共查询到20条相似文献,搜索用时 15 毫秒
1.
K Takegawa A Kondo H Iwamoto K Fujiwara Y Hosokawa I Kato K Hiromi S Iwahara 《Biochemistry international》1991,25(1):181-190
The primary structure of the N-linked sugar chains of glucose oxidase from Aspergillus niger was investigated. These sugar chains were released from the polypeptide backbone by hydrazinolysis, and the reducing ends of the sugar chains were pyridylaminated. HPLC of the pyridylamino sugar chains with an amide-silica column showed at least seven sugar chain peaks. Chemical and exoglycosidase digestion and 400 lMHz H-NMR studies of the sugar chains of lower molecular weight showed that these were novel oligomannose-type sugar chains, (Man)5-7 (GlcNAc)2, with the structure: +/- Man alpha 1----3Man alpha 1----3(Man alpha 1----6)Man alpha 1----6(+/- Man alpha 1----3Man alpha 1---3)Man )Man beta 1----4GlcNAc beta 1----4GlcNAc. 相似文献
2.
Two novel phosphoenolpyruvate carboxylase (PEPC) isoforms have been biochemically characterized from endosperm of developing castor oil seeds (COS). The association of a 107 kDa PEPC subunit (p107) with an immunologically unrelated bacterial PEPC-type 64 kDa polypeptide leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. COS p107 is quite susceptible to limited proteolysis during PEPC purification. An endogenous asparaginyl endopeptidase appears to catalyze the in vitro cleavage of an approximately 120 amino acid polypeptide from the N-terminal end of p107, producing a truncated 98 kDa polypeptide (p98). Immunoblotting was used to estimate proteolytic activity by following the disappearance of p107 and concomitant appearance of p98 during incubation of clarified COS extracts at 4 degrees C. The in vitro proteolysis of p107 to p98 only occurred in the combined presence of 2 mM dithiothreitol and high salt concentrations (particularly SO(4) (2-) and PO(4) (2-) salts). Although p107-degrading activity was present throughout COS development, it was most pronounced in endosperm extracts from older beans. Several protease inhibitors, including two commercially available protease inhibitor cocktails, were tested for their ability to prevent p107 proteolysis. All of the inhibitors were ineffective except for 2,2'-dipyridyl disulfide (DPDS), a relatively inexpensive and underutilized active site inhibitor of plant thiol proteases. Asparaginyl endopeptidase activity of COS extracts was unaffected by 20% (NH(4))(2)SO(4) when determined in the presence or absence of 2 mM dithiothreitol using a spectrophotometric assay based upon the hydrolysis of benzoyl-L-Asn-p-nitroanilide. Thus, we propose that the combined presence of 2 mM dithiothreitol and 20% (NH(4))(2)SO(4) promotes a p107 conformational change that exposes the N-terminal region asparaginyl residue where p107 hydrolysis is believed to occur. 相似文献
3.
Fluorescence labeling was used in the analysis of partial acetolysis products of oligomannose-type sugar chains with five to nine mannose residues. The principle of the method was the pyridylamination of fragments obtained by the partial acetolysis of pyridylamino sugar chains and the identification of the fragments with an HPLC apparatus equipped with a fluorescence spectrophotometer. The method was tested by analysis of eight oligomannose-type sugar chains with known chemical structures and was found to be effective for analysis of branching structures with samples of 0.5 nmol. 相似文献
4.
Purification and characterization of an alpha-1,2-mannosidase involved in processing asparagine-linked oligosaccharides 总被引:3,自引:0,他引:3
A calcium-dependent alpha-1,2-mannosidase involved in the processing of asparagine-linked oligosaccharides was purified to homogeneity from rabbit liver microsomes. N-terminal amino acid analysis was consistent with the presence of a homogeneous protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, under both reducing and nonreducing conditions, revealed a single protein band with an apparent molecular weight of 52,000. Gel filtration and sedimentation analysis under nondenaturing conditions suggested that the purified enzyme is a monomeric protein. The mannosidase is a glycoprotein based on the presence of protein-linked sugar and specific binding of the enzyme to concanavalin A-Sepharose. Purified mannosidase was optimally active between pH 5.0 and 6.0. The enzyme was inactive with p-nitrophenyl-alpha-D-mannopyranoside and was inhibited by deoxymannojirimycin but not by swainsonine. The enzyme was specifically activated by Ca2+, with half-maximal activation occurring at concentrations of 10 microM or less and was inhibited by Mn2+, Co2+, Ba2+, and Zn2+. Calcium ions protected the enzyme against inactivation by p-chloromercuribenzoate. Rabbit liver mannosidase hydrolyzed alpha-1,2-mannosyl-mannose linkages in a variety of substrates including methyl-2-O-alpha-D-mannopyranosyl-alpha-D-mannopyranoside (Schutzbach, J. S. (1987) Anal. Biochem. 167, 279-283), ovalbumin glycopeptide IV, and the high mannose chains of thyroglobulin and phytohemagglutinin-P. Approximately 70% of the alpha-1,2-linked mannosyl units in the oligosaccharides of thyroglobulin were accessible to rabbit liver alpha-mannosidase, whereas most of the alpha-1,2-mannosyl units in phytohemagglutinin were resistant to digestion prior to heat denaturation of the plant lectin. 相似文献
5.
Methiocarb, an aromatic-alkyl sulfide insecticide was enzymatically oxidized into its sulfoxide by microsomes from soybean cotyledons. No further oxidation into sulfone was detected. Distribution of the sulfoxidase activity was studied in soybean seedlings and found maximal in cotyledons. Subcellular fractionation of cotyledons homogenates indicated that the activity was almost entirely associated with the microsomal fraction. Sulfoxidation of methiocarb did not require cofactors such as NAD(P)H. Nevertheless, the sulfoxidase did not act as a peroxidase. 相似文献
6.
Purification of leucoplast pyruvate kinase from developing castor bean endosperm 总被引:1,自引:2,他引:1 下载免费PDF全文
Leucoplast pyruvate kinase from endosperm of developing castor oil seeds (Ricinus communis L.; cv Baker) has been purified 1370-fold to a specific activity of 41.1 micromoles pyruvate produced per minute per milligram protein. Nondenaturing polyacrylamide gel electrophoresis of the purified enzyme resulted in a single protein staining band that co-migrated with pyruvate kinase activity. However, following sodium dodecyl sulfate polyacrylamide electrophoresis, two major protein staining bands of 57.5 and 44 kilodaltons, which occurred in an approximate 2:1 ratio, respectively, were observed. The native molecular mass was approximately 305 kilodaltons. Rabbit antiserum raised against the final enzyme preparation effectively immunoprecipitated leucoplast pyruvate kinase. The 57.5- and 44-kilodalton polypeptides are immunologically related as both proteins cross-reacted strongly on Western blots probed with the rabbit anti-(developing castor seed endosperm leucoplast pyruvate kinase) immunoglobulin that had been affinity-purified against the 57.5-kilodalton polypeptide. In contrast, pyruvate kinases from the following sources showed no immunological cross-reactivity with the same immunoglobulin: the cytosolic enzyme from developing or germinating castor bean endosperm; chloroplastic pyruvate kinase from expanding leaves of the castor oil plant; chloroplastic or cytosolic pyruvate kinase from the green alga, Selenastrum minutum; and mammalian or bacterial pyruvate kinases. 相似文献
7.
Yamada Mitsuhiro; Tanaka Toshinori; Kader J. C.; Mazliak Paul 《Plant & cell physiology》1978,19(1):173-176
14C-labeled microsomes were prepared by feeding [1-14 C]acetateto endosperm tissues from 4-day-old seedlings of castor beanseeds and incubated with unlabeled mitochondria from the sametissues. The loss of 14C-lipids from the microsomes was accompaniedby an increase of 14C-lipids in the mitochondria. The additionof 105,000?g supernatant and also pH 5.1-treated supernatant,both of which had been prepared from castor bean endospermsat the same stage, markedly enhanced the lipid transfer frommicrosomes to mitochondria. The activity in this fraction wasprecipitated by ammonium sulfate and lost with trypsin or heattreatment. The transfer of lipids was limited to phospholipids.Thus, it is concluded that in castor bean endosperms, phospholipidsare transferred from the endoplasmic reticulum to the mitochondriaby a phospholipid-exchange protein contained in the cytosol. (Received August 8, 1977; ) 相似文献
8.
Y Kimura Y Nakagawa T Tokuda M Yamai S Nakajima E Higashide S Takagi 《Bioscience, biotechnology, and biochemistry》1992,56(2):215-222
The structures of sugar chains of the glycoproteins from the microsomal fraction of developing castor bean endosperms have been analyzed. The structural analyses were done by a fluorescence method combined with component analysis, exoglycosidase digestions, partial acetolysis, Smith degradation, and 1H-NMR spectroscopy. The estimated structures fell into three categories; the first was oligomannose-type, the second xylomannose-type, the third complex-type. Among these oligosaccharides, Man3Fuc1Xyl1GlcNAc2 (M3FX) and Man6GlcNAc2 (M6B) were the major structures. The structures of Man4GlcNAc2 (M4C) and Man4Xyl1GlcNAc2 (M4X) have also been found in the microsomal glycoproteins of the developing bean endosperms. These results could indicate that the structures of M4C, M4X, and M3FX are formed in the stage of sugar chain processing in the microsomal fraction, in which oligomannose-type sugar chains are modified into complex-type ones by several kinds of processing enzymes. 相似文献
9.
Proplastids from developing castor bean (Ricinus communis) endosperm have a pyruvate kinase activity which is extremely unstable on isolation from the organelle. It can be stabilized by 20 mm 2-mercaptoethanol in 20% ethylene glycol. In contrast the soluble pyruvate kinase is stable at 60 C for 10 minutes. The two activities have different pH optima. The soluble and the proplastid activities are eluted from a diethylaminoethyl-Sephadex A-25 sievorptive column at different ionic strengths. 相似文献
10.
Characterization of microsomal and cytosolic alpha-1,2-mannosidases from mung bean hypocotyls 总被引:1,自引:0,他引:1
W T Forsee 《Archives of biochemistry and biophysics》1985,242(1):48-57
Microsomal and cytosolic alpha-mannosidase activities, which hydrolyze alpha-1,2-mannosyl-mannose linkages in the Man5GlcNAc2 oligosaccharide, have been isolated from homogenates of mung bean hypocotyls. The alpha-1,2-mannosidase activities were readily distinguished from previously described aryl alpha-mannosidases by several criteria. They were optimally active in the presence of Ca2+ between pH 5.5 and 6, they were inhibited by Zn2+, and they had essentially no activity with p-nitrophenyl-alpha-mannoside. The microsomal and cytosolic alpha-1,2-mannosidases demonstrated specificity for oligosaccharides with terminal nonreducing alpha-1,2-mannosyl linkages, and they were inhibited by mannosyl-mannose disaccharides, with the inhibition decreasing in the order of alpha-1,2-greater than alpha-1,3-greater than alpha-1,6-mannosyl-mannose. The cytosolic alpha-1,2-mannosidase activity, which was present in the 100,000 g supernatant, was separated from the aryl alpha-mannosidase by ammonium sulfate precipitation. The microsomal alpha-1,2-mannosidase, which was tightly associated with the particulate fraction, was solubilized with Triton X-100 and 0.2 M KCl. The two alpha-1,2-mannosidase activities were readily differentiated by gel-filtration chromatography. The solubilized microsomal enzyme chromatographed in approximately the same position as a Mr 460,000 globular protein whereas the cytosolic enzyme was eluted in a retarded position, indicating a much smaller protein. 相似文献
11.
Characterization and kinetics of isoenzymes of pyruvate kinase from developing castor bean endosperm 总被引:1,自引:6,他引:1 下载免费PDF全文
Isozymes of pyruvate kinase (PK) have been isolated from developing castor bean endosperm. One isozyme, PKc, is localized in the cytosol, and the other, PKp, is in the plastid. Both isozymes need monovalent and divalent cations for activity, requirements which can be filled by K+ and Mg2+. Both isozymes are inhibited by citrate, pyruvate, and ATP. PKc has a much broader pH profile than PKp and is also more stable. Both have the same Km (0.05 millimolar) for PEP, but PKp has a 10-fold higher Km (0.3 millimolar) for ADP than PKc (0.03 millimolar). PKc also has a higher affinity for alternate nucleotide substrates than PKp. The two isozymes have different kinetic mechanisms. Both have an ordered sequential mechanism and bind phosphoenolpyruvate before ADP. However, the plastid isozyme releases ATP first, whereas pyruvate is the first product released from the cytosolic enzyme. The properties of the two isozymes are similar to those of their counterparts in green tissue. 相似文献
12.
A particulate preparation from developing cotyledons of Phaseolus vulgaris L. was incubated with uridine-5-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc; [6-3H]glucosamine), and by polyacrylamide gel electrophoretic analysis it was shown that the labeled (N-acetyl)glucosamine (GlcNAc) was incorporated into the principal reserve protein of the cotyledons, vicilin, and also into phytohemagglutinin. Some of the labeled product also reacted with antiserum to vicilin from mature seeds. In contrast it was not possible to detect the incorporation of labeled mannose from guanosine-5-diphospho-D-mannose (GDP-mannose; [U-14C]mannose) into either of these proteins by gel-electrophoretic analysis of the mannose-labeled products, but we did observe a low incorporation of mannose into material which reacted with antiserum to vicillin. The predominant glycosylation reaction in vitro was therefore probably a transfer of GlcNAc alone, rather than in combination with mannose as preformed oligosaccharide.Abbreviations GlcNAc
N-acetyl-D-glucosamine
- GDP
guanosine 5-diphospho
- IEF
isoelectric focusing
- PHA
phytohemagglutinin
- SDS
sodium dodecylsulfate
- UDP
uridine-5-diphospho 相似文献
13.
F Van Petegem H Contreras R Contreras J Van Beeumen 《Journal of molecular biology》2001,312(1):157-165
The process of N-glycosylation of eukaryotic proteins involves a range of host enzymes that delete or add saccharide monomers. While endoplasmic reticulum (E.R.) mannosidases cleave only one mannose to produce the Man8B isomer, an alpha-1,2-mannosidase from Trichoderma reesei can sequentially cleave all four 1,2-linked mannose sugars from a Man(9)GlcNAc(2) oligosaccharide, a feature reminiscent of the activity of Golgi mannosidases. We now report the structure of the T. reesei enzyme at 2.37 A resolution. The enzyme folds as an (alpha alpha)(7) barrel. The substrate-binding site of the T. reesei mannosidase differs appreciably from the Saccharomyces cerevisiae enzyme. In the former, shorter loops at the surface allow substrate protein to come closer to the catalytic site. There is more internal space available, so that different oligosaccharide conformations are sterically allowed in the T. reesei alpha-1,2-mannosidase. 相似文献
14.
Transport of purine and pyrimidine bases and nucleosides from endosperm to cotyledons in germinating castor bean seedlings 总被引:1,自引:3,他引:1 下载免费PDF全文
During germination and early growth of castor bean (Ricinus communis), all cellular constituents of the endosperm are eventually transferred to the growing embryo. The present results bear on the transport of breakdown products of nucleic acids. The total content of nucleic acids and nucleotides declines rapidly between day 4 and day 8 of seedling development. Concomitant with this decline, a secretion of adenosine, guanosine, and adenine from excised endosperms into the incubation medium takes place, accompanying a much more extensive release of sucrose and amino acids. Release of nucleotides could not be detected. The rates of release were linear for at least 5 hours for all compounds measured, indicating that they were liberated due to a coordinated metabolism. Uptake studies with cotyledons removed from the seedling showed that these have the ability to absorb all the substances released from the endosperm. Besides sucrose and amino acids, both nucleosides and free purine and pyrimidine bases were taken up by the cotyledons with high efficiency. AMP was also transported whereas ATP was not. Kinetic analyses were carried out to estimate the maximal uptake capacities of the cotyledons. Rates of uptake were linear for at least 1 to 2 hours and saturation kinetics were observed for all substances investigated. It is concluded that nucleosides can serve best as transport metabolites of nucleic acids, inasmuch as they are taken up by the cotyledons with the highest efficiency, the Vmax/Km ratios being considerably higher than those found for free purine and pyrimidine bases. For both adenosine and adenine transport, the Vmax was about 2 micromoles per hour per gram fresh weight, and the Km values were 0.12 and 0.37 millimolar, respectively. The rates of metabolite release from the endosperm and the capacity of the absorption system in the cotyledons are shown to account for the observed rates of disappearance of nucleic acids from the endosperm and efficient transport to the growing embryo. 相似文献
15.
Sarbini SR Kolida S Naeye T Einerhand A Brison Y Remaud-Simeon M Monsan P Gibson GR Rastall RA 《Applied and environmental microbiology》2011,77(15):5307-5315
The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length. 相似文献
16.
Ten oligomannose-type sugar chains (ManGlcNAc2-Man5GlcNAc2) were prepared from various glycoproteins and fluorescence labeled with 2-aminopyridine. The fluorescent pyridylamino (PA)-sugar chains were first separated into five fractions according to their molecular sizes by HPLC on a TSK gel Amide-80 column. Each fraction was then separated into the component PA-sugar chains by reversed-phase HPLC on a Capcell Pak C18 column according to their chemical structures. The method is useful for studying the substrate specificities of alpha-mannosidases with Man5GlcNAc2-PA as a substrate. 相似文献
17.
Purification and partial characterization of an aminopeptidase from mung bean cotyledons 总被引:1,自引:0,他引:1
An aminopeptidase (EC 3.4.11.-) was purified to homogeneity, as judged by SDS-PAGE. from mung bean ( Vigna radiata ) cotyledons. The molecular mass of this peptidase was estimated as 75 kDa by gel filtration. When an oligopeptide consisting of 5 amino acid residues was used as substrate, amino acids were released in the order of the N-terminal sequence of the oligopeptide chain. This enzyme apparently requires free sulfhydryl for its activity, as judged by the effects of various proteinase inhibitors. Among aminoacyl- p -nitroanilides examined for the availability as substrates of the enzyme, p -nitroanilides with hydrophobic amino acids were preferred substrates. According to western immunoblot profiles, the enzyme level in cotyledons was high at the early stage of imbibition and declined rapidly after germination. 相似文献
18.
T R Green D T Dennis C A West 《Biochemical and biophysical research communications》1975,64(3):976-982
Isopentenyl pyrophosphate isomerase and prenyl transferase are present in the proplastid and mitochondrial fractions of developing castor bean endosperm. Three forms of prenyl transferase have also been separated in extracts of germinating seeds. One of these enzymes, farnesyl transferase, is present in the proplastid. The precise subcellular locations of the other two, geranyl transferases I and II, have not yet been determined. These results are consistent with the proposal that enzyme segregation plays an important role in governing the flow of carbon in isoprenoid pathways. 相似文献
19.
Kyungchul Han 《In vitro cellular & developmental biology. Plant》1994,30(2):108-112
Summary An efficient and reproducible protocol has been developed for in vitro shoot regeneration from cotyledonary explants derived
by germinating immature ovules ofImpatiens platypetala Lindl. ‘TR6-27-2’. Cotyledonary explants were cultured on a modified Murashige and Skoog (MS) agar-solidified
medium containing 7.5g · liter−1 sucrose, 22.2µ M N6-benzyladenine (BA), and 0.54µM α-naphthaleneacetic acid (NAA). The induction of organogenic tissues occurred after 6 to 8 wk in culture. Exogenous auxin and
cytokinin were essential for the induction of organogenic tissues and survival of explants, and BA was most effective for
the induction of organogenic tissues, compared with other cytokinins tested. The addition of glutamine (500 mg · liter−1) was also important for growth of organogenic tissues after induction and for reducing explant death during culture. The
induction of organogenic tissue was also influenced by the type of cotyledon cultured and the age of the donor seedlings.
On average, eight shoots per explant were induced from organogenic tissues larger than 0.5 cm in diameter 6 to 8 wk after
transfer to a modified MS agar-solidified medium without NAA and BA reduced to 4.44µM. Shoots longer than 0.5 cm in length were successfully rooted 2 to 4 wk after transfer to a basal MS medium containing 30g · liter−1 sucrose. 相似文献
20.
Microsomal preparations from developing linseed (Linum usitatissimum L.) cotyledons catalyzed i) acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine, ii) acylation of sn-glycerol 3-phosphate to yield phosphatidic acid, and iii) the utilisation of phosphatidic acid in the production of diacylglycerol and triacylglycerol. Selectivity studies for C18 acyl species of acyl-CoA indicated a bias for the channelling of oleate to phosphatidylcholine for, presumably, its desaturation, and the utilisation of the polyunsaturated fatty-acid products in the acyl-CoA pool for phosphatidic acid and subsequent triacylglycerol synthesis. The microsomal preparations were capable of returning glycerol backbone with associated acyl components to phosphatidylcholine from diacylglycerol where it may be further enriched with polyunsaturated C18 acids by desaturation. The acyl quality in linolenate-rich oilseeds appears to be under similar control to that found in linoleate-rich species.
Present address: To whom the correspondence should be addressed 相似文献