首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Choosing a suitable mating partner is crucial for the fitness of an individual, whereby mating with siblings often results in inbreeding depression. We studied consequences of mating with siblings versus nonsiblings in the mustard leaf beetle, Phaedon cochleariae (Coleoptera: Chrysomelidae), on lifetime reproductive traits. Furthermore, we analyzed whether cuticular hydrocarbon (CHC) profiles are family specific and could potentially influence the mating behavior of young adults. We hypothesized a reduced reproductive success of females mated with siblings and a more rapid mating of males with nonsiblings. The hatching rate from eggs of sibling pairs was lower compared to that of nonsibling pairs, pointing to inbreeding depression. Furthermore, the number of eggs laid by females decreased over time in both sibling and nonsibling pairs. Interestingly, the CHC profiles and the body mass differed between families. However, the beetles did not avoid siblings and accepted them as readily as nonsiblings for mating in no‐choice tests. In summary, although it had negative consequences to mate a sibling and although siblings could potentially be recognized by their CHC profiles, the beetles did not show a delayed mating with siblings. Our results indicate that P. cochleariae beetles have not developed a precopulatory mechanism to avoid inbreeding, at least under the test conditions applied here. We predict that instead a polyandrous mating system and/or postcopulatory mechanisms might have evolved in this species by which inbreeding costs can be reduced.  相似文献   

2.
Polyandry facilitates postcopulatory inbreeding avoidance in house mice   总被引:2,自引:0,他引:2  
The avoidance of genetic incompatibilities between parental genotypes has been proposed to account for the evolution of polyandry. An extension of this hypothesis suggests polyandry may provide an opportunity for females to avoid the cost of inbreeding by exploiting postcopulatory mechanisms that bias paternity toward unrelated male genotypes. Here we test the inbreeding avoidance hypothesis in house mice by experimentally manipulating genetic compatibility via matings between siblings and nonsiblings. We observed little difference in reproductive success between females mated to two siblings or females mated to two nonsiblings. Females mated to both a sibling and a nonsibling tended to have a lower litter survival, but only when the first male to mate was a sibling. Microsatellite data revealed that paternity was biased toward nonsiblings when a female mated with both a sibling and a nonsibling. Unlike previous studies of invertebrates, paternity bias toward the sibling male was independent of mating sequence. We provide one of the first empirical demonstrations that polyandry facilitates postcopulatory sexual selection in a vertebrate. We discuss this result in relation to the possibility of selective fertilization of ova based on major histocompatibility complex (MHC) haploid expression of sperm.  相似文献   

3.
Multiple mating is thought to provide an opportunity for females to avoid the costs of genetic incompatibility by postcopulatory selection of compatible sperm haplotypes. Few studies have tested the genetic incompatibility hypothesis directly. Here we experimentally manipulated the compatibility of females with their mates using the gryllid cricket Teleogryllus oceanicus. We recorded the hatching success of eggs laid by females mated with two nonsibling males, two siblings, or one nonsibling male and one sibling. In contrast with two previous studies on crickets that have adopted this approach, the hatching success of eggs did not differ between females mated with two full siblings and females mated with two unrelated males, indicating that embryo viability was not a cost of inbreeding in this species. We assigned paternity to offspring produced by females mated to both a sibling and a nonsibling male using microsatellite markers. As in previous studies of this species, we were unable to detect any difference in the proportion of offspring sired by the 1st and the 2nd male to mate with a female when females were unrelated to their mates. However, in our experimental matings the proportion of offspring sired by the nonsibling male depended on his sequence position. Paternity was biased toward the nonsibling male when he mated first. Our data show that molecular analyses of paternity are essential to detect subtle mechanisms of postcopulatory sexual selection.  相似文献   

4.
Inbreeding is known to have adverse effects on fitness-related traits in a range of insect species. A series of theoretical and experimental studies have suggested that polyandrous insects could avoid the cost of inbreeding via pre-copulatory mate choice and/or post-copulatory mechanisms. We looked for evidence of pre-copulatory inbreeding avoidance using female mate preference trials, in which females were given the choice of mating with either of two males, a sibling and a non-sibling. We also tested for evidence of post-copulatory inbreeding avoidance by conducting double mating experiments, in which four sibling females were mated with two males sequentially, either two siblings, two non-siblings or a sibling and a non-sibling in either order. We identified substantial inbreeding depression: offspring of females mated to full siblings had lower hatching success, slower development time from egg to adult, lower survival of larval and pupal stages, and lower adult body mass than the offspring of females mated to non-sibling males. We also found evidence of pre-copulatory inbreeding avoidance, as females preferred to mate with non-sibling males. However, we did not find any evidence of post-copulatory inbreeding avoidance: egg hatching success of females mating to both sibling and non-sibling males were consistent with sperm being used without bias in relation to mate relatedness. Our results suggest that this cabbage beetle has evolved a pre-copulatory mechanism to avoid matings between close relative, but that polyandry is apparently not an inbreeding avoidance mechanism in C. bowringi.  相似文献   

5.
Several studies suggest that polyandrous females bias paternity in favor of unrelated males to avoid inbreeding depression. Here we tested whether the migratory locust biases sperm usage toward unrelated males by analyzing the paternity of offspring from females mated with either two siblings, or two nonsiblings, or a sibling and a nonsibling in either order. We found that the eggs of females mated only with siblings had decreased hatching success. When females mated with both a nonsibling and a sibling, egg hatchability was significantly increased. Subsequent paternity analyses found no evidence that females could avoid fertilization by sibling males. Therefore, improvement of the hatchability of eggs sired by siblings suggests that rather than biased fertilization by females toward genetically compatible or superior males, male-induced maternal effects or direct effects of male ejaculates might influence the survival of offspring sired by related males.  相似文献   

6.
In many species, the negative fitness effects of inbreeding have facilitated the evolution of a wide range of inbreeding avoidance mechanisms. Although avoidance mechanisms operating prior to mating are well documented, evidence for postcopulatory mechanisms of inbreeding avoidance remain scarce. Here, we examine the potential for paternity biases to favour unrelated males when their sperm compete for fertilizations though postcopulatory inbreeding avoidance mechanisms in the guppy, Poecilia reticulata. To test this possibility, we used a series of artificial inseminations to deliver an equal number of sperm from a related (either full sibling or half sibling) and unrelated male to a female while statistically controlling for differences in sperm quality between rival ejaculates. In this way, we were able to focus exclusively on postcopulatory mechanisms of inbreeding avoidance and account for differences in sperm competitiveness between rival males. Under these carefully controlled conditions, we report a significant bias in paternity towards unrelated males, although this effect was only apparent when the related male was a full sibling. We also show that sperm competition generally favours males with highly viable sperm and thus that some variance in sperm competitiveness can be attributed to difference in sperm quality. Our findings for postcopulatory inbreeding avoidance are consistent with prior work on guppies, revealing that sperm competition success declines linearly with the level of relatedness, but also that such effects are only apparent at relatedness levels of full siblings or higher. These findings reveal that postcopulatory processes alone can facilitate inbreeding avoidance.  相似文献   

7.
Inbreeding depression, the reduction in fitness due to mating of related individuals, is of particular conservation concern in species with small, isolated populations. Although inbreeding depression is widespread in natural populations, long‐lived species may be buffered from its effects during population declines due to long generation times and thus are less likely to have evolved mechanisms of inbreeding avoidance than species with shorter generation times. However, empirical evidence of the consequences of inbreeding in threatened, long‐lived species is limited. In this study, we leverage a well‐studied population of gopher tortoises, Gopherus polyphemus, to examine the role of inbreeding depression and the potential for behavioural inbreeding avoidance in a natural population of a long‐lived species. We tested the hypothesis that increased parental inbreeding leads to reduced hatching rates and offspring quality. Additionally, we tested for evidence of inbreeding avoidance. We found that high parental relatedness results in offspring with lower quality and that high parental relatedness is correlated with reduced hatching success. However, we found that hatching success and offspring quality increase with maternal inbreeding, likely due to highly inbred females mating with more distantly related males. We did not find evidence for inbreeding avoidance in males and outbred females, suggesting sex‐specific evolutionary trade‐offs may have driven the evolution of mating behaviour. Our results demonstrate inbreeding depression in a long‐lived species and that the evolution of inbreeding avoidance is shaped by multiple selective forces.  相似文献   

8.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

9.
We investigate the effect of offspring and maternal inbreeding on maternal and offspring traits associated with early offspring fitness in the burying beetle Nicrophorus vespilloides. We conducted two experiments. In the first experiment, we manipulated maternal inbreeding only (keeping offspring outbred) by generating mothers that were outbred, moderately inbred or highly inbred. Meanwhile, in the second experiment, we manipulated offspring inbreeding only (keeping females outbred) by generating offspring that were outbred, moderately inbred or highly inbred. In both experiments, we monitored subsequent effects on breeding success (number of larvae), maternal traits (clutch size, delay until laying, laying skew, laying spread and egg size) and offspring traits (hatching success, larval survival, duration of larval development and average larval mass). Maternal inbreeding reduced breeding success, and this effect was mediated through lower hatching success and greater larval mortality. Furthermore, inbred mothers produced clutches where egg laying was less skewed towards the early part of laying than outbred females. This reduction in the skew in egg laying is beneficial for larval survival, suggesting that inbred females adjusted their laying patterns facultatively, thereby partially compensating for the detrimental effects of maternal inbreeding on offspring. Finally, we found evidence of a nonlinear effect of offspring inbreeding coefficient on number of larvae dispersing. Offspring inbreeding affected larval survival and larval development time but also unexpectedly affected maternal traits (clutch size and delay until laying), suggesting that females adjust clutch size and the delay until laying in response to being related to their mate.  相似文献   

10.
In sexual reproduction the genetic similarity or dissimilarity between mates strongly affects offspring fitness. When mating partners are too closely related, increased homozygosity generally causes inbreeding depression, whereas crossing between too distantly related individuals may disrupt local adaptations or coadaptations within the genome and result in outbreeding depression. The optimal degree of inbreeding or outbreeding depends on population structure. A long history of inbreeding is expected to reduce inbreeding depression due to purging of deleterious alleles, and to promote outbreeding depression because of increased genetic variation between lineages. Ambrosia beetles (Xyleborini) are bark beetles with haplodiploid sex determination, strong local mate competition due to regular sibling mating within the natal chamber, and heavily biased sex ratios. We experimentally mated females of Xylosandrus germanus to brothers and unrelated males and measured offspring fitness. Inbred matings did not produce offspring with reduced fitness in any of the examined life-history traits. In contrast, outcrossed offspring suffered from reduced hatching rates. Reduction in inbreeding depression is usually attributed to purging of deleterious alleles, and the absence of inbreeding depression in X. germanus may represent the highest degree of purging of all examined species so far. Outbreeding depression within the same population has previously only been reported from plants. The causes and consequences of our findings are discussed with respect to mating strategies, sex ratios, and speciation in this unusual system.  相似文献   

11.
When females mate with multiple males, they set the stage for postcopulatory sexual selection via sperm competition and/or cryptic female choice. Surprisingly little is known about the rates of multiple mating by females in the wild, despite the importance of this information in understanding the potential for postcopulatory sexual selection to drive the evolution of reproductive behaviour, morphology and physiology. Dung beetles in the genus Onthophagus have become a laboratory model for studying pre‐ and postcopulatory sexual selection, yet we still lack information about the reproductive behaviour of female dung beetles in natural populations. Here, we develop microsatellite markers for Onthophagus taurus and use them to genotype the offspring of wild‐caught females and to estimate natural rates of multiple mating and patterns of sperm utilization. We found that O. taurus females are highly polyandrous: 88% of females produced clutches sired by at least two males, and 5% produced clutches with as many as five sires. Several females (23%) produced clutches with significant paternity skew, indicating the potential for strong postcopulatory sexual selection in natural populations. There were also strong positive correlations between the number of offspring produced and both number of fathers and paternity skew, which suggests that females benefit from mating polyandrously by inciting postcopulatory mechanisms that bias paternity towards males that can sire more viable offspring. This study evaluates the fitness consequences of polyandry for an insect in the wild and provides strong evidence that female dung beetles benefit from multiple mating under natural conditions.  相似文献   

12.
Nicrophorusvespilloides is a social beetle that rears its offspring on decomposing carrion. Wild beetles are frequently associated with two types of macrobial symbionts, mites, and nematodes. Although these organisms are believed to be phoretic commensals that harmlessly use beetles as a means of transfer between carcasses, the role of these symbionts on N. vespilloides fitness is poorly understood. Here, we show that nematodes have significant negative effects on beetle fitness across a range of worm densities and also quantify the density‐dependent transmission of worms between mating individuals and from parents to offspring. Using field‐caught beetles, we provide the first report of a new nematode symbiont in N. vespilloides, most closely related to Rhabditoides regina, and show that worm densities are highly variable across individuals isolated from nature but do not differ between males and females. Next, by inoculating mating females with increasing densities of nematodes, we show that worm infections significantly reduce brood size, larval survival, and larval mass, and also eliminate the trade‐off between brood size and larval mass. Finally, we show that nematodes are efficiently transmitted between mating individuals and from mothers to larvae, directly and indirectly via the carcass, and that worms persist through pupation. These results show that the phoretic nematode R. regina can be highly parasitic to burying beetles but can nevertheless persist because of efficient mechanisms of intersexual and intergenerational transmission. Phoretic species are exceptionally common and may cause significant harm to their hosts, even though they rely on these larger species for transmission to new resources. However, this harm may be inevitable and unavoidable if transmission of phoretic symbionts requires nematode proliferation. It will be important to determine the generality of our results for other phoretic associates of animals. It will equally be important to assess the fitness effects of phoretic species under changing resource conditions and in the field where diverse interspecific interactions may exacerbate or reduce the negative effects of phoresy.  相似文献   

13.
It has been documented that social isolation imparts deleterious effects on gregarious rodents species,but caging in group imparts such effects on solitary rodents. This study was attempted at examining how kinship to affect body weight,behavioral interaction,mate choice and fitness when we caged male and female rat-like hamsters Tscheskia triton in pair,a solitary species. We found that females paired with nonsibling males became heavier than the females paired with sibling males,but both agonistic and amicable behavior between paired males and females did not differ between sibling and nonsibling groups. This indicated that kinship might reduce females' obesity in response to forced cohabitation,and dissociation might exist between physiological and behavioral responses. Furthermore,binary choice tests revealed that social familiarity between either siblings or nonsiblings decreased their investigating time spent in opposite sex conspecific of cage mates and/or their scents as compared with those of nonmates,suggesting effects of social association on mate and kin selection of the hamsters. On the other side,both females and males caged in pair with siblings show a preference between unfamiliar siblings or their scents and the counterparts of nonsiblings after two month separation,indicating that the kin recognition of the hamsters might also rely on phenotype matching. In addition,cohabitation (or permanent presence of fathers) elicited a lower survival of pups in nonsibling pairs than sibling pairs,but did not affect litter size,suggesting that kinship affects fitness when housing male and female ratlike hamsters together. Therefore,inbreeding might be adapted for rare and endangered animals.  相似文献   

14.
Kin associations increase the potential for inbreeding. The potential for inbreeding does not, however, make inbreeding inevitable. Numerous factors influence whether inbreeding preference, avoidance, or tolerance evolves, and, in hermaphrodites where both self‐fertilization and biparental inbreeding are possible, it remains particularly difficult to predict how selection acts on the overall inbreeding strategy, and to distinguish the type of inbreeding when making inferences from genetic markers. Therefore, we undertook an empirical analysis on an understudied type of mating system (spermcast mating in the marine bryozoan, Bugula neritina) that provides numerous opportunities for inbreeding preference, avoidance, and tolerance. We created experimental crosses, containing three generations from two populations to estimate how parental reproductive success varies across parental relatedness, ranging from self, siblings, and nonsiblings from within the same population. We found that the production of viable selfed offspring was extremely rare (only one colony produced three selfed offspring) and biparental inbreeding more common. Paternity analysis using 16 microsatellite markers confirmed outcrossing. The production of juveniles was lower for sib mating compared with nonsib mating. We found little evidence for consistent inbreeding, in terms of nonrandom mating, in adult samples collected from three populations, using multiple population genetic inferences. Our results suggest several testable hypotheses that potentially explain the overall mating and dispersal strategy in this species, including early inbreeding depression, inbreeding avoidance through cryptic mate choice, and differential dispersal distances of sperm and larvae.  相似文献   

15.
Female multiple mating (polyandry) is widespread across Insecta, even if mating can be costly to females. To explain the evolution and maintenance of polyandry, several hypotheses, mainly focusing on the material (direct) and/or the genetic (indirect) benefits, have been proposed and empirically tested in many species. Considering only the direct benefits, repeatedly‐mated females are expected to exhibit the same fitness as multiply‐mated females under the same mating frequency. In the present study, we compare the fitness of females received monandrous repeated mating (MM) and polyandrous multiple mating (PM) in a polyandrous leaf beetle Galerucella birmanica and assess female mate preference with regard to polyandry or monandry. Our data indicate that the longevity and the egg‐laying duration of MM females are significantly longer than that of PM females. MM females produce significantly more hatched eggs than PM females over their lifetime under the same mating frequency, which results from the high hatching rate of eggs produced by MM females. PM females mated with novel virgin males in the second mating suffer decreased longevity and lifetime fecundity compared with PM females mated with novel mated males in the second mating. Once‐mated females are more likely to re‐mate with familiar males than novel males. By contrast to expectations, the results of the present study suggest that repeated mating provides females with more direct benefits than multiple mating in G. birmanica, and females prefer to re‐mate with familiar males. The possible causes of this finding are discussed.  相似文献   

16.
Little is known about how inbreeding alters selection on ecologically relevant traits. Inbreeding could affect selection by changing the distribution of traits and/or fitness, or by changing the causal effect of traits on fitness. Here, I test whether selection on egg size varies with the degree of inbreeding in the seed‐feeding beetle, Stator limbatus. There was strong directional selection favoring large eggs for both inbred and outbred beetles; offspring from smaller eggs had lower survivorship on a resistant host. Inbreeding treatment had no effect on the magnitude of selection on egg size; all selection coefficients were between ~0.078 and 0.096, regardless of treatment. However, inbreeding depression declined with egg size; this is because the difference in fitness between inbreds and outbreds did not change, but average fitness increased, with egg size. A consequence of this is that populations that differ in mean egg size should experience different magnitudes of inbreeding depression (all else being equal) and thus should differ in the magnitude of selection on traits that affect mating, simply as a consequence of variation in egg size. Also, maternal traits (such as egg size) that mediate stressfulness of the environment for offspring can mediate the severity of inbreeding depression.  相似文献   

17.
For males of many species, the number of offspring sired can depend on the number of females mated. While pre- and postcopulatory choice by females can affect the outcome of potential mate encounters, mate location is a necessary prerequisite to any possible courtship and subsequent mating. Mate location of Chrysophtharta agricola in the field was examined using sticky traps baited with sexually receptive conspecific beetles. More beetles were caught on traps baited with conspecific beetles of either sex than on control traps that contained foliage only. Furthermore, 94% of beetles captured on control traps were males, indicating that the mating system of Chrysophtharta agricola can be labeled prolonged searching scramble competition polyandry, in which receptive females are evenly dispersed spatially and temporally, and males search competitively for them. Operational sex ratios were 1:1 throughout the season. By sampling paired and unpaired beetles in the field, we found that beetles generally did not select mates based on body size. Furthermore, neither sex mated preferentially with partners that were uninfected by parasitic mites or with beetles of the same generation. In the absence of postcopulatory female choice, the ability of males to locate females may therefore be the most important trait in determining male mating success.  相似文献   

18.
Inbreeding depression is the reduction in fitness caused by mating between related individuals. Inbreeding is expected to cause a reduction in offspring fitness when the offspring themselves are inbred, but outbred individuals may also suffer a reduction in fitness when they depend on care from inbred parents. At present, little is known about the significance of such intergenerational effects of inbreeding. Here, we report two experiments on the burying beetle Nicrophorus vespilloides, an insect with elaborate parental care, in which we investigated inbreeding depression in offspring when either the offspring themselves or their parents were inbred. We found substantial inbreeding depression when offspring were inbred, including reductions in hatching success of inbred eggs and survival of inbred offspring. We also found substantial inbreeding depression when parents were inbred, including reductions in hatching success of eggs produced by inbred parents and survival of outbred offspring that received care from inbred parents. Our results suggest that intergenerational effects of inbreeding can have substantial fitness costs to offspring, and that future studies need to incorporate such costs to obtain accurate estimates of inbreeding depression.  相似文献   

19.
In species with direct sperm transfer, copulation duration is a crucial trait that may affect male and female reproductive success and that may vary with the quality of the mating partner. Furthermore, traits such as copulation duration represent the outcome of behavioral interactions between the sexes, for which it is important—but often difficult—to determine which sex is in phenotypic control. Using a double‐mating protocol, we compared copulation durations between (1) virgin and nonvirgin and (2) sibling and nonsibling mating pairs in rufous grasshoppers Gomphocerippus rufus. Nonvirgin copulations took on average approximately 30% longer than virgin copulations, whereas relatedness of mating partners was not a significant predictor of copulation duration. Longer nonvirgin copulations may represent a male adaptation to sperm competition if longer copulations allow more sperm to be transferred or function as postinsemination mate guarding. The absence of differences between pairs with different degrees of relatedness suggests no precopulatory or preinsemination inbreeding avoidance mechanism has evolved in this species, perhaps because there is no inbreeding depression in this species, or because inbreeding avoidance occurs after copulation. Controlling for the effects of male and female mating status (virgin vs. nonvirgin) and relatedness (sibling vs. nonsibling), we found significant repeatabilities (R) in copulation duration for males (R = 0.33; 95% CI: 0.09–0.55) but not for females (R = 0.09; 95% CI: 0.00–0.30). Thus, copulation durations of males more strongly represent a nontransient trait expressed in a consistent manner with different mating partners, suggesting that some aspect of the male phenotype may determine copulation duration in this species. However, overlapping confidence intervals for our sex‐specific repeatability estimates indicate that higher sampling effort is required for conclusive evidence.  相似文献   

20.
Selection by inbreeding depression should favour mating biases that reduce the risk of fertilization by related mates. However, equivocal evidence for inbreeding avoidance questions the strength of inbreeding depression as a selective force in the evolution of mating biases. Lack of inbreeding avoidance can be because of low risk of inbreeding, variation in tolerance to inbreeding or high costs of outbreeding. We examined the relationship between inbreeding depression and inbreeding avoidance adaptations under two levels of inbreeding in the spider Oedothorax apicatus, asking whether preference for unrelated sperm via pre- and/or post-copulatory mechanisms could restore female fitness when inbreeding depression increases. Using inbred isofemale lines we provided female spiders with one or two male spiders of different relatedness in five combinations: one male sib; one male nonsib; two male sibs; two male nonsibs; one male sib and one male nonsib. We assessed the effect of mating treatment on fecundity and hatching success of eggs after one and three generations of inbreeding. Inbreeding depression in F1 was not sufficient to detect inbreeding avoidance. In F3, inbreeding depression caused a major decline in fecundity and hatching rates of eggs. This effect was mitigated by complete recovery in fecundity in the sib-nonsib treatment, whereas no rescue effect was detected in the hatching success of eggs. The rescue effect is best explained by post-mating discrimination against kin via differential allocation of resources. The natural history of O. apicatus suggests that the costs of outbreeding may be low which combined with high costs of inbreeding should select for avoidance mechanisms. Direct benefits of post-mating inbreeding avoidance and possibly low costs of female multiple mating can favour polyandry as an inbreeding avoidance mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号