首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ontogenetic evidence for the Paleozoic ancestry of salamanders   总被引:2,自引:0,他引:2  
The phylogenetic positions of frogs, salamanders, and caecilians have been difficult to establish. Data matrices based primarily on Paleozoic taxa support a monophyletic origin of all Lissamphibia but have resulted in widely divergent hypotheses of the nature of their common ancestor. Analysis that concentrates on the character states of the stem taxa of the extant orders, in contrast, suggests a polyphyletic origin from divergent Paleozoic clades. Comparison of patterns of larval development in Paleozoic and modern amphibians provides a means to test previous phylogenies based primarily on adult characteristics. This proves to be highly informative in the case of the origin of salamanders. Putative ancestors of salamanders are recognized from the Permo-Carboniferous boundary of Germany on the basis of ontogenetic changes observed in fossil remains of larval growth series. The entire developmental sequence from hatching to metamorphosis is revealed in an assemblage of over 600 specimens from a single locality, all belonging to the genus Apateon. Apateon forms the most speciose genus of the neotenic temnospondyl family Branchiosauridae. The sequence of ossification of individual bones and the changing configuration of the skull closely parallel those observed in the development of primitive living salamanders. These fossils provide a model of how derived features of the salamander skull may have evolved in the context of feeding specializations that appeared in early larval stages of members of the Branchiosauridae. Larvae of Apateon share many unique derived characters with salamanders of the families Hynobiidae, Salamandridae, and Ambystomatidae, which have not been recognized in any other group of Paleozoic amphibians.  相似文献   

2.
The skull and jaw musculature as guides to the ancestry of salamanders   总被引:4,自引:0,他引:4  
The fossil record provides no evidence supporting a unique common ancestry for frogs, salamanders and apodans. The ancestors of the modern orders may have diverged from one another as recently as 250 million years ago, or as long ago as 400 million years according to current theories of various authors. In order to evaluate the evolutionary patterns of the modern orders it is necessary to determine whether their last common ancestor was a rhipidistian fish, a very primitive amphibian, a labyrimhodom or a ‘lissamphibian’. The broad cranial similarities of frogs and salamanders, especially the dominance of the braincase as a supporting element, can be associated with the small size of the skull in their immediate ancestors. Hynobiids show the most primitive cranial pattern known among the living salamander families and “provide a model for determining the nature of the ancestors of the entire order. Features expected in ancestral salamanders include: (1) Emargination of the cheek; (2) Movable suspensorium formed by the quadrate, squamosal and pterygoid; (3) Occipital condyle posterior to jaw articulation; (4) Distinct prootic and opisthotic; (5) Absence ol otic notch; (6) Stapes forming a structural link between braincase and cheek. In the otic region, cheek and jaw suspension, the primitive salamander pattern (resembles most closely the microsaurs among known Paleozoic amphibians, and shows no significant features in common with either ancestral frogs or the majority of labyrinth odonts. The basic pattern of the adductor jaw musculature is consistent within both frogs and salamanders, but major differences are evident between the two groups. The dominance of the adductor mandibulae externus in salamanders can be associated with the open cheek in all members of that order, and the small size of this muscle in frogs can be associated with the large otic notch. The spread of different muscles over the otic capsule, the longus head ol the adductor mandibulae posterior in frogs and the superficial head of the adductor mandibulae internus in salamanders, indicates that fenestration of the skull posterodorsal to the orbit occurred separately in the ancestors of the two groups. Reconstruction of the probable pattern of the jaw musculature in Paleozoic amphibians indicates that frogs and salamanders might have evolved from a condition hypothesized for primitive labyrinthodonts, but the presence of a large otic notch in dissorophids suggests specialization toward the anuran, not the urodele condition. The presence of either an einarginated cheek or an embayment of the lateral surface of the dentary and the absence of an otic notch in microsaurs indicate a salamander-like distribution of die adductor jaw muscles. The ancestors of frogs and salamanders probably diverged from one another in the early Carboniferous, Frogs later evolved from small labyrinthodonts and salamanders from microsaurs. Features considered typical of lissamphibians evolved separately in the two groups in the late Permian andTriassic.  相似文献   

3.
Microsaurs are Paleozoic lepospondylous Amphibia with slenderbodies and weak limbs. Their solidly roofed skulls lack oticnotches, have large supratemporals widely separating the squamosalfrom parietal, and double occipital condyles. The stapes consistsof a large footplate and extremely short columella. Vertebraelack intercentra. Originally based on a reptile, Hylonomus lyelli,by Dawson in 1863, the Order Microsauria has long been restrictedto these small amphibians (Romer, 1950). Repeated confusionbetween primitive captorhinomorph reptiles and microsaurs steinsfrom superficial similarities between both skulls and vertebrae.This confusion and occasional microsaur-like vertebrae in earlyCarboniferous deposits have led to suggestions that microsaursare reptilian ancestors (cf. Vaughn, 1962). Captorhinomorphs differ from microsaurs in their small supratemporalbone, single occipital condyle, stapes with long columella reachinga pit in the quadrate and bearing a dorsal process, and dorsalintercentra. Captorhinomorph ancestors were probably not labyrinthodonts,as Vaughn (1960) has pointed out, but they could not have hadthe characteristic specializations of microsaurs. Their sourcemust be sought in forms much closer to crossopterygian fish. Microsaurs resemble both urodeles and gymnophionans in theirdouble occipital joint and otic region. They differ from Lissamphibiain the absence of a non-calcified zone in the teeth. At present,no criteria indicate decisively which structures developed convergently.Microsaurs are possibly but not demonstrably related to theancestry of modern salamanders and caecilians.  相似文献   

4.
The evolutionary relationships of the three orders of living amphibians (lissamphibians) has been difficult to resolve, partly because of their specialized morphologies. Traditionally, frogs and salamanders are considered to be closest relatives, and all three orders are thought to have arisen in the Paleozoic (>250 myr). Here, we present evidence from the DNA sequences of four mitochondrial genes (2.7 kilobases) that challenges the conventional hypothesis and supports a salamander–caecilian relationship. This, in light of the fossil record and distribution of the families, suggests a more recent (Mesozoic) origin for salamanders and caecilians directly linked to the initial breakup of the supercontinent Pangaea. We propose that this single geologic event isolated salamanders and archaeobatrachian frogs on the northern continents (Laurasia) and the caecilians and neobatrachian frogs on the southern continents (Gondwana). Among the neobatrachian frog families, molecular evidence supports a South American clade and an African clade, inferred here to be the result of mid-Cretaceous vicariance.  相似文献   

5.
Live‐bearing has evolved in all three orders of amphibians—frogs, salamanders, and caecilians. Developing young may be either yolk dependent, or maternal nutrients may be supplied after yolk is resorbed, depending on the species. Among frogs, embryos in two distantly related lineages develop in the skin of the maternal parents' backs; they are born either as advanced larvae or fully metamorphosed froglets, depending on the species. In other frogs, and in salamanders and caecilians, viviparity is intraoviductal; one lineage of salamanders includes species that are yolk dependent and born either as larvae or metamorphs, or that practice cannibalism and are born as metamorphs. Live‐bearing caecilians all, so far as is known, exhaust yolk before hatching and mothers provide nutrients during the rest of the relatively long gestation period. The developing young that have maternal nutrition have a number of heterochronic changes, such as precocious development of the feeding apparatus and the gut. Furthermore, several of the fetal adaptations, such as a specialized dentition and a prolonged metamorphosis, are homoplasious and present in members of two or all three of the amphibian orders. At the same time, we know little about the developmental and functional bases for fetal adaptations, and less about the factors that drive their evolution and facilitate their maintenance. J. Morphol. 276:941–960, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
The amniotes generally lay eggs on land and are thereby differentiated from lissamphibians (salamanders, frogs and caecilians) by their developmental pattern. Although a number of 330-300-Myr old fossils are regarded as early tetrapods placed close to amniotes on the basis of anatomical data, we still do not know whether their developmental pattern was more similar to those of lissamphibians or amniotes. Here we report palaeohistological and skeletochronological evidence supporting a salamander-like development in the seymouriamorph Discosauriscus. Its long-bone growth pattern, slow diaphyseal growth rate and delayed sexual maturity (at more than 10 years old) are more comparable with growth features of extant salamanders rather than extant amniotes, even though they are mostly hypothesized to be phylogenetically closer to living amniotes than salamanders.  相似文献   

7.
The majority of reported pathologies in lissamphibians (salamanders, caecilians and frogs) include limb deformities such as missing limbs, multiple extra limbs and digits, or incomplete limb formation. However, comparatively little is known about congenital vertebral malformations or posttraumatic pathologies (e.g. injuries, infections) in the vertebral column of salamanders. In the present study, we describe eight vertebral deformities in three cleared and stained specimens of Desmognathus fuscus. Two specimens display developmental deformities which range from a potential non-segmented wedge vertebra to fully segmented hemivertebrae. The vertebral pathology in the third specimens possibly results from a parasitic infection. Apparently, these osseous deformities were not severe enough to prohibit survival of the specimens.  相似文献   

8.
The ontogenetic development of caudal vertebrae and associated skeletal elements of salmonids provides information about sequence of ossification and origin of bones that can be considered as a model for other teleosts. The ossification of elements forming the caudal skeleton follows the same sequence, independent of size and age at first appearance. Dermal bones like principal caudal rays ossify earlier than chondral bones; among dermal bones, the middle principal caudal rays ossify before the ventral and dorsal ones. Among chondral bones, the ventral hypural 1 and parhypural ossify first, followed by hypural 2 and by the ventral spine of preural centrum 2. The ossification of the dorsal chondral elements starts later than that of ventral ones. Three elements participate in the formation of a caudal vertebra: paired basidorsal and basiventral arcocentra, chordacentrum, and autocentrum; appearance of cartilaginous arcocentra precedes that of the mineralized basiventral chordacentrum, and that of the perichordal ossification of the autocentrum. Each ural centrum is mainly formed by arcocentral and chordacentrum. The autocentrum is irregularly present or absent. Some ural centra are formed only by a chordacentrum. This pattern of vertebral formation characterizes basal teleosts and primitive extant teleosts such as elopomorphs, osteoglossomorphs, and salmonids. The diural caudal skeleton is redefined as having two independent ural chordacentra plus their arcocentra, or two ural chordacentra plus their autocentra and arococentra, or only two ural chordacentra. A polyural caudal skeleton is identified by more than two ural centra, variably formed as given for the diural condition. The two ural centra of primitive teleosts may result from early fusion of ural centra 1 and 2 and of ural centra 3 and 4, or 3, 4, and 5 (e.g., elopomorphs), respectively. The two centra may corespond to ural centrum 2 and 4 only (e.g., salmonids). Additionally, ural centra 1 and 3 may be lost during the evolution of teleosts. Additional ural centra form late in ontogeny in advanced salmonids, resulting in a secondary polyural caudal skeleton. The hypural, which is a haemal spine of a ural centrum, results by growth and ossification of a single basiventral ural arococentrum and its haemal spine. The proximal part of the hypural always includes part of the ventral ural arcocentrum. The uroneural is a modification of a ural neural arch, which is demonstrated by a cartilaginous precursor. The stegural of salmonids and esocids originates from only one paired cartilaginous dorsal arcocentrum that grows anteriorly by a perichondral basal ossification and an anterodorsal membranous ossification. The true epurals of teleosts are detached neural spines of preural and ural neural arches as shown by developmental series; they are homologous to the neural spines of anterior vertebrae. Free epurals without any indication of connection with the dorsal arococentra are considered herein as an advanced state of the epural. Caudal distal radials originate from the cartilaginous distal portion of neural and haemal spines of preural and ural (epurals and hypurals) vertebrae. Therefore, they result from distal growth of the cartilaginous spines and hypurals. Cartilaginous plates that support rays are the result of modifications of the plates of connective tissue at the posterior end of hypurals (e.g., between hypurals 2 and 3 in salmonids) and first preural haemal spines, or from the distal growth of cartilaginous spines (e.g., epural plates in Thymallus). Among salmonids, conditions of the caudal skeleton such as the progressive loss of cartilaginous portions of the arcocentra, the progressive fusion between the perichondral ossification of arcocentra and autocentra, the broadening of the neural spines, the enlargement and interdigitation of the stegural, and other features provide evidence that Prosopium and Thymallus are the most primitive, and that Oncorhynchus and Salmo are the most advanced salmonids respectively. This interpretation supports the current hypothesis of phylogenetic relationships of salmonids. © 1992 Wiley-Liss, Inc.  相似文献   

9.
The origin and evolution of the vertebrate skull have been topics of intense study for more than two centuries. Whereas early theories of skull origin, such as the influential vertebral theory, have been largely refuted with respect to the anterior (pre‐otic) region of the skull, the posterior (post‐otic) region is known to be derived from the anteriormost paraxial segments, i.e. the somites. Here we review the morphology and development of the occiput in both living and extinct tetrapods, taking into account revised knowledge of skull development by augmenting historical accounts with recent data. When occipital composition is evaluated relative to its position along the neural axis, and specifically to the hypoglossal nerve complex, much of the apparent interspecific variation in the location of the skull–neck boundary stabilizes in a phylogenetically informative way. Based on this criterion, three distinct conditions are identified in (i) frogs, (ii) salamanders and caecilians, and (iii) amniotes. The position of the posteriormost occipital segment relative to the hypoglossal nerve is key to understanding the evolution of the posterior limit of the skull. By using cranial foramina as osteological proxies of the hypoglossal nerve, a survey of fossil taxa reveals the amniote condition to be present at the base of Tetrapoda. This result challenges traditional theories of cranial evolution, which posit translocation of the occiput to a more posterior location in amniotes relative to lissamphibians (frogs, salamanders, caecilians), and instead supports the largely overlooked hypothesis that the reduced occiput in lissamphibians is secondarily derived. Recent advances in our understanding of the genetic basis of axial patterning and its regulation in amniotes support the hypothesis that the lissamphibian occipital form may have arisen as the product of a homeotic shift in segment fate from an amniote‐like condition.  相似文献   

10.
11.
SUMMARY Ossification sequences of the skull in extant Urodela and in Permo‐Carboniferous Branchiosauridae have already been used to study the origin of lissamphibians. But most of these studies did not consider some recent methods developed to analyze the developmental sequences within a phylogenetic framework. Here, we analyze the ossification sequences of 24 cranial bones of 23 extant species of salamanders using the event‐pairing method. This reveals new developmental synapomorphies for several extant salamander taxa and ancestral sequences for Urodela under four alternative reference phylogenies. An analysis with the 12 bones for which ossification sequence data are available in urodeles and in the branchiosaurid Apateon is also performed in order to compare the ancestral condition of the crown‐group of Urodela to the sequence of Apateon. This reveals far more incompatibilities than previously suggested. The similarities observed between some extant salamanders and branchiosaurids may result from extensive homoplasy, as the extreme variation observed in extant Urodela suggests, or be plesiomorphic, as the conservation of some ossification patterns observed in other remotely related vertebrates like actinopterygians suggests. We propose a new, simpler method based on squared‐change optimization to estimate the relative timing of ossification of various bones of hypothetical ancestors, and use independent‐contrasts analysis to estimate the confidence intervals around these times. Our results show that the uncertainty of the ancestral ossification sequence of Urodela is much greater than event‐pairing suggests. The developmental data do not allow to conclude that branchiosaurids are closely related to salamanders and their limited taxonomic distribution in Paleozoic taxa precludes testing hypotheses about lissamphibian origins. This is true regardless of the analytical method used (event‐pairing or our new method based on squared‐change parsimony). Simulations show that the new analytical method is generally more powerful to detect evolutionary shifts in developmental timing, and has lower Type I error rate than event‐pairing. It also makes fewer errors in ancestral character value or state assignment than event‐pairing.  相似文献   

12.
The axial skeleton in most anuran families consists of or=7). Tadpoles from each genus are typically found in streams, where their extended caudal skeleton anchors muscles that facilitate tadpoles wiggling between plant debris and rocks or even burrowing into the stream bed. The extra centra of megophryids ossify differently in each genus. In Leptobrachella and Ophryophryne, the caudal centra ossify around the entire notochord, whereas in Megophrys and Xenophrys each develops from dorsal and ventral pairs of ossifications that expand to meet each other. The evolutionary loss of caudal centra, an apomorphic anuran trait, is reversed in larval megophryids and confirms that the machinery for caudal vertebral development has been retained in some modern anurans. A likely driving force in the reappearance of the trait in megophryids is the selective pressure associated with a riparian lifestyle.  相似文献   

13.
14.
Tectal development in a number of caecilian (Gymnophiona: Amphibia) species was examined and compared with that in frogs and salamanders. The caecilian optic tectum develops along the same rostrocaudal and lateromedial gradients as those of frogs and salamanders. However, differences exist in the time course of development. Our data suggest that, as in salamanders, simplification of morphological complexity in caecilians is due to a retardation or loss of late developmental stages. Differences in the time course of development (heterochrony) among different caecilian species are correlated with phylogenetic history as well as with variation in life histories. The most pronounced differences in development occur between the directly developing Hypogeophis rostratus and all other species examined. In this species, the increase in the degree of morphological complexity is greatly accelerated. J. Morphol. 236:233–246, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Zardoya R  Meyer A 《Genetics》2000,155(2):765-775
The complete nucleotide sequence (17,005 bp) of the mitochondrial genome of the caecilian Typhlonectes natans (Gymnophiona, Amphibia) was determined. This molecule is characterized by two distinctive genomic features: there are seven large 109-bp tandem repeats in the control region, and the sequence for the putative origin of replication of the L strand can potentially fold into two alternative secondary structures (one including part of the tRNA(Cys)). The new sequence data were used to assess the phylogenetic position of caecilians and to gain insights into the origin of living amphibians (frogs, salamanders, and caecilians). Phylogenetic analyses of two data sets-one combining protein-coding genes and the other combining tRNA genes-strongly supported a caecilian + frog clade and, hence, monophyly of modern amphibians. These two data sets could not further resolve relationships among the coelacanth, lungfishes, and tetrapods, but strongly supported diapsid affinities of turtles. Phylogenetic relationships among a larger set of species of frogs, salamanders, and caecilians were estimated with a mitochondrial rRNA data set. Maximum parsimony analysis of this latter data set also recovered monophyly of living amphibians and favored a frog + salamander (Batrachia) relationship. However, bootstrap support was only moderate at these nodes. This is likely due to an extensive among-site rate heterogeneity in the rRNA data set and the narrow window of time in which the three main groups of living amphibians were originated.  相似文献   

16.
Microsaurs as possible apodan ancestors   总被引:1,自引:0,他引:1  
The specific ancestry and nature of the relationships of modern amphibians have not yet been established. Detailed comparisons of the anatomy of the skull roof, palate and braincase of living apodans and the Paleozoic microsaur Goniorhynchus demonstrate greater similarities than between apodans and any other group of amphibians, fossil or recent. Unlike any other amphibians, extensive pleurosphenoid ossifications are developed in the area of the Vth nerve, uniting the otic capsule with the sphenethmoid. Other important features that they share (although not uniquely) include the presence of all the primitive dermal elements of the palate, a solidly roofed temporal region, a row of palatal teeth parallel to the marginal dentition and a row of teeth on the medial surface of the lower jaw. The stapes has a similar configuration and position, totally different from that of frogs and salamanders. Such similarities do not necessarily prove close relationship, but indicate the necessity for considering that apodans may have an ancestry distinct from that of frogs and salamanders.  相似文献   

17.
Variation in the trunk musculature of caecilians (Amphibia: Gymnophiona)   总被引:2,自引:0,他引:2  
Variation in the trunk musculature of 28 species of caecilians. representing 24 of the 33 genera and all five families. is summarized. All forms examined have the same muscles in similar positions. Existing variation largely conforms to the current classification of the group. and some variation may be attributable to different modes of locomotion. such as burrowing versus swimming. Caecilian trunk musculature is more similar to that of salamanders than to that of frogs. but the similarity is probably syrnplesiomorphous. Trunk musculature so far has provided no clues to lissamphibian relationships.  相似文献   

18.
Examination of the vertebral columns of representatives of all families of salamanders revealed that, in contrast to the condition found in most other vertebrates, salamander spinal nerves often pass through foramina in the vertebrae. Two kinds of spinal nerve foramina were found: those in the anterior halves of vertebrae, and those in the posterior halves. In addition, many salamanders retain intervertebral nerves. However, within each family or, in a few cases, subfamily there is a characteristic pattern of spinal nerve-vertebral relationships. The first spinal nerve of all salamanders exits through a foramen in the anterior half of the atlas. All more posterior nerves are intervertebral in the families Cryptobranchidae, Hynobiidae and Proteidae. The posterior caudal nerves exit through the posterior halves of the caudal vertebrae in the family Amphiumidae, while in the subfamilies Dicamptodontinae and Rhyacotritoninae all post-sacral nerves exit through the posterior halves of the vertebrae. All but the first three nerves exit through posterior foramina in the family Plethodontidae and the subfamily Ambystomatinae, while all but the first two nerves pass through posterior foramina in the families Salamandridae and Sirenidae. Several fossil salamanders were also examined. These showed that the amphiumid and dicamptodontine-rhyacotritonine nerve patterns had evolved by the Late Cretaceous, and the sirenid pattern had probably evolved by that time. Other Cretaceous genera associated with the Ambystomatoidea still possessed the primitive intervertebral pattern. Using spinal nerve patterns and several other previously described morphological characters, a new hypothesis of the phylogeny of recent and fossil salamanders is presented and compared to earlier proposed phylogenies of the group. A new classification of salamander families is presented.  相似文献   

19.
Titanosaurs were small- to giant-sized sauropods, highly derived and highly pneumatic. Using morphometric analyses, we studied differences in shape of the presacral vertebral centra in some of these sauropods, especially in saltasaurines, and compared asymmetry patterns in lateral pneumatic foramina (LPF) between these titanosaurs and avian and non-avian theropods. Geometric morphometric analyses showed that the cervical centra tend to be elongated and dorsoventrally short, with an elliptical LPF located in the middle of the centrum; dorsal centra tend to be short and higher than the cervical centra, with the LPF slightly displaced to the anterior region. Shape variation can be described as a result of the ordering of the vertebrae within both the cervical and dorsal sequences, and therefore these methods can be applied to predict the position of isolated vertebrae. A persistent pattern of asymmetry among LPF was observed when length–height indexes were plotted. The right LPF are usually larger than those on the left side in the cervical vertebrae (except in Saltasaurus loricatus) but variable in the dorsal vertebrae. We propose an explanation of this asymmetry based on the asymmetric arrangement of viscera and late development of the respiratory (and air sacs) system.  相似文献   

20.
The development of spinal cord supports (bony thickenings which extend into the vertebral canal of vertebrae) in primitive (Salamandrella keyserlingii) and derived (Lissotriton vulgaris) salamanders were described. The spinal cord supports develop as the protuberances of periostal bone of the neural arches in the anteroproximal part of the septal collagenous fibers which connect a transverse myoseptum with the notochord and spinal cord, in the septal bundle inside the vertebral canal. Spinal cord supports were also found in some teleostean (Salmo salar, Oncorhynchus mykiss) and dipnoan (Protopterus sp.) fishes. The absence of the spinal cord supports in vertebrates with cartilaginous vertebrae (lampreys, chondrichthyan, and chondrostean fishes) corresponds to the fact that the spinal cord supports are bone structures. The absence of the spinal cord supports in frogs correlates with the lack of the well developed septal bundles inside the vertebral canal. The spinal cord supports are, presumably, a synapomorphic character for salamanders which originated independently of those observed in teleostean and dipnoan fishes. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号