首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Recently, the cloning of a novel preprotachykinin gene (PPT-C) has been reported. This gene codes for a novel peptide named hemokinin 1 (HK-1). In contrast with the known tachykinins, which are exclusively expressed in neuronal tissues, PPT-C mRNA was detected primarily in hematopoietic cells. In this study, we pharmacologically characterised the effects of HK-1 using three tachykinin monoreceptor systems, namely the rabbit jugular vein (rbJV) for NK(1), the rabbit pulmonary artery (rbPA) for NK(2), and rat portal vein (rPV) for NK(3) receptors. In all these preparations substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) elicited concentration dependent contractions showing similar maximal effects and the following rank order of potency: SP > NKA = NKB in the rbJV, NKA > NKB > SP in the rbPA, and NKB > NKA > SP in the rPV. In those vessels HK-1 behaved as a full agonist displaying potencies similar (rbPA and rPV) or slightly higher (rbJV) than those of SP. In the rbJV, SR 140333, a selective NK(1) receptor antagonist, antagonised the effects of HK-1 and SP with similar high potencies (pK(B) 9.3 and 9.5, respectively). Similar results were obtained with the pseudopeptide NK(1) antagonist, MEN 11467 (pK(B) 8.8 and 8.6, respectively). Taken together, these data indicate that HK-1 behaves as a NK(1) preferring receptor agonist.  相似文献   

2.
FP prostanoid receptors are G-protein coupled receptors that mediate the actions of prostaglandin F2alpha. Two isoforms, designated FP(A) and FP(B), have been previously described. We now report the cloning of a FP receptor mRNA alternative splice variant from human heart and placenta cDNA, named hFP(S). The cDNA encoding hFP(S) has a 71 bp insert that produces a frame shift resulting in a truncated receptor lacking transmembrane-7 and the intracellular carboxyl tail. This 71 bp sequence has been identified as a distinct exon localized in the human FP receptor gene on chromosome one. Northern blot analysis suggests that hFPs is expressed in skeletal muscle as well as human heart and placenta. Immunohistochemical microscopy showed positive immunoreactivity on vascular endothelial, trophoblast, and decidual cells from human placenta. hFPs represents the first confirmed alternative splice variant of the human FP prostanoid receptor gene, however, its function is presently unknown.  相似文献   

3.
4.
The peptides of the tachykinin family are widely distributed within the mammalian peripheral and central nervous systems and play a well-recognized role as excitatory neurotransmitters. Currently, the concept that tachykinins act exclusively as neuropeptides is being challenged, since the best known members of the family, substance P, neurokinin A and neurokinin B, are also present in non-neuronal cells and in non-innervated tissues. Moreover, the recently cloned mammalian tachykinins hemokinin-1 and endokinins are primarily expressed in non-neuronal cells, suggesting a widespread distribution and important role for these peptides as intercellular signaling molecules. The biological actions of tachykinins are mediated through three types of receptors denoted NK(1), NK(2) and NK(3) that belong to the family of G protein-coupled receptors. The identification of additional tachykinins has reopened the debate of whether more tachykinin receptors exist. In this review, we summarize the current knowledge of tachykinins and their receptors.  相似文献   

5.
The distribution of the tachykinin receptors neurokinin-1 (NK1), neurokinin-2 (NK2) and neurokinin-3 (NK3), and the calcitonin gene-related peptide-1 (CGRP1) receptor were examined in rat teeth and tooth-supporting tissues by immunohistochemical methods and light and confocal microscopy. Western blot analysis was performed to identify the NK1- and the CGRP1-receptor proteins in the dental pulp. The results showed that odontoblasts and ameloblasts, cementoblasts and cementocytes, osteoblasts and osteocytes are all supported with the tachykinin receptors NK1 and NK2, but a distinct, graded cellular labeling pattern was demonstrated. The ameloblasts were also positive for CGRP1 receptor. Blood vessels in oral tissues expressed the tachykinin receptors NK1, NK2 and NK3, and the CGRP1 receptor. Both gingival and Malassez epithelium were abundantly supplied by NK2 receptor. Pulpal and periodontal fibroblasts demonstrated NK1 and NK2 receptors. Western blot analysis identified both the NK1- and the CGRP1-receptor proteins in the dental pulp. These results clearly indicate that the neuropeptides substance P, neurokinin A, neurokinin B and CGRP, released from sensory axons upon stimulation, directly modulate the function of the different types of bone and dental hard tissue cells, and regulate functions of blood vessels, fibroblasts and epithelial cells in oral tissues.  相似文献   

6.
The aim of this study was to analyze the function and expression of tachykinins, tachykinin receptors, and neprilysin (NEP) in the mouse uterus. A previous study showed that the uterotonic effects of substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) in estrogen-treated mice were mainly mediated by the tachykinin NK1 receptor. In the present work, further contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of late pregnant mice. Endpoint and real-time quantitative RT-PCR were used to analyze the expression of the genes that encode the tachykinins SP/NKA, NKB, and hemokinin-1 (HK-1) (Tac1, Tac2, and Tac4); and the genes that encode tachykinin NK1 (Tacr1), NK2 (Tacr2), and NK3 (Tacr3) receptors in uteri from pregnant and nonpregnant mice. The data show that the mRNAs of tachykinins (particularly NKB and HK-1), tachykinin receptors, and NEP are locally expressed in the mouse uterus, and their expression changes during the estrous cycle and during pregnancy. The tachykinin NK1 receptor is the predominant tachykinin receptor in the nonpregnant and early pregnant mouse and may mediate tachykinin-induced uterine contractions in the nonpregnant mouse. The tachykinin NK2 receptor is predominant in the late pregnant mouse and is the main receptor mediating uterotonic responses to tachykinins at late pregnancy. The tachykinin NK3 receptor is expressed in considerable amounts only in uteri from nonpregnant diestrous animals, and its physiological significance remains to be clarified.  相似文献   

7.
STKR is an insect G protein-coupled receptor, cloned from the stable fly Stomoxys calcitrans. It displays sequence similarity to vertebrate tachykinin [or neurokinin (NK)] receptors. Functional expression of the cloned STKR cDNA was obtained in cultured Drosophila melanogaster Schneider 2 (S2) cells. Insect tachykinin-like peptides or "insectatachykinins," such as Locusta tachykinin (Lom-TK) III, produced dose-dependent calcium responses in stably transfected S2-STKR cells. Vertebrate tachykinins (or neurokinins) did not evoke any effect at concentrations up to 10(-5) M, but an antagonist of mammalian neurokinin receptors, spantide II, inhibited the Lom-TK III-induced calcium response. Further analysis showed that the agonist-induced intracellular release of calcium ions was not affected by pretreatment of the cells with pertussis toxin. The calcium rise was blocked by the phospholipase C inhibitor U73122. In addition, Lom-TK III was shown to have a stimulatory effect on the accumulation of both inositol 1,4,5-trisphosphate and cyclic AMP. These are the same second messengers that are induced in mammalian neurokinin-dependent signaling processes.  相似文献   

8.
Gamma-aminobutyric acid type A (GABA(A)) receptors are the major sites of inhibitory action of fast synaptic neurotransmission in the brain. Their receptors are also widely distributed in peripheral and endocrine tissues. A full-length cDNA encoding a novel splice variant of beta3 subunit of GABA(A) receptor, designated as beta3t, was identified in rat testis. This isoform contains a segment, having identical amino acid sequence as the beta3 subunit of neuronal GABA(A) receptors except for a section composed of 25 different amino acid sequence in the N-terminus. Northern blot shows that this isoform is found in rat testis. The beta3t isoform mRNA was detected in germ cells in the late step of spermatogenesis by in situ hybridization assay. Results of immunohistochemical and immunocytochemical assays indicate that the beta3t isoform is expressed in rat testis and spermatozoa. To determine a possible function of the N-terminal 25 amino acid segment, a recombinant plasmid of beta3t-EGFPC was constructed by fusing green fluorescent protein to the C-terminus of the beta3t isoform. The chimera product failed to be translocated unto the cell surface when expressed in HEK 293 cells; whereas, the beta3 subunit of rat brain is incorporated into the plasma membrane. In conclusion, the present results show that one variant of beta3 subunit of GABA(A) receptor, designated as beta3t, is found in germ cells of rat testis and sperm. The inability of the beta3t variant to target into the plasma membrane maybe a consequence of the unique 25 amino acid segment in the N-terminus.  相似文献   

9.
Stable CHO cell clones which selectively express all three rat tachykinin receptors were established by transfection. The binding of radiolabled substance P and neurokinin A (substance K) to CHO clones expressing the NK1 and NK2 receptors, respectively, were saturatable and of high affinity (Kd = 0.17 nM (NK1); 3.4 nM (NK2)). Scatchard analysis of the binding data indicated for both receptors binding to a single population of binding sites, and competition binding studies showed that the binding specificities of the receptors corresponded to those of classical NK1 and NK2 receptors. In contrast, the binding of eledoisin to the NK3 receptor expressed in the transfected CHO cells was of low affinity (IC50 = 240 nM) compared to the high affinity of the receptor found when it was transiently expressed in COS-7 cells (IC50 = 8 nM). However, in both cases the receptor exhibited the specificity of a classical NK3 receptor. The established cell clones may provide an important tool for further analysis of the molecular mechanisms involved in binding, activation, and coupling of receptors for tachykinin peptides.  相似文献   

10.
11.
The tachykinin neurokinin 1 receptors (NK1Rs) regulation of acetylcholine release and its interaction with the enkephalin/mu opioid receptors (MORs) transmission was investigated in the limbic/prefrontal (PF) territory of the dorsal striatum. Using double immunohistochemistry, we first showed that in this territory, cholinergic interneurons contain tachykinin NK1Rs and co-express MORs in the last part of the light period (afternoon). In slices of the striatal limbic/PF territory, following suppression of the dopaminergic inhibitory control of acetylcholine release, application of the tachykinin NK1R antagonist, SSR240600, markedly reduced the NMDA-induced acetylcholine release in the morning but not in the afternoon when the enkephalin/MOR regulation is operational. In the afternoon, the NK1R antagonist response required the suppression of the enkephalin/MOR inhibitory control of acetylcholine release by βfunaltrexamine. The pharmacological profile of the tachykinin NK1R regulation tested by application of the receptor agonists [[Pro9]substance P, neurokinin A, neuropeptide K, and substance P(6–11)] and antagonists (SSR240600, GR205171, GR82334, and RP67580) indicated that the subtype of tachykinin NK1R implicated are the new NK1-sensitive receptor binding site. Therefore, in the limbic/PF territory of the dorsal striatum, endogenous tachykinin facilitates acetylcholine release via a tachykinin NK1R subtype. In the afternoon, the tachykinin/NK1R and the enkephalin/MOR transmissions interact to control cholinergic transmission.  相似文献   

12.
13.
We investigated whether fenoterol was able to enhance contractile responsiveness to neurokinin A (NKA) on the guinea-pig isolated trachea. We then studied the effects of two inhibitors of nuclear factor kappa B (NFkappaB), gliotoxin and pyrrolidine dithiocarbamate, and of the tachykinin NK(1), NK(2) and NK(3) receptor antagonists, SR 140333, SR 48968 and SR 142801 and determined whether tachykinin receptor gene expression was up-regulated in the trachea after exposure to fenoterol. Fenoterol (0.1 microM, 15 h, 21 degrees C) induced an increased contractile response to NKA (mean of difference in maximal tension between control and fenoterol +/- S.E.M; +0.47 +/- 0.14 g, n = 26, P < 0.01). This hyperresponsiveness was strongly reduced by co-incubation with gliotoxin (0.1 microg/ml) or pyrrolidine dithiocarbamate (0.1 mM) and abolished by SR 140333 (0.1 microM) and SR 142801 (0.1 microM). SR 48968 (0.1 microM) diminished the tracheal contractility to NKA but failed to reduce the hyperreactivity induced by fenoterol. Tachykinin NK(1) receptor (NK(1)R), NK(2) receptor (NK(2)R) and NK(3) receptor (NK(3)R) gene expression was analyzed by semiquantitative RT-PCR. Compared to control tissues, NK(1)R and NK(2)R mRNA expression was increased by about 1.6-fold and 1.4-fold, respectively, in tissues treated with fenoterol. We were unable to detect the presence of NK(3)R mRNA in the guinea-pig trachea. In conclusion, fenoterol induces tracheal hyperresponsiveness to NKA and an up-regulation of NK(1)R and NK(2)R gene expression. The hyperresponsiveness implicates the NFkappaB pathway and is abolished by tachykinin NK(1) (SR 140333) and NK(3) (SR 142801) receptor antagonists.  相似文献   

14.
Summary The adamantane moiety was introduced in the tachykinin NK2 receptor-selective agonist [-Ala8]-NKA(4–10) (H-Asp-Ser-Phe-Val--Ala-Leu-Met-NH2, MEN 10210) and in different positions of the NK2 receptor antagonist MEN 10376 (H-Asp-Tyr-d-Trp-Val-d-Trp-d-Trp-Lys-NH2) in order to investigate how this substitution affects their biological activity at tachykinin NK1, NK2 and NK3 receptors. 1-Adamantaneacetic acid (1-Ada-CH2COOH) was directly conjugated in the solid phase as the preformed OBt active ester to the N-terminal position of MEN 10210, obtaining MEN 10586 (1-Ada-CH2CO-Asp-Ser-Phe-Val--Ala-Leu-Met-NH2). The Pfp ester of adamantaneacetic acid (1) was prepared and used for the acylation of the N-terminal position of MEN 10376, yielding MEN 10606 (1-Ada-CH2CO-Asp-Tyr-d-Trp-Val-d-Trp-d-Trp-Lys-NH2). Compound 1 was then used to obtain the building block Fmoc-Lys(1-Ada-CH2CO)-OH as a modified amino acid for the synthesis of MEN 10818 [H-Asp-Tyr-d-Trp-Val-d-Trp-d-Trp-Lys(1-Ada-CH2CO)-NH2]. In order to investigate the biological activity of the peptide bearing the adamantane group together with the free N-terminal amino function, we synthesised MEN 10676 [H-Asp(O-2-Ada)-Tyr-d-Trp-Val-d-Trp-d-Trp-Lys-NH2] using Fmoc-Asp(O-2-Ada)-OH, in which 2-adamantanole was the protecting group of the aspartate -COOH moiety during the peptide synthesis and survived the final peptide cleavage and deprotection carried out under controlled conditions. MEN 10586 showed an agonist activity comparable to that of the parent compound MEN 10210 at NK1 and NK2 receptors of guinea pig ileum, rabbit isolated pulmonary artery and hamster isolated trachea preparations, while it showed a 25-fold higher agonist activity at NK3 receptors of rat isolated portal vein. The three modified antagonist analogs displayed similar or reduced affinity at NK1, NK2 and NK3 receptors as compared to MEN 10376. The drop was particularly evident (>2 log units) at the NK2 receptors of the rabbit isolated pulmonay artery.  相似文献   

15.
We identified the isoforms of Ca(2+) /calmodulin-dependent protein kinase II (CaM kinase II) subunits in rat striatum. All four subunits of CaM kinase II alpha, beta, gamma and delta were detected including the isoforms of alphaB, gammaA, gammaA', gammaA.B, delta3 and delta7 with nuclear localization signal. We established NG108-15 cells with the stably expressed dopamine D2L receptor (D2LR, long form), which is an alternative splicing variant. The cells were termed NGD2L. Immunostaining demonstrated that D2LR was localized in plasma membranes. Calcium imaging with fluo-3 AM revealed that quinpirole, a D2R agonist, increased the intracellular Ca(2+), which was blocked by treatment with sulpiride and pertussis toxin in NGD2L cells, but not in mock cells. Furthermore, stimulation of D2LR with quinpirole in NGD2L cells activated the nuclear isoform of CaM kinase II. Stimulation of D2LR increased the expression of exon III- and IV-BDNF mRNA. Overexpression of CaM kinase II delta3 increased exon IV- but not exon III-BDNF mRNA. These results suggest that D2R is involved in the activation of the nuclear isoform of CaM kinase II and thereby in stimulation of gene expression through Ca(2+) signaling.  相似文献   

16.
During the lead optimization of NK(1)/NK(3) receptor antagonists program, a focused exploration of molecules bearing a lactam moiety was performed. The aim of the investigation was to identify the optimal position of the carbonyl and hydroxy methyl group in the lactam moiety, in order to maximize the in vitro affinity and the level of insurmountable antagonism at both NK(1) and NK(3) receptors. The synthesis and biological evaluation of these novel lactam derivatives, with potent and balanced NK(1)/NK(3) activity, were reported in this paper.  相似文献   

17.
18.
Using an in vitro microsuperfusion procedure, the NMDA-evoked release of [3H]ACh was studied after suppression of dopamine (DA) transmission (alpha-methyl-p-tyrosine) in striatal compartments of the rat. The effects of tachykinin neurokinin 1 (NK1) receptor antagonists and the ability of appropriate agonists to counteract the antagonist responses were investigated to determine whether tachykinin NK1 classic, septide-sensitive and/or new NK1-sensitive receptors mediate these regulations. The NK1 antagonists, SR140333, SSR240600, GR205171 but not GR82334 and RP67580 (0.1 and 1 microM) markedly reduced the NMDA (1 mm + D-serine 10 microM)-evoked release of [3H]ACh only in the matrix. These responses unchanged by coapplication with NMDA of NK2 or NK3 agonists, [Lys5,MeLeu9,Nle10]NKA(4-10) or senktide, respectively, were completely counteracted by the selective NK1 agonist, [Pro9]substance P but also by neurokinin A and neuropeptide K (1 nM each). According to the rank order of potency of agonists for counteracting the antagonist responses ([Pro9]substance P, 0.013 nM > neurokinin A, 0.15 nM > substance P(6-11) 7.7 nM = septide 8.7 nM), the new NK1-sensitive receptors mediate the facilitation by endogenous tachykinins of the NMDA-evoked release of ACh in the matrix, after suppression of DA transmission. Solely the NK1 antagonists having a high affinity for these receptors could be used as indirect anti-cholinergic agents.  相似文献   

19.
Tachykinins are a family of structurally related peptides, including substance P (SP), hemokinin-1 (HK-1), neurokinin A (NKA), and neurokinin B. SP and NKA have been shown to modulate hematopoiesis and rat/mouse HK-1 has been found to be involved in the survival and differentiation of mouse B-cells. This study was designed to assess the expression of tachykinins with a focus on human HK-1 (hHK-1) in human B lymphocytes and the role of these peptides in cell differentiation, apoptosis and proliferation. Expression of tachykinin and tachykinin receptor mRNA was determined quantitatively in human B lymphoproliferative malignancies and compared to normal B-cells. Expression of hHK-1 and NK1 receptor, but not SP, was detected in human B-lymphocytes, and was up-regulated in B-lymphocytes from chronic lymphocytic leukemia and non-Hodgkin's lymphoma, while it was down-regulated in acute lymphoblastic leukemia. Moreover, hHK-1, in contrast to SP, was able to induce proliferation of human pre-B lymphocytes through a NK1 receptor-independent mechanism. These data suggest a role for hHK-1 in normal and pathological B lymphopoiesis, and open the door to a better understanding of the physiopathological mechanisms leading to lymphoproliferative malignancies.  相似文献   

20.
In humans and rat, orexins orchestrate divergent actions through their G protein-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R). Orexins also play an important physiological role in mouse, but the receptors through which they function are not characterized. To characterize the physiological role(s) of orexins in the mouse, we cloned and characterized the mouse orexin receptor(s), mOX1R and mOX2R, using rapid amplification of cDNA (mouse brain) ends, RT-PCR, and gene structure analysis. The mOX1R cDNA encodes a 416-amino acid (aa) receptor. We have identified two alternative C terminus splice variants of the mOX2R; mOX2 alpha R (443 aa) and mOX2 beta R (460 aa). Binding studies in human embryonic kidney 293 cells transfected with mOX1R, mOX2 alpha R, and the mOX2 beta R revealed specific, saturable sites for both orexin-A and -B. Activation of these receptors by orexins induced inositol triphosphate (IP(3)) turnover. However, human embryonic kidney 293 cells transfected with mOXRs demonstrated no cAMP response to either orexin-A or orexin-B challenge, although forskolin and GTP gamma S revealed a dose-dependent increase in cAMP. Although, orexin-A and -B showed no difference in binding characteristics between the splice variants; interestingly, orexin-B led to an increase in IP(3) production at all concentrations in the mOX2 beta R variant. Orexin-A, however, showed no difference in IP(3) production between the two variants. Additionally, in the mouse, we demonstrate that these splice variants are distributed in a tissue-specific manner, where OX2 alpha R mRNA was undetectable in skeletal muscle and kidney. Moreover, food deprivation led to a greater increase in hypothalamic mOX2 beta R gene expression, compared with both mOX1R and mOX2 alpha R. This potentially implicates a fundamental physiological role for these splice variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号