首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the impact of climate change on the distributions of bird species in Europe have largely focused on one season at a time, especially concerning summer breeding ranges. We investigated whether migratory bird species show consistent range shifts over the past 55 yr in both breeding and wintering areas or if these shifts are independent. We then analyzed whether patterns in changing migration distances of Finnish breeding birds could be explained by habitat use, phylogeny or body size. We used long‐term datasets from the Finnish ringing centre to analyze the mean wintering latitudes of 29 species of Finnish breeding birds, then used breeding distribution data to make predictions as to whether certain species were migrating shorter or longer distances based on the comparative shifts in the wintering and breeding grounds. Our data reveal species‐specific differences in changing migration distances. We show that for many species, long‐term shifts in wintering ranges have not followed the same patterns as those in the breeding range, leading to differences in migration distances over time. We conclude that species are not adjusting predictably to climate change in their wintering grounds, leading to changing migration distances in some, but not all, species breeding in Finland. This research fills an important gap in the current climate change biology literature, focusing on individuals’ entire life histories and revealing new complexities in range shift patterns.  相似文献   

2.
Climate change is predicted to cause changes in species distributions and several studies report margin range shifts in some species. However, the reported changes rarely concern a species' entire distribution and are not always linked to climate change. Here, we demonstrate strong north‐eastwards shifts in the centres of gravity of the entire wintering range of three common waterbird species along the North‐West Europe flyway during the past three decades. These shifts correlate with an increase of 3.8 °C in early winter temperature in the north‐eastern part of the wintering areas, where bird abundance increased exponentially, corresponding with decreases in abundance at the south‐western margin of the wintering ranges. This confirms the need to re‐evaluate conservation site safeguard networks and associated biodiversity monitoring along the flyway, as new important wintering areas are established further north and east, and highlights the general urgency of conservation planning in a changing world. Range shifts in wintering waterbirds may also affect hunting pressure, which may alter bag sizes and lead to population‐level consequences.  相似文献   

3.
Climate warming would theoretically create conditions for the breeding range expansion of pseudo‐steppe Mediterranean and long‐distance migrant species and provide the possibility for these to overwinter in the same breeding areas. However, contemporary changes in rainfall regimes might have negative effects on the climate suitability and in turn, shrink species potential range. The lesser kestrel Falco naumanni is highly sensitive to rainfall oscillations and has recently extended its Italian breeding range towards northern latitudes and increasing its wintering records. We modelled the effects of temperature and rainfall on current and future climate suitability for lesser kestrels in both the breeding and wintering periods by using MaxEnt. Models were based on the distribution of 298 colonies and 40 wintering records. Future climate suitability was assessed under eight different scenarios. Spring rainfall amount resulted as the main determinant of breeding climate suitability, so its predicted reduction will determine a shrinkage in suitable areas (–42.10% in 2050; –32.07% in 2070). Specifically, the 66.05% of Italian colonies will be outside the climatically suitable area by 2050. However wide areas, suitable under current climate conditions, are still not occupied by lesser kestrel and allow the potential expansion of its Italian breeding range in the short term. Temperature seasonality mainly determined the species’ winter climate suitability, which is overall predicted to boost in the next decades (+145.03% in 2050; and +123.91% in 2070). All but one future scenarios predicted a northward shift of about 40 km for both breeding and wintering climate suitability. Despite its recent expansion, we have found that climate change will pose conservation concerns for the Italian breeding population of lesser kestrels. Indeed, changes in non‐climate factors will also outline the future suitability of the Italian range for lesser kestrels in both seasons with effects that might both strengthen or mitigate climate effects.  相似文献   

4.
Climate change is expected to cause geographic shifts in tree species' ranges, but such shifts may not keep pace with climate changes because seed dispersal distances are often limited and competition‐induced changes in community composition can be relatively slow. Disturbances may speed changes in community composition, but the interactions among climate change, disturbance and competitive interactions to produce range shifts are poorly understood. We used a physiologically based mechanistic landscape model to study these interactions in the northeastern United States. We designed a series of disturbance scenarios to represent varied disturbance regimes in terms of both disturbance extent and intensity. We simulated forest succession by incorporating climate change under a high‐emissions future, disturbances, seed dispersal, and competition using the landscape model parameterized with forest inventory data. Tree species range boundary shifts in the next century were quantified as the change in the location of the 5th (the trailing edge) and 95th (the leading edge) percentiles of the spatial distribution of simulated species. Simulated tree species range boundary shifts in New England over the next century were far below (usually <20 km) that required to track the velocity of temperature change (usually more than 110 km over 100 years) under a high‐emissions scenario. Simulated species` ranges shifted northward at both the leading edge (northern boundary) and trailing edge (southern boundary). Disturbances may expedite species' recruitment into new sites, but they had little effect on the velocity of simulated range boundary shifts. Range shifts at the trailing edge tended to be associated with photosynthetic capacity, competitive ability for light and seed dispersal ability, whereas shifts at the leading edge were associated only with photosynthetic capacity and competition for light. This study underscores the importance of understanding the role of interspecific competition and disturbance when studying tree range shifts.  相似文献   

5.
Species richness is predicted to increase in the northern latitudes in the warming climate due to ranges of many southern species expanding northwards. We studied changes in the composition of the whole avifauna and in bird species richness in a period of already warming climate in Finland (in northern Europe) covering 1,100 km in south–north gradient across the boreal zone (over 300,000 km2). We compared bird species richness and species‐specific changes (for all 235 bird species that occur in Finland) in range size (number of squares occupied) and range shifts (measured as median of area of occupancy) based on bird atlas studies between 1974–1989 and 2006–2010. In addition, we tested how the habitat preference and migration strategy of species explain species‐specific variation in the change of the range size. The study was carried out in 10 km squares with similar research intensity in both time periods. The species richness did not change significantly between the two time periods. The composition of the bird fauna, however, changed considerably with 37.0% of species showing an increase and 34.9% a decrease in the numbers of occupied squares, that is, about equal number of species gained and lost their range. Altogether 95.7% of all species (225/235) showed changes either in the numbers of occupied squares or they experienced a range shift (or both). The range size of archipelago birds increased and long‐distance migrants declined significantly. Range loss observed in long‐distance migrants is in line with the observed population declines of long‐distance migrants in the whole Europe. The results show that there is an ongoing considerable species turnover due to climate change and due to land use and other direct human influence. High bird species turnover observed in northern Europe may also affect the functional diversity of species communities.  相似文献   

6.
Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest‐understory plant species over the last half‐century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance‐weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species’ shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species’ traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change.  相似文献   

7.
Range shifts and phenological change are two processes by which organisms respond to environmental warming. Understanding the mechanisms that drive these changes is key for optimal conservation and management. Here we study both processes in the migratory Bewick's swan (Cygnus columbianus bewickii) using different methods, analysing nearly 50 years of resighting data (1970–2017). In this period the wintering area of the Bewick's swans shifted eastwards (‘short‐stopping’) at a rate of ~13 km/year, thereby shortening individual migration distance on an average by 353 km. Concurrently, the time spent at the wintering grounds has reduced (‘short‐staying’) by ~38 days since 1989. We show that individuals are consistent in their migratory timing in winter, indicating that the frequency of individuals with different migratory schedules has changed over time (a generational shift). In contrast, for short‐stopping we found evidence for both individual plasticity (individuals decrease their migration distances over their lifetime) and generational shift. Additional analysis of swan resightings with temperature data showed that, throughout the winter, Bewick's swans frequent areas where air temperatures are c. 5.5°C. These areas have also shifted eastwards over time, hinting that climate warming is a contributing factor behind the observed changes in the swans' distribution. The occurrence of winter short‐stopping and short‐staying suggests that this species is to some extent able to adjust to climate warming, but benefits or repercussions at other times of the annual cycle need to be assessed. Furthermore, these phenomena could lead to changes in abundance in certain areas, with resulting monitoring and conservation implications. Understanding the processes and driving mechanisms behind population changes therefore is important for population management, both locally and across the species range.  相似文献   

8.
The survival of an increasing number of species is threatened by climate change: 20%–30% of plants and animals seem to be at risk of range shift or extinction if global warming reaches levels projected to occur by the end of this century. Plant range shifts may determine whether animal species that rely on plant availability for food and shelter will be affected by new patterns of plant occupancy and availability. Brown bears in temperate forested habitats mostly forage on plants and it may be expected that climate change will affect the viability of the endangered populations of southern Europe. Here, we assess the potential impact of climate change on seven plants that represent the main food resources and shelter for the endangered population of brown bears in the Cantabrian Mountains (Spain). Our simulations suggest that the geographic range of these plants might be altered under future climate warming, with most bear resources reducing their range. As a consequence, this brown bear population is expected to decline drastically in the next 50 years. Range shifts of brown bear are also expected to displace individuals from mountainous areas towards more humanized ones, where we can expect an increase in conflicts and bear mortality rates. Additional negative effects might include: (a) a tendency to a more carnivorous diet, which would increase conflicts with cattle farmers; (b) limited fat storage before hibernation due to the reduction of oak forests; (c) increased intraspecific competition with other acorn consumers, that is, wild ungulates and free‐ranging livestock; and (d) larger displacements between seasons to find main trophic resources. The magnitude of the changes projected by our models emphasizes that conservation practices focused only on bears may not be appropriate and thus we need more dynamic conservation planning aimed at reducing the impact of climate change in forested landscapes.  相似文献   

9.
Occupancy patterns can assist with the determination of habitat limitation during breeding or wintering periods and can help guide population and habitat management efforts. American black ducks (Anas rubripes; black ducks) are thought to be limited by habitat and food availability during the winter, but breeding sites may also limit the size or growth potential of the population. The Canadian Wildlife Service conducts an annual breeding waterfowl survey that we used to explore the hypothesis that black duck carrying capacity is limited by wetlands available for breeding in Québec, Canada. We applied single-visit, multi-species occupancy models to the 1990–2015 population survey data to determine if there was evidence the black duck population was limited by breeding habitat. Using a dynamic (multi-season) occupancy modeling approach, we estimated latent occupancy (occupancy accounting for imperfect detection) of black ducks and then used latent occupancy estimates to derive occupancy, colonization, and extirpation rates. We jointly modeled the occupancy dynamics of black ducks and other duck species in wetlands where both species were present. Throughout the duration of the survey, 44% of wetlands were never observed to be occupied by black ducks. Occupancy models showed wetland size was positively associated with occupancy at the first time step (initial occupancy) and colonization. All 2-species models indicated initial black duck occupancy, persistence (continued occupancy), and colonization were positively associated with the presence of a second species. Colonization rate over the 26-year period ranged from 7% to 27% across all models. Extirpation rates were similar and were constant through time within each model. Low occupancy rates, combined with approximately equal colonization and extirpation rates, suggest there are available wetlands for breeding black ducks in their core breeding area. If breeding habitats are not saturated, this suggests migration or wintering areas may be more limiting to black duck population abundance. © 2019 The Wildlife Society.  相似文献   

10.
Drastic shifts in species distributions are a cause of concern for ecologists. Such shifts pose great threat to biodiversity especially under unprecedented anthropogenic and natural disturbances. Many studies have documented recent shifts in species distributions. However, most of these studies are limited to regional scales, and do not consider the abundance structure within species ranges. Developing methods to detect systematic changes in species distributions over their full ranges is critical for understanding the impact of changing environments and for successful conservation planning. Here, we demonstrate a centroid model for range‐wide analysis of distribution shifts using the North American Breeding Bird Survey. The centroid model is based on a hierarchical Bayesian framework which models population change within physiographic strata while accounting for several factors affecting species detectability. Yearly abundance‐weighted range centroids are estimated. As case studies, we derive annual centroids for the Carolina wren and house finch in their ranges in the U.S. We further evaluate the first‐difference correlation between species’ centroid movement and changes in winter severity, total population abundance. We also examined associations of change in centroids from sub‐ranges. Change in full‐range centroid movements of Carolina wren significantly correlate with snow cover days (r = ?0.58). For both species, the full‐range centroid shifts also have strong correlation with total abundance (r = 0.65, and 0.51 respectively). The movements of the full‐range centroids of the two species are correlated strongly (up to r = 0.76) with that of the sub‐ranges with more drastic population changes. Our study demonstrates the usefulness of centroids for analyzing distribution changes in a two‐dimensional spatial context. Particularly it highlights applications that associate the centroid with factors such as environmental stressors, population characteristics, and progression of invasive species. Routine monitoring of changes in centroid will provide useful insights into long‐term avian responses to environmental changes.  相似文献   

11.
Global climate change can cause pronounced changes in species? migratory behaviour. Numerous recent studies have demonstrated climate‐driven changes in migration distance and spring arrival date in waterbirds, but detailed studies based on long‐term records of individual recapture or re‐sighting events are scarce. Using re‐sighting data from 430 marked individuals spanning a 60‐year period (winters 1956/1957 to 2015/2016), we assessed patterns in migration distance and spring arrival date, wintering‐site fidelity and survival in the increasing central European breeding population of Greylag Geese Anser anser. We demonstrate a long‐term decrease in migration distance, changes in the wintering range caused by winter partial short‐stopping, and the earlier arrival of geese on their breeding grounds. Greylag Geese marked on central Europe moulting grounds have not been recorded wintering in Spain since 1986 or in Tunisia and Algeria since 2004. The migration distance and spring arrival of geese indicated an effect of temperature at the breeding site and values of the NAO index. Greylag Geese migrate shorter distances and arrive earlier in milder winters. We suggest that shifts in the migratory behaviour of Central European Greylag Geese are individual temperature‐dependent decisions to take advantage of wintering grounds becoming more favourable closer to their breeding grounds, allowing birds to acquire breeding territories earlier.  相似文献   

12.
Sea ducks exhibit complex movement patterns throughout their annual cycle; most species use distinct molting and staging sites during migration and disjunct breeding and wintering sites. Although research on black scoters (Melanitta americana) has investigated movements and habitat selection during winter, little is known about their annual-cycle movements. We used satellite telemetry to identify individual variation in migratory routes and breeding areas for black scoters wintering along the Atlantic Coast, to assess migratory connectivity among wintering, staging, breeding, and molt sites, and to examine effects of breeding site attendance on movement patterns and phenology. Black scoters occupied wintering areas from Canadian Maritime provinces to the southeastern United States. Males used an average of 2.5 distinct winter areas compared to 1.1 areas for females, and within-winter movements averaged 1,256 km/individual. Individuals used an average of 2.1 staging sites during the 45-day pre-breeding migration period, and almost all were detected in the Gulf of St. Lawrence. Males spent less time at breeding sites and departed them earlier than females. During post-breeding migration, females took approximately 25 fewer days than males to migrate from breeding sites to molt and staging sites, and then wintering areas. Most individuals used molt sites in James and Hudson bays before migrating directly to coastal wintering sites, which took approximately 11 days and covered 1,524 km. Males tended to arrive at wintering areas 10 days earlier than females. Individuals wintering near one another did not breed closer together than expected by chance, suggesting weak spatial structuring of the Atlantic population. Females exhibited greater fidelity (4.5 km) to previously used breeding sites compared to males (60 km). A substantial number of birds bred west of Hudson Bay in the Barrenlands, suggesting this area is used more widely than believed previously. Hudson and James bays provided key habitat for black scoters that winter along the Atlantic Coast, with most individuals residing for >30% of their annual cycle in these bays. Relative to other species of sea duck along the Atlantic Coast, the Atlantic population of black scoter is more dispersed and mobile during winter but is more concentrated during migration. These results could have implications for future survey efforts designed to assess population trends of black scoters. © 2021 The Wildlife Society.  相似文献   

13.
Waterbird species have different requirements with respect to their non‐breeding areas, aiming to survive and gain condition during the non‐breeding period. Selection of non‐breeding areas could change over time and space driven by climate change and species habitat requirements. To help explain the mechanism shaping non‐breeding area selection, we provide site‐specific analyses of distributional changes in wintering waterbirds in central Europe, located at the centre of their flyways. We use wintering waterbirds as a highly dynamic model group monitored over a long‐time scale of 50 years (1966–2015). We identified species habitat requirements and changes in habitat use at the level of 733 individual non‐breeding (specifically wintering) sites for 12 waterbird species using citizen‐science monitoring data. We calculated site‐specific mean numbers and estimated site‐specific trends in numbers. The site‐specific approach revealed a general effect of mean winter temperature of site (seven of 12 species), wetland type (all species) and land cover (all species) on site‐specific numbers. We found increasing site‐specific trends in numbers in the northern and/or eastern part of the study area (Mute Swan Cygnus olor, Eurasian Teal Anas crecca, Common Pochard Aythya ferina, Great Cormorant Phalacrocorax carbo and Eurasian Coot Fulica atra). Common Merganser Mergus merganser, Great Cormorant, Grey Heron Ardea cinerea, Common Pochard, Eurasian Coot and Common Moorhen Galinulla chloropus increased their site‐specific numbers on standing industrial waters with traditionally low fish stock. The site‐specific dynamics of bird numbers helped us to identify general preference for sites reducing winter harshness (warmer areas, running waters and more wetlands in the site vicinity), as well as indicating climate‐driven changes in spatial use of wintering sites (northern/north‐eastern range changes and changes in preference for industrial waters). This fine‐scale (site‐specific) approach can reveal large‐scale range and distribution shifts driven by climate and environmental changes regardless of the availability of large‐scale datasets.  相似文献   

14.
Once nearly extirpated, the Eastern Population (EP) of Greater Sandhill Cranes (Grus canadensis tabida) has increased in number and expanded its range in breeding and wintering areas. Data from Christmas Bird Counts (CBCs) and Breeding Bird Surveys (BBSs) were used to delineate changes in the wintering and breeding area distributions during the period from 1966 to 2013. Crane densities were plotted to the centroid of CBC circles or BBS routes, and the Geographic Mean Centers (GMCs) for wintering and breeding populations were calculated. The number of Greater Sandhill Cranes detected during the breeding season has steadily increased since 1966, with just six birds observed in 1966 and 1046 observed in 2013. The GMC of the Sandhill Crane breeding population has remained in Wisconsin during the 47‐yr time frame. The total number of Sandhill Cranes counted in the eastern United States during CBCs grew from 423 in 1965–1966 to 46,194 in 2012–2013, with a peak number of 55,826 in 2011–2012. The GMC of wintering Greater Sandhill Cranes was located in Florida during the periods from 1966 to 1977 and 1978 to 1989, but shifted north‐northwest by nearly 4° of latitude (into Georgia) by 1990–2001. By 2002–2013, the GMC had shifted an additional degree north as well as almost a degree west in longitude. Greater Sandhill Cranes in the EP may continue to winter further north and remain in more northerly areas later in the fall before migrating further south. Factors such as annual weather, long‐term climate change, and changes in land use may influence future population trends and changes in both the breeding and wintering ranges of the EP of Sandhill Cranes.  相似文献   

15.
Rapid global climate change is resulting in novel abiotic and biotic conditions and interactions. Identifying management strategies that maximize probability of long‐term persistence requires an understanding of the vulnerability of species to environmental changes. We sought to quantify the vulnerability of Kirtland's Warbler (Setophaga kirtlandii), a rare Neotropical migratory songbird that breeds almost exclusively in the Lower Peninsula of Michigan and winters in the Bahamian Archipelago, to projected environmental changes on the breeding and wintering grounds. We developed a population‐level simulation model that incorporates the influence of annual environmental conditions on the breeding and wintering grounds, and parameterized the model using empirical relationships. We simulated independent and additive effects of reduced breeding grounds habitat quantity and quality, and wintering grounds habitat quality, on population viability. Our results indicated the Kirtland's Warbler population is stable under current environmental and management conditions. Reduced breeding grounds habitat quantity resulted in reductions of the stable population size, but did not cause extinction under the scenarios we examined. In contrast, projected large reductions in wintering grounds precipitation caused the population to decline, with risk of extinction magnified when breeding habitat quantity or quality also decreased. Our study indicates that probability of long‐term persistence for Kirtland's Warbler will depend on climate change impacts to wintering grounds habitat quality and contributes to the growing literature documenting the importance of considering the full annual cycle for understanding population dynamics of migratory species.  相似文献   

16.
Long‐distance migration in birds is relatively well studied in nature; however, one aspect of this phenomenon that remains poorly understood is the pattern of distribution presented by species during arrival to and establishment of wintering areas. Some studies suggest that the selection of areas in winter is somehow determined by climate, given its influence on both the distribution of bird species and their resources. We analyzed whether different migrant passerine species of North America present climatic preferences during arrival to and departure from their wintering areas. We used ecological niche modeling to generate monthly potential climatic distributions for 13 migratory bird species during the winter season by combining the locations recorded per month with four environmental layers. We calculated monthly coefficients of climate variation and then compared two GLM (generalized linear models), evaluated with the AIC (Akaike information criterion), to describe how these coefficients varied over the course of the season, as a measure of the patterns of establishment in the wintering areas. For 11 species, the sites show nonlinear patterns of variation in climatic preferences, with low coefficients of variation at the beginning and end of the season and higher values found in the intermediate months. The remaining two species analyzed showed a different climatic pattern of selective establishment of wintering areas, probably due to taxonomic discrepancy, which would affect their modeled winter distribution. Patterns of establishment of wintering areas in the species showed a climatic preference at the macroscale, suggesting that individuals of several species actively select wintering areas that meet specific climatic conditions. This probably gives them an advantage over the winter and during the return to breeding areas. As these areas become full of migrants, alternative suboptimal sites are occupied. Nonrandom winter area selection may also have consequences for the conservation of migratory bird species, particularly under a scenario of climate change.  相似文献   

17.
Climate change and anthropogenic nitrogen deposition are widely regarded as important drivers of environmental change in alpine habitats. However, due to the difficulties working in high‐elevation mountain systems, the impacts of these drivers on alpine breeding species have rarely been investigated. The Eurasian dotterel (Charadrius morinellus) is a migratory wader, which has been the subject of uniquely long‐term and spatially widespread monitoring effort in Scotland, where it breeds in alpine areas in dwindling numbers. Here we analyse data sets spanning three decades, to investigate whether key potential drivers of environmental change in Scottish mountains (snow lie, elevated summer temperatures and nitrogen deposition) have contributed to the population decline of dotterel. We also consider the role of rainfall on the species' wintering grounds in North Africa. We found that dotterel declines—in both density and site occupancy of breeding males—primarily occurred on low and intermediate elevation sites. High‐elevation sites mostly continued to be occupied, but males occurred at lower densities in years following snow‐rich winters, suggesting that high‐elevation snow cover displaced dotterel to lower sites. Wintering ground rainfall was positively associated with densities of breeding males two springs later. Dotterel densities were reduced at low and intermediate sites where nitrogen deposition was greatest, but not at high‐elevation sites. While climatic factors explained variation in breeding density between years, they did not seem to explain the species' uphill retreat and decline. We cannot rule out the possibility that dotterel have increasingly settled on higher sites previously unavailable due to extensive snow cover, while changes associated with nitrogen deposition may also have rendered lower lying sites less suitable for breeding. Causes of population and range changes in mountain‐breeding species are thus liable to be complex, involving multiple anthropogenic drivers of environmental change acting widely across annual and migratory life cycles.  相似文献   

18.
Density‐dependent regulation is an important process in spatio‐temporal population dynamics because it can alter the effects of synchronizing processes operating over large spatial scales. Most frequently, populations are regulated by density dependence when higher density leads to reduced individual fitness and population growth, but inverse density dependence can also occur when small populations are subject to higher extinction risks. We investigate whether density‐dependent regulation influences population growth for the Antarctic breeding Adélie penguin Pygoscelis adeliae. Understanding the prevalence and nature of density dependence for this species is important because it is considered a sentinel species reflecting the impacts of fisheries and environmental change over large spatial scales in the Southern Ocean, but the presence of density dependence could introduce uncertainty in this role. Using data on population growth and indices of resource availability for seven regional Adélie penguin populations located along the East Antarctic coastline, we find compelling evidence that population growth is constrained at some locations by the amount of breeding habitat available to individuals. Locations with low breeding habitat availability had reduced population growth rates, higher overall occupancy rates, and higher occupancy of steeper slopes that are sparsely occupied or avoided at other locations. Our results are consistent with evolutionary models of avian breeding habitat selection where individuals search for high‐quality nest sites to maximize fitness returns and subsequently occupy poorer habitat as population density increases. Alternate explanations invoking competition for food were not supported by the available evidence, but strong conclusions on food‐related density dependence were constrained by the paucity of food availability data over the large spatial scales of this region. Our study highlights the importance of incorporating nonconstant conditions of species–environment relationships into predictive models of species distributions and population dynamics, and provides guidance for improved monitoring of fisheries and climate change impacts in the Southern Ocean.  相似文献   

19.
We tracked eight adult northern lapwings Vanellus vanellus (six females and two males) from a Dutch breeding colony by light‐level geolocation year‐round, three of them for multiple years. We show that birds breeding virtually next to each other may choose widely separated wintering grounds, stretching from nearby the colony west towards the UK and Ireland, and southwest through France into Iberia and Morocco. However, individual lapwings appeared relatively faithful to a chosen wintering area, and timing of outward and homeward migration can be highly consistent between years. Movements of migratory individuals were usually direct and fast, with some birds covering distances of approximately 2000 km within 2 to 4 days of travel. The two males wintered closest and returned earliest to the breeding colony. The female lapwings returned well before the onset of breeding, spending a pre‐laying period of 19 to 54 days in the wider breeding area. Despite the potential for high migration speeds, the duration that birds were absent from the breeding area increased with distance to wintering areas, a pattern which was mainly driven by an earlier outward migration of birds heading for more distant wintering grounds. Moreover, females that overwintered closer to colony bred earlier. A large variation in migration strategies found even within a single breeding colony has likely supported the species’ responsiveness to recent climate change as evidenced by a shortened migration distance and an advanced timing of reproduction in Dutch lapwings since the middle of the 20th century.  相似文献   

20.
Population limitation in migrants   总被引:16,自引:8,他引:8  
Ian Newton 《Ibis》2004,146(2):197-226
Unlike resident bird species, the population sizes of migratory species can be influenced by conditions in more than one part of the world. Changes in the numbers of migrant birds, either long‐term or year‐to‐year, may be caused by changes in conditions in the breeding or wintering areas or both. The strongest driver of numerical change is provided in whichever area the per capita effects of adverse factors on survival or fecundity are greatest. Examples are given of some species whose numbers have changed in association with conditions in breeding areas, and of others whose numbers have changed in association with conditions in wintering areas. In a few such species, the effects of potential limiting factors have been confirmed locally by experiment. In theory, population sizes might also be limited by severe competition at restricted stopover sites, where bird densities are often high and food supplies heavily depleted, but (with one striking exception) the evidence is as yet no more than suggestive. In some species, habitats occupied in wintering and migration areas, and their associated food supplies, can influence the body condition, migration dates and subsequent breeding success of migrants. Body reserves accumulated in spring by large waterfowl serve for migration and for subsequent breeding, and females with the largest reserves are most likely to produce young. Hence, the conditions experienced by individuals in winter in one region can affect their subsequent breeding success in another region. Such effects are apparent at the level of the individual and at the level of the population. Similarly, the numbers of young produced in one region could, through density‐dependent processes, affect subsequent overall mortality in another region. Events in breeding, migration and wintering areas are thus interlinked in their effects on bird numbers. Although in the last 30–40 years the numbers of some tropical wintering birds have declined in western Europe and others in eastern North America, the causes seem to differ. In Europe, declines have mainly involved species that winter in the arid savannas of tropical Africa, which have suffered from the effects of drought and increasing desertification. In several species, annual fluctuations in numbers and adult survival rates were correlated with annual fluctuations in rainfall, and by implication in winter food supplies. In North America, by contrast, numerical declines have affected many species that breed and winter in forest, especially those eastern species favouring the forest interior. Declines have been attributed ultimately to human‐induced changes in the breeding range, particularly forest fragmentation, which have led to increases in the densities of nest predators and parasitic cowbirds. These in turn are thought to have caused declines in the breeding success of some neotropical migrants, which is now too low to offset the usual adult mortality, but as yet convincing evidence is available for only a minority of species. The breeding rates and population changes of some migratory species have been influenced by natural changes in the availability of defoliating caterpillars. In other species, tropical deforestation is likely to have played the major role in population decline, and if recent rates of tropical deforestation continue, it is likely to affect an increasing range of migratory species in the future. Not all such species are likely to be affected adversely by deforestation, however, and some may benefit from the resulting habitat changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号