm that this effect is due to infection status rather than to genetic changes in the populations resulting from antibiotic treatment. Antibiotic treatment has no effect on mate discrimination level between uninfected populations. Our findings suggest that the presence of Wolbachia (or another undetected bacterial associate) act as an additive factor contributing to the level of pre-mating isolation between these Drosophila melanogaster populations. Given the ubiquity of bacterial associates of insects, such effects could be relevant to some speciation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号