首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
An outstanding goal in speciation research is to trace the mode and tempo of the evolution of barriers to gene flow. Such research benefits from studying incipient speciation, in which speciation between populations has not yet occurred, but where multiple potential mechanisms of reproductive isolation (RI: i.e., premating, postmating‐prezygotic (PMPZ), and postzygotic barriers) may act. We used such a system to investigate these barriers among allopatric populations of Drosophila montana. In all heteropopulation crosses we found premating (sexual) isolation, which was either symmetric or asymmetric depending on the population pair compared. Postmating isolation was particularly strong in crosses involving males from one of the study populations, and while sperm were successfully transferred, stored, and motile, we experimentally demonstrated that the majority of eggs produced were unfertilized. Thus, we identified the nature of a PMPZ incompatibility. There was no evidence of intrinsic postzygotic effects. Measures of absolute and relative strengths of pre‐ and postmating barriers showed that populations differed in the mode and magnitude of RI barriers. Our results indicate that incipient RI among populations can be driven by different contributions of both premating and PMPZ barriers occurring between different population pairs and without the evolution of postzygotic barriers.  相似文献   

3.
    
A central tenet of speciation research is the need to identify reproductive isolating barriers. One approach to this line of research is to identify the phenotypes that lead to reproductive isolation. Several studies on flowering plants have shown that differences in style length contribute to reproductive isolation between species, leading us to consider whether style length could act as a reproductive barrier among populations of a single species. This could occur if style length varied sufficiently and pollen size covaried with style length. Populations of Silene latifolia exhibit variation in flower size, including style length, that is negatively correlated with annual precipitation. We show that this divergence in style length has a genetic basis and acts as a reproductive barrier: males from small‐flowered populations produced relatively small pollen grains that were poor at fertilizing ovules when crossed to females from large‐flowered populations, leading to a significant reduction in seed production. Manipulating the distance pollen tubes had to travel revealed that this failure was purely mechanical and not the result of other incompatibilities. These results show that style length acts as a postmating‐prezygotic reproductive barrier and indicate a potential link between ecotypic differentiation and reproductive isolation within a species.  相似文献   

4.
Reproductive isolation increases with genetic distance between species. Although sexual selection may drive divergence of sexual signals and traits, causing rapid evolution of sexual isolation, quantitative data supporting this idea are rare. We examine the rates of divergence of a species-specific courtship signal, sexual isolation, and postmating isolation in the Drosophila willistoni group. Both types of isolation increase with genetic distance and postmating isolation is the most strongly correlated with genetic divergence, suggesting this has the least variable divergence rate. Song divergence is not correlated with genetic divergence. Homoplasy in song pattern results in poorly resolved phylogenies that are different from molecular phylogenies. Song evolves more quickly than sexual isolation, which evolves more quickly than postmating isolation.  相似文献   

5.
6.
Sexual conflict is predicted to generate more rapid reproductive isolation between larger populations. While there is some empirical support for this, the data are inconsistent and, additionally, there has been criticism of some of the evidence. Here we reanalyse two experimental-evolution datasets using an isolation index widely applied in the speciation literature. We find evidence for reproductive isolation through sexual conflict in Sepsis cynipsea, but not in Drosophila melanogaster, and this occurred to a greater degree in larger populations, which is consistent with previous findings.  相似文献   

7.
Abstract .Theory predicts that sexual (or behavioral) isolation will be the first form of reproductive isolation to evolve in lineages characterized by sexual selection. Here I directly compare the rate of evolution of sexual isolation with that of hybrid inviability in a diverse and sexually dimorphic genus of freshwater fish. The magnitude of both sexual isolation and hybrid inviability were quantified for multiple pairs of allopatric species. Rates of evolution were inferred by comparing genetic distances of these species pairs with the magnitude of each form of reproductive isolation: the slope of the regression of genetic distance on the magnitude of reproductive isolation represents the rate of evolution. Of the two forms of isolation, the magnitude of sexual isolation exhibited the steeper slope of regression, indicating that sexual isolation will tend to evolve to completion earlier than hybrid inviability, strictly as a by-product of evolution in geographically isolated populations. Additional evidence from the literature is used to qualitatively compare rates of evolution of sexual isolation with that of other forms of reproductive isolation. Preliminary comparisons support the prediction that sexual isolation will evolve more rapidly than other forms. Because Etheostoma is characterized by striking sexual dimorphism, these results are consistent with the hypothesis that sexual selection for exaggerated mate-recognition characters causes the relatively rapid evolution of sexual isolation.  相似文献   

8.
9.
    
Intralocus sexual conflict results from sexually antagonistic selection on traits shared by the sexes. This can displace males and females from their respective fitness optima, and negative intersexual correlations (rmf) for fitness are the unequivocal indicator of this evolutionary conflict. It has recently been suggested that intersexual fitness correlations can vary depending on the segregating genetic variation present in a population, and one way to alter genetic variation and test this idea is via inbreeding. Here, we test whether intersexual correlations for fitness vary with inbreeding in Drosophila simulans isolines reared under homogenous conditions. We measured male and female fitness at different times following the establishment of isofemale lines and found that the sign of the association between the two measures varied with time after initial inbreeding. Our results are consistent with suggestions that the type of genetic variation segregating within a population can determine the extent of intralocus sexual conflict and also support the idea that sexually antagonistic alleles segregate for longer in populations than alleles with sexually concordant effects.  相似文献   

10.
    
Models of speciation by sexual selection propose that male–female coevolution leads to the rapid evolution of behavioural reproductive isolation. Here, we compare the strength of behavioural isolation to ecological isolation, gametic incompatibility and hybrid inviability in a group of dichromatic stream fishes. In addition, we examine whether any of these individual barriers, or a combined measure of total isolation, is predicted by body shape differences, male colour differences, environmental differences or genetic distance. Behavioural isolation reaches the highest values of any barrier and is significantly greater than ecological isolation. No individual reproductive barrier is associated with any of the predictor variables. However, marginally significant relationships between male colour and body shape differences with ecological and behavioural isolation are discussed. Differences in male colour and body shape predict total reproductive isolation between species; hierarchical partitioning of these two variables' effects suggests a stronger role for male colour differences. Together, these results suggest an important role for divergent sexual selection in darter speciation but raise new questions about the mechanisms of sexual selection at play and the role of male nuptial ornaments.  相似文献   

11.
    
Several lines of evidence implicate sexual isolation in both initiating and completing the speciation process. Although its existence is straightforward to demonstrate, understanding the evolution of sexual isolation requires identifying the underlying phenotypes responsible so that we can determine how these have diverged. Here, we study geographic variation in female mate preferences for male sexual displays in the fly Drosophila subquinaria. Female D. subquinaria that are sympatric with its sister species D. recens discriminate strongly against both D. recens and allopatric conspecific males, whereas females from allopatric populations do not. Furthermore, female mate preferences target at least in part a suite of cuticular hydrocarbons (CHCs) in males and geographic variation in CHCs mirrors the pattern of mate discrimination. In this study, we quantify female mate preferences for male CHCs from populations that span the geographic range of D. subquinaria. We find that the direction of linear sexual selection varies significantly between populations that are sympatric versus allopatric with D. recens in a pattern of reproductive character displacement. Differences in preference partially align with existing differences in CHCs and patterns of sexual isolation, although discrepancies remain that suggest the involvement of additional traits and/or more complex, nonlinear preference functions.  相似文献   

12.
    
In broadcast spawners, prezygotic reproductive isolation depends on differences in the spatial and temporal patterns of gamete release and gametic incompatibility. Typically, gametic incompatibility is measured in no‐choice crosses, but conspecific sperm precedence (CSP) can prevent hybridization in gametes that are compatible in the absence of sperm competition. Broadcast spawning corals in the Montastraea annularis species complex spawn annually on the same few evenings. Montastraea franksi spawns an average of 110 min before M. annularis, with a minimum gap of approximately 40 min. Gametes are compatible in no‐choice heterospecific assays, but it is unknown whether eggs exhibit choice when in competition. Hybridization depends on either M. franksi eggs remaining unfertilized and in proximity to M. annularis when the latter species spawns or M. franksi sperm remaining in sufficient viable concentrations when M. annularis spawns. We found that the eggs of the early spawning M. franksi demonstrate strong CSP, whereas CSP appears to be lacking for M. annularis eggs. This study provides evidence of diverging gamete affinities between these recently separated species and suggests for the first time that selection may favour CSP in earlier spawning species when conspecific sperm is diluted and aged and is otherwise at a numeric and viability disadvantage with heterospecific sperm.  相似文献   

13.
    
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased (‘polyandry’) or decreased (‘monogamy’) sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.  相似文献   

14.
Prezygotic mating isolation has been a major interest of evolutionary biologists during the past several decades because it is likely to represent one of the first stages in the transition from populations to species. Mate discrimination is one of the most commonly measured forms of prezygotic isolation and appears to be relatively common among closely related species. In some cases, it has been used as a measure to distinguish populations from subspecies, races, and sister species, yet the influences of various evolutionary mechanisms that may generate mate discrimination are largely unknown. In this study, we measured the level and pattern of mate discrimination among 18 populations of a cosmopolitan drosophilid species, Drosophila ananassae , from throughout its geographical range and its sister species, Drosophila pallidosa, which has a restricted geographical distribution in the South Pacific Islands. In addition, we measured genetic differentiation between all 18 populations using mitochondrial DNA polymorphism data. Mate discrimination varies considerably throughout the species range, being higher among populations outside the ancestral Indonesian range, and highest in the South Pacific. Our results suggest that colonization and genetic differentiation may have an influence on the evolutionary origin of mate discrimination. Our phylogeographical approach clarifies the ancestral relationships of several populations from the South Pacific that show particularly strong mate discrimination and suggests that they may be in the early stages of speciation. Furthermore, both the genetic and behavioral results cast doubt on the status of D. pallidosa as a good species.  相似文献   

15.
    
Males and females share most of their genome and develop many of the same traits. However, each sex frequently has different optimal values for these shared traits, creating intralocus sexual conflict. This conflict has been observed in wild and laboratory populations of insects and affects important evolutionary processes such as sexual selection, the maintenance of genetic variation, and possibly even speciation. Given the broad impacts of intralocus conflict, accurately detecting and measuring it is important. A common way to detect intralocus sexual conflict is to calculate the intersexual genetic correlation for fitness, with negative values suggesting conflict. Here, we highlight a potential confounder of this measure—cytoplasmic incompatibility caused by the intracellular parasite Wolbachia. Infection with Wolbachia can generate negative intersexual genetic correlations for fitness in insects, suggestive of intralocus sexual conflict. This is because cytoplasmic incompatibility reduces the fitness of uninfected females mated to infected males, while uninfected males will not suffer reductions in fitness if they mate with infected females and may even be fitter than infected males. This can lead to strong negative intersexual genetic correlations for fitness, mimicking intralocus conflict. We illustrate this issue using simulations and then present Drosophila simulans data that show how reproductive incompatibilities caused by Wolbachia infection can generate signals of intralocus sexual conflict. Given that Wolbachia infection in insect populations is pervasive, but populations usually contain both infected and uninfected individuals providing scope for cytoplasmic incompatibility, this is an important consideration for sexual conflict research but one which, to date, has been largely underappreciated.  相似文献   

16.
  总被引:4,自引:0,他引:4  
Abstract The evolution of premating isolation after secondary contact is primarily considered in the guise of reinforcement, which relies on low hybrid fitness as the driving force for mating preference divergence. Here I consider two additional forces that may play a substantial role in the adaptive evolution of premating isolation, direct selection on preferences and indirect selection against postmating, prezygotic incompatibilities. First, I argue that a combination of ecological character displacement and sensory bias can cause direct selection on preferences that results in the pattern of reproductive character displacement. Both analytical and numerical methods are then used to demonstrate that, as expected from work in single populations, such direct selection will easily overwhelm indirect selection due to low hybrid fitness as the primary determinant of preference evolution. Second, postmating, prezygotic incompatibilities are presented as a driving force in the evolution of premating isolation. Two classes of these mechanisms, those increasing female mortality after mating but before producing offspring and those reducing female fertility, are shown to be identical in their effects on preference divergence. Analytical and numerical techniques are then used to demonstrate that postmating, prezygotic factors may place strong selection on preference divergence. These selective forces are shown to be comparable if not greater than those produced by the low fitness of hybrids.  相似文献   

17.
    
Speciation research dissects the genetics and evolution of reproductive barriers between parental species. Hybrids are the “gatekeepers” of gene flow, so it is also important to understand the behavioural mechanisms and genetics of any potential isolation from their parental species. We tested the role of multiple behavioural barriers in reproductive isolation among closely related field crickets and their hybrids (Teleogryllus oceanicus and Teleogryllus commodus). These species hybridize in the laboratory, but the behaviour of hybrids is unusual and there is little evidence for gene flow in the wild. We found that heterospecific pairs exhibited reduced rates of courtship behaviour due to discrimination by both sexes, and that this behavioural isolation was symmetrical. However, hybrids were not sexually selected against and exhibited high rates of courtship behaviour even though hybrid females are sterile. Using reciprocal hybrid crosses, we characterized patterns of interspecific divergence and inheritance in key sexual traits that might underlie the mating patterns we found: calling song, courtship song and cuticular hydrocarbons (CHCs). Song traits exhibited both sex linkage and transgressive segregation, whereas CHCs exhibited only the latter. Calculations of the strength of isolation exerted by these sexual traits suggest that close‐range signals are as important as long‐distance signals in contributing to interspecific sexual isolation. The surprisingly weak mating barriers observed between hybrids and parental species highlight the need to examine reproductive isolating mechanisms and their genetic bases across different potential stages of introgressive hybridization.  相似文献   

18.
    
Sperm competition is pervasive and fundamental to determining a male's overall fitness. Sperm traits and seminal fluid proteins (Sfps) are key factors. However, studies of sperm competition may often exclude females that fail to remate during a defined period. Hence, the resulting data sets contain fewer data from the potentially fittest males that have most success in preventing female remating. It is also important to consider a male's reproductive success before entering sperm competition, which is a major contributor to fitness. The exclusion of these data can both hinder our understanding of the complete fitness landscapes of competing males and lessen our ability to assess the contribution of different determinants of reproductive success to male fitness. We addressed this here, using the Drosophila melanogaster model system, by (i) capturing a comprehensive range of intermating intervals that define the fitness of interacting wild‐type males and (ii) analysing outcomes of sperm competition using selection analyses. We conducted additional tests using males lacking the sex peptide (SP) ejaculate component vs. genetically matched (SP+) controls. This allowed us to assess the comprehensive fitness effects of this important Sfp on sperm competition. The results showed a signature of positive, linear selection in wild‐type and SP+ control males on the length of the intermating interval and on male sperm competition defence. However, the fitness surface for males lacking SP was distinct, with local fitness peaks depending on contrasting combinations of remating intervals and offspring numbers. The results suggest that there are alternative routes to success in sperm competition and provide an explanation for the maintenance of variation in sperm competition traits.  相似文献   

19.
20.
    
In many species, males have the capacity to directly influence (either positively or negatively) the fitness of their mates and offspring, not only via parental care contributions and/or precopulatory resource provisioning, but also via the post‐copulatory activity of those substances passed on to their mates in their ejaculates. Here, we examine how an individual male's identity may be related to phenotypic variation in short‐term female fecundity in the model species, Drosophila melanogaster. The effect of male identity on short‐term fecundity stimulation of females was repeatable across time and accounted for over a fifth of the total observed phenotypic variation in fecundity in two independent populations. The functional explanations for these results and the implications for our understanding of the factors that contribute to the adaptive significance of mating preferences and/or sexual conflict are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号