首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, the relationship between the nutritional status of leaves and the development of symptoms of cotton leaf curl virus (CLCuV) in two cotton (Gossypium hirsutum L.) cuItlvars (I.e. CIM-240 and S-12) was Investigated. The incidence of disease attack was found to be 100% In the S-12 cuItlvar and 16% in the CIM-240 cuItivar. Geminivirus particles in infected leaves were confirmed by transmission electron microscope examination of highly specific geminivirus coat protein antlsera-treated cell sap. The CLCuV Impaired the accumulation of different nutrients in both cuItivars. A marked decrease in the accumulation of Ca^2+ and K^+ was observed in infected leaves. However, the disease had no effect on leaf concentrations of Na^+, N, and P. It was observed that the curling of leaf margins in CLCuV-Infected plants was associated with the leaf Ca^2+ content; leaf curling was severe in plants with a significant reduction In Ca^2+ content. Moreover, leaf K&+ content was found to be associated with resistance/susceptibility to CLCuV infection.  相似文献   

2.
Eight cultivars/lines of Gossypium hirsutum (CIM-443, CIM-448, CIM-1100, FH-634, S-111, S-113, Cedix, and LRA 5166) resistant to cotton leaf curl virus (CLCuV), one moderately-resistant (cv. NIAB-Krishma), and one susceptible (cv. S-12) were used. All the resistant lines remained free of all disease symptoms, whereas in moderately-resistant and susceptible cvs. leaf curling and vein thickening occurred. Cultivars with varying degree of CLCuV-resistance had different pattern of accumulation of macronutrients. Leaf N content was lowest in S-12, but increased considerably due to disease. Leaf K and Ca contents of S-12 were lower in the diseased leaves than in healthy ones. Chlorophyll a and b contents were highest in lines S-111, S-113 and S-12. A marked reduction in chlorophyll b content was observed in the diseased leaves of S-12. Leaf water potential in S-12 and NIAB-Krishma was also decreased due to disease. The most distinctive characteristic to differentiate between lines was epicuticular wax content, since all the resistant lines had considerably higher wax content on their leaf surfaces than the moderately-resistant or susceptible cultivars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
研究了外源油菜素内酯(BL)对NaCl胁迫下棉花幼苗的钠累积、叶片生理特征及叶片差异基因表达水平的影响.结果表明: NaCl胁迫下2个棉花品种各部位钠含量升高,叶片丙二醛(MDA)、脯氨酸含量上升,叶绿素含量下降,叶片基因表达水平受到影响.外源施用油菜素内酯可降低NaCl胁迫下棉花幼苗根、茎、叶的钠含量,降低叶片中MDA含量,提高脯氨酸含量,并且NaCl胁迫下苏棉12号棉花品种更易受油菜素内酯调控.对苏棉12号的叶片进行数字表达谱分析结果表明,NaCl胁迫下苏棉12号叶片中的差异基因表达水平受到油菜素内酯调控,BL+NaCl处理棉花叶片的基因表达模式与CK(正常生长棉株)更为一致.说明外源油菜素内酯可减轻NaCl胁迫下棉花叶片受抑制程度,从而使NaCl胁迫下棉花叶片生理功能增强(叶绿素含量升高),最终使生物量增加.  相似文献   

4.
Leaf senescence varies greatly among cotton cultivars, possiblydue to their root characteristics, particularly the root-sourcedcytokinins and abscisic acid (ABA). Early-senescence (K1) andlate-senescence (K2) lines, were reciprocally or self-graftedto examine the effects of rootstock on leaf senescence and endogenoushormones in both leaves and xylem sap. The results indicatethat the graft of K1 scion onto K2 rootstock (K1/K2) alleviatedleaf senescence with enhanced photosynthetic (Pn) rate, increasedlevels of chlorophyll (Chl) and total soluble protein (TSP),concurrently with reduced malondialdehyde (MDA) contents inthe fourth leaf on the main-stem. The graft of K2 scion ontoK1 rootstock enhanced leaf senescence with reduced Pn, Chl,and TSP, and increased MDA, compared with their respective self-graftedcontrol plants (K1/K1 and K2/K2). Reciprocally grafted plantsdiffered significantly from their self-grafted control plantsin levels of zeatin and its riboside (Z+ZR), isopentenyl andits adenine (iP+iPA), and ABA, but not in those of dihydrozeatinand its riboside (DHZ+DHZR) in leaves in late season, whichwas consistent with variations in leaf senescence between reciprocallyand self-grafted plants. The results suggest that leaf senescenceis closely associated with reduced accumulation of Z+ZR, andiP+iPA rather than DHZ+DHZR, or enhanced ABA in leaves of cotton.Genotypic variation in leaf senescence may result from the differencein root characteristics, particularly in Z+ZR, iP+iPA, and ABAwhich are regulated by the root system directly or indirectly. Key words: Abscisic acid, cotton, cytokinins, grafting, leaf senescence Received 23 October 2007; Revised 17 January 2008 Accepted 23 January 2008  相似文献   

5.
有关非洲木薯花叶病毒(ACMV)、番茄金色花叶病毒(TGMV)的研究表明,双生病毒编码的反式作用因子AC2反式激活病毒链基因启动子的瞬时表达。以棉花曲叶病毒(CLCuV)侵染的烟草叶片组织总的DNA为模板,通过聚合酶反应扩增CLCuV的AC2基因片段并插入克隆载体。将AC2置于CaMV35S启动子下构建了瞬时表达载体。通过基因他法将质粒载体导入烟草(Nicotiana tabacumL.)和棉花(Gossypium hirstumL.)叶片细胞中进行瞬时表达,结果表明,在反式作用因子AC2的激活下,病毒链基因启动子驱动的GUS活性明显增强,然而激活后的病毒链基因启动子的活性仍低于互补链基因方向启动子;其表达方式与互补链基因启动子相似,即在叶肉及叶脉维管组织均有较高的活性。还探讨了AC2在土壤杆菌介导的转基因植物中的表达行为。  相似文献   

6.
Although ascorbic acid (AsA) is one of the most important and abundantly occurring water soluble antioxidants in plants, relatively little is known about its role in counteracting the adverse effects of salt stress on plant growth. To address this issue that whether exogenous application of ascorbic acid (AsA) through rooting medium could alleviate the adverse effects of salt stress on wheat plants, a hydroponic experiment was conducted under glasshouse conditions using two wheat cultivars, S-24 (salt tolerant) and MH-97 (moderately salt sensitive). Plants of both cultivars were subjected to 0 or 150 mM NaCl solution supplemented with 0, 50, or 150 mg L−1 AsA for 58 days. Imposition of salt stress reduced the growth of both wheat cultivars by causing reduction in photosynthesis, and endogenous AsA level, and enhancing accumulation of Na+ and Cl coupled with a decrease in K+ and Ca2+ in the leaves and roots of both cultivars thereby decreasing tissue K+/Na+ ratio. However, root applied AsA counteracted the adverse effects of salt stress on the growth of cv. S-24 only, particularly at 100 mg L−1 AsA level. AsA-induced enhancement in growth of salt-stressed plants of S-24 was associated with enhanced endogenous AsA level and CAT activity, and higher photosynthetic capacity, and accumulation of K+ and Ca2+ in the leaves. Although root applied AsA did not improve the growth of salt-stressed plants of MH-97, it enhanced endogenous level of AsA, CAT activity, photosynthetic capacity, and leaf K+ and Ca2+. These findings led us to conclude that root applied AsA counteracts the adverse effects of salt stress on growth of wheat by improving photosynthetic capacity of wheat plants against salt-induced oxidative stress and maintaining ion homeostasis, however, these effects were cultivar specific.  相似文献   

7.
The growth of barley (Hordeum vulgare L.) leaves is reduced by salinity. We used the Instron extensometric technique to measure the reversible and irreversible compliance of the expanding regions of growing barley leaves from plants exposed to 1, 40, 80 and 120 mM NaCl in nutrient solution. Two barley cultivars differing in salinity resistance (cv ‘Arivat’ and cv ‘Briggs’) were compared over 5d of leaf growth. During the period of most active leaf expansion, salinity reduced reversible compliance and increased compliance in the leaf segments, although responses to salinity were complex and changed over the course of leaf expansion. Salinity increased irreversible compliance more in the salt-sensitive cultivar Arivat than in the more salt-tolerant cultivar Briggs. Elemental analysis of the basal leaf segments used for extensometry revealed an accumulation of Na and a depletion of Ca in segments from salinized plants, resulting in very high Na: Ca ratios in salinized expanding tissue. The concentrations of K and Mg in basal leaf tissue were elevated by salinity. Our data do support the hypothesis that the inhibition of leaf expansion by salinity stress is mediated by a decline in irreversible extensibility. We suggest that reduced Ca availability in expanding leaf tissue may contribute to growth reduction in salt-stressed barley seedlings.  相似文献   

8.
一种强启动子的分离与功能   总被引:2,自引:0,他引:2  
A bidirectional promoter of cotton leaf curl virus (CLCuV) was obtained from the total of DNA CLCuV infected tomato leaves by polymerase chain reaction, and the amplified DNA fragment was cloned into the vector. DNA sequences analysis and homology comparison with the promotor of four kinds of isolates recently found indicated that the cloned promoter fragment composed of 436 bp was 99.32% homolog was up to in nucleotides with that of the isolates. Transient expression vectors were constructed by fusing the promoter fragment with gus reporter gene and nopaline terminator in different orientation. These constructs were delivered into the tobacco (Nicotiana tabacum L.) and cotton ( Gossypium hirsutum L.) leaf cells for transient expression by particle bombardment. The results indicated that complementary sense promoter was a strong promoter with high activity in leaf mesophyll and vascular tissues, but virion sense promoter was weaker. The experiments suggested that isolated bidirectional promoter, as a novel strong promoter, could be used for dicots and especially cotton genetic transformation.  相似文献   

9.
Modulation of water relations, activities of antioxidant enzymes and ion accumulation was assessed in the plants of two wheat cultivars S-24 (salt tolerant) and MH-97 (moderately salt sensitive) subjected to saline conditions and glycinebetaine (GB) applied foliarly. Different levels of GB, i.e., 0 (unsprayed), 50 and 100 mM (in 0.10% Tween-20 solution) were applied to the wheat plants at the vegetative growth stage. Leaf water potential, leaf osmotic potential and turgor potential were decreased due to salt stress. Salt stress increased the Na+ and Cl accumulation coupled with a decrease in K+ and Ca2+ in the leaves and roots of both cultivars thereby decreasing tissue K+/Na+ and Ca2+/Na+ ratios. Furthermore, salt stress decreased the activities of superoxide dismutase (SOD), whereas it increased the activities of catalase (CAT) and peroxidase (POD) in both wheat cultivars. However, accumulation of GB in the leaves of both wheat cultivars was consistently increased with an increase in concentration of exogenous GB application under both non-saline and saline conditions. Accumulation of Na+ was decreased with an increase in K+ accumulation upon a consistent increase in GB accumulation under salt stress conditions thereby resulting in better K+/Na+ and Ca2+/Na+ ratios in the leaves and roots. High accumulation of GB and K+ mainly contributed to osmotic adjustment, which is one of the factors known to be responsible for improving growth and yield under salt stress. The activities of all antioxidant enzymes, SOD, CAT and POD were enhanced by GB application in cv. MH-97 under saline conditions, whereas all these except SOD were reduced in cv. S-24. It is likely that both applied GB and intrinsic SOD scavenged ROS in the tolerant cultivar thereby resulting into low activities of CAT and POD enzymes under salt stress. In conclusion, the adverse effects of salt stress on wheat can be alleviated by the exogenous application of 100 mM GB by modulating activities of antioxidant enzymes and changes in water relations and ion homeostasis. Furthermore, effectiveness of GB application on regulation of activities of antioxidant enzymes was found to be cultivar-specific.  相似文献   

10.
Plaut  Zvi  Meinzer  Frederick C.  Federman  Evelyn 《Plant and Soil》2000,218(1-2):59-69
The effects of salinity on leaf growth, initiation and senescence, on transpiration rates, on leaf water potential and on uptake and distribution of several ions were studied in two sugarcane cultivars differing in salinity sensitivity. Plants, growing in a growing mixture in pots, were exposed to salinized irrigation water for 68 days, starting 60 days after planting. EC values of the irrigation water were 1.0, 2.0, 4.0, 8.0 and 12 dS/m, obtained by using a mixture of NaCl and CaCl2. Plants were also grown in nutrient solution and were at a similar age when exposed to a salinity level of 3 dS/m for 30 days followed by 6.0 dS/m for an additional 30 days. Two Na:Ca ratios of 18:1 and 1:2 were used for salinization of the nutrient solution. Both leaf dry weight and area decreased with increasing salinity, but in the more salinity tolerant cultivar H69-8235, the decrease was moderate. Salinity hardly reduced average area per leaf in H69-8235, while the number of leaves declined sharply. This decline was caused by enhanced senescence of mature leaves and not by a decreased rate of leaf initiation. In the more sensitive cultivar, H65-7052, leaf area and initiation of new leaves were sharply reduced by salinity while leaf senescence was less affected. Leaf water potential decreased during the early stages of salinity exposure, and the reduction in water potential was larger in H69-8235. Salinity also decreased the rate of transpiration rate but to a lesser extent than leaf development and growth. The accumulation of Cl and Na in the TVD (top visible dewlap) leaf of the tolerant cultivar H69-8235 was greater than in the sensitive cultivar H65-7052. The concentration of Cl in the TVD leaf was more than 10 times that of Na in both cultivars. The concentration of both ions, but not of K, increased during the early stages of salinity exposure and then remained constant. A gradient in concentration of Cl and Na over the plant was found in both cultivars at all salinity levels, and was steepest between the TVD and younger leaves. No specific Na effect on leaf growth or transpiration could be detected. The accumulation of Cl and Na but not of K occurred primarily in the roots rather than in the leaves and stalks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Studies on tomato golden mosaic virus and African cassava mosaic virus suggested that virion sense promoter was trans -activated in transient expression by A C2 encoded by geminivirus. The AC2 gene fragment of cott on leaf curl virus (CLCuV) was obtained from total DNA of CLCuV infected tobacco leaves by polymerase chain reaction, and the amplified DNA fragment was cloned into vector. Transient expres sion vectors were constructed by fusing the AC2 gene fra gment with CaMV 35S prom oter and nopaline terminator. These constructs were delivered into tobacco [ WT(Nicotiana tabacum L.) and cotton ( Gossypium hirsutum L.) leaf cells for transient expression by particle bombardment. Results indicated that activity of virion sense promoter was activated by AC2 and increased remarkably. However, the activity of trans-activated virion sense promoter was still lower than that of complementary sense promoter. Expression pattern of transactivated virion sense promoter was similar to that of complementary sense promoter with the high activity in both mesophyll and vascular of leaf vein. In this paper, the expression behavior of AC2 in Agrobacterium -mediated transgenic plants was also discussed.   相似文献   

12.
一种强启动子的分离与功能   总被引:5,自引:0,他引:5  
以棉花曲叶病毒(CLCuV)侵染的番茄叶片组织总DNA为模板,通过PCR反应扩增CLCuV双向启动子片段并插入克隆载体。序列分析和同源性比较表明,克隆的启动子长436bp,与目前发现的4类CLCuV分离物的启动子序列的同源性最高为99.32%。将启动子片段分别以不同方向与gus报告基因和nos终止子融合,构建了瞬时表达载体。通过基因枪法将质粒载体导入烟草(Nicotiana tabacum L.)  相似文献   

13.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

14.
Abstract

Being a new cultivar, the physiology of transgenic cotton, especially dual-toxin transgenic (Bt+CpTI) cotton, is not yet completely understood. Twelve elements in three organs of dual-toxin transgenic cotton seedlings were analyzed by ICP-MS. The distributions of the 12 elements were substantially different from those of non-transgenic cotton. In particular, the contents of B, Mg, P, K and Ca were the highest in leaves, while those of Si, Fe, Rb and Cu were the highest in roots; other elements had similar contents in the two organs, which were higher than those in the stem. Compared with non-transgenic cotton, the 12 elements could be classified into four groups according to their contents and distributions in the three organs: (a) P, K and Cu: their contents in transgenic cotton were remarkably lower, especially contents of P and K in leaves that were one times lower than those in leaves of non-transgenic cotton; (b) B, Mg and Mo: their contents in leaves and roots of transgenic cotton were higher, but lower in stems, compared with non-transgenic cotton; (c) Si, Mn, Fe, Rb and Zn: compared with non-transgenic cotton, these were lower in leaves and stems, but higher in roots of transgenic cotton; and (d) Ca: compared with non-transgenic cotton, its content was higher in all three organs of the transgenic counterpart. The decrease in soluble proteins and the expression of Bt and CpTI genes could be responsible for these changes. Further studies are needed to verify this hypothesis.  相似文献   

15.
In the present work, we investigated the effect of salt stress on the distribution of safflower (Carthamus tinctorius L.) antioxidant system in relation to leaf age. The study was carried out under growth chamber conditions using seedlings of three cultivars which were subjected to 0 and 50 mM NaCl for 3 weeks. Leaf growth, water content, lipid peroxidation, and phenolic compound (total polyphenols, total flavonoids, and proanthocyanidins) concentration were measured at two leaf stages (young and old leaves). Leaf growth was affected by salinity only in Kairouan cultivar that also showed a significant decrease in old leaf water content. By contrast, Gabes and Tazarka cultivars maintained their old leaf water content constant and showed a reduction in that of young leaves. This could be attributed to a higher aptitude of the latter two cultivars to use absorbed sodium and chloride for osmotic adjustment in old leaves, keeping potassium for specific functions. Salt-induced lipid peroxidation was observed only in old leaves, whereas the accumulation of the major phenolic compounds under saline conditions was higher in young leaves, except in Gabes cultivar where no significant difference was found between the two leaf stages. A significant variability was also found between the three cultivars. The better behavior of salt-challenged leaves of Gabes and Tazarka cultivars compared to that of Kairouan cultivar may be related to their higher water content and the accumulation of polyphenols, in particular flavonoids that were shown to be efficiently involved in the restriction of salt-induced oxidative damages.  相似文献   

16.
Activities of phosphofructokinase (PFK), fructose-1,6-bisphosphate aldolase (FBP aldolase) and pyruvate kinase (PK) increased progressively in the roots of flood-tolerant SSG-59-3 cultivar during flooding. In contrast, only a slight change in activities of PFK and FBP aldolase was discerned in the roots of flood-sensitive S-308 cultivar during initial stages of flooding followed by a decline in the activities of these enzymes. Although the activity of hexokinase (HK) was transiently elevated in roots of both the cultivars during flooding, the magnitude of increase was much more in SSG-59-3 than in the S-308. In leaves of SSG-59-3, HK activity increased during 12 h of flooding whereas only a minor change occurred in the case of S-308. Flooding resulted in depressed activities of PFK and PK in leaves of S-308 but that in SSG-59-3 rose following imposition of waterlogged conditions. Activity of FBP aldolase in leaves of tolerant cultivar also showed a steady enhancement during flooding. The total and reducing sugars content decreased in leaves and roots of the S-308 during flooding but in SSG-59-3 the amount was more or less comparable to that in corresponding non-flooded plants.  相似文献   

17.
This study investigated the basis of the negative relationship between leaf size and photosynthetic rate per unit of area among five cultivars of soybeans. Exposure of developing mainstem leaves to light, and sizes and light saturated photosynthesis rates of those leaves at maturity were compared in cultivars grown in field plots for two years at Beltsville, Maryland, USA. Plants were grown both in stands at 2.5 cm by 1 m spacing and as isolated plants. While cultivar differences in leaf size were large and consistent in both planting arrangements, significant cultivar differences in light saturated photosynthetic rates were found only in plants grown in stands. Similarly, leaf size was significantly correlated with specific leaf weight only for plants grown in stands. The mainstem apex and developing mainstem leaves experienced more severe shading in large-leaved cultivars than in small-leaved cultivars when plants were grown in stands. Thus, cultivar differences in photosynthetic capacity were probably a consequence of differences in the exposure of developing leaves to light.  相似文献   

18.
本文比较研究了等渗NaCl和KCl胁迫下,高粱幼苗生长及叶片离子含量、质膜相对透性和有关气体交换参数的变化。结果表明,在低浓度NaCl和KCl胁迫7天时,高粱生长、含水量和质膜相对透性与对照相比没有明显变化,而净光合速率、蒸腾速率和气孔导度已明显下降,叶肉细胞间隙CO2浓度明显增加。NaCl胁迫下叶片Na+含量成倍增加,而K+和Ca2+含量无明显变化。KCl胁迫时叶片K+含量明显增加,Ca2+含量明显下降,而Na+含量没有明显变化。随着NaCl或KCl浓度的增加,幼苗生长和叶片含水量明显下降,质膜透性和细胞间隙CO2浓度明显增加,净光合速率、蒸腾速率和气孔导度进一步下降。 NaCl胁迫下叶片Na+含量进一步增加,K+和Ca2+进一步下降,而KCl胁迫下叶片K+含量进一步 增加,Na+和Ca2+含量进一步下降。KCl对高粱生长抑制、质膜透性、Ca2+含量下降及光合气体交换参数的影响均明显大于等渗的NaCl。  相似文献   

19.
This study analyzes the effects of soil salinity on fatty acid composition, antioxidative enzyme activity, lipid peroxidation, and photosynthesis in functional leaves during the flowering and boll-forming stages of two cotton cultivars, namely, CCRI-44 (salt-tolerant) and Sumian 12 (salt-sensitive), grown under different soil salinity conditions. Saturated (C16:0 and C18:0) and unsaturated fatty acid (FA) contents (C18:1), as well as superoxide dismutase activity increased, whereas high-unsaturated FA (C18:2 and C18:3) decreased, with the increase in soil salinity. The production of malondialdehyde increased with increasing lipoxygenase (LOX) activity, indicating that LOX catalyzed FA peroxidation under salt stress. Soil salinity had no significant effect on catalase (CAT) and peroxidases (POD) activity in the salt-sensitive cultivar Sumian 12, but significantly increased CAT and POD activities in the salt-tolerant cultivar CCRI-44. Net photosynthesis and stomatal conductance of the cotton cultivars decreased in response to salt stress; however, CCRI-44 showed a smaller reduction in photosynthesis than Sumian 12. The results indicated that stomatal apparatus limited leaf photosynthetic capacity in the salinity-treated plants of both cultivars. The net photosynthetic rate, maximum photochemical efficiency, and photochemical quantum yield of the cotton functional leaves showed positive correlation with double-bond index (DBI). These results suggested that salt stress caused DBI reduction and decreased the photochemical conversion efficiency of solar radiation and, thereby resulting in lower net photosynthetic rates.  相似文献   

20.
The objective of this study was to determine the roles of shoot and root in the regulation of premature leaf senescence induced by potassium (K) deficiency in cotton (Gossypium hirsutum L.). Two contrasting cultivars (CCRI41, more sensitive to K deficiency; and SCRC22, a less sensitive cultivar) were selected for self- and reciprocal-grafting, using standard grafting (one scion/one rootstock), Y grafting (two scions/one rootstock) and inverted Y grafting (one scion/two rootstocks) at the seedling stage. Standard grafting was studied in the field in 2007 and 2008. There were no obvious differences in senescence between CCRI41 and SCRC22 scions while supplied with sufficient K. However, SCRC22 scions showed significantly greater K content, SPAD values (chlorophyll content), soluble protein content and net photosynthetic rates than CCRI41 scions while grown in K deficient solution or soil, regardless of rootstock cultivars, grafting types, growth stage and growth conditions. Also, SCRC22 scions had greater yield and less variation in boll weight either between upper- and lower sympodials, or between proximal and distal fruit positions from the main stem in the field under K deficiency, probably owing to reduced leaf senescence. Although the effect of rootstocks on leaf senescence under K deficiency was significant in some cases, the scion cultivars explained the highest percentage of variations within grafting treatments. The shoot-to-root feedback signal(s), rather than high shoot demand for K nutrition, was involved in the shoot regulation of premature senescence in cotton plants, achieved possibly by altering root K uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号